Commit graph

119 commits

Author SHA1 Message Date
Jeffrey Morgan
96efd9052f
Re-introduce the llama package (#5034)
* Re-introduce the llama package

This PR brings back the llama package, making it possible to call llama.cpp and
ggml APIs from Go directly via CGo. This has a few advantages:

- C APIs can be called directly from Go without needing to use the previous
  "server" REST API
- On macOS and for CPU builds on Linux and Windows, Ollama can be built without
  a go generate ./... step, making it easy to get up and running to hack on
  parts of Ollama that don't require fast inference
- Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
  takes <5 min on a fast CPU)
- No git submodule making it easier to clone and build from source

This is a big PR, but much of it is vendor code except for:

- llama.go CGo bindings
- example/: a simple example of running inference
- runner/: a subprocess server designed to replace the llm/ext_server package
- Makefile an as minimal as possible Makefile to build the runner package for
  different targets (cpu, avx, avx2, cuda, rocm)

Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>

* cache: Clear old KV cache entries when evicting a slot

When forking a cache entry, if no empty slots are available we
evict the least recently used one and copy over the KV entries
from the closest match. However, this copy does not overwrite
existing values but only adds new ones. Therefore, we need to
clear the old slot first.

This change fixes two issues:
 - The KV cache fills up and runs out of space even though we think
   we are managing it correctly
 - Performance gets worse over time as we use new cache entries that
   are not hot in the processor caches

* doc: explain golang objc linker warning (#6830)

* llama: gather transitive dependencies for rocm for dist packaging (#6848)

* Refine go server makefiles to be more DRY (#6924)

This breaks up the monolithic Makefile for the Go based runners into a
set of utility files as well as recursive Makefiles for the runners.
Files starting with the name "Makefile" are buildable, while files that
end with ".make" are utilities to include in other Makefiles.  This
reduces the amount of nearly identical targets and helps set a pattern
for future community contributions for new GPU runner architectures.

When we are ready to switch over to the Go runners, these files should
move to the top of the repo, and we should add targets for the main CLI,
as well as a helper "install" (put all the built binaries on the local
system in a runnable state) and "dist" target (generate the various
tar/zip files for distribution) for local developer use.

* llama: don't create extraneous directories (#6988)

* llama: Exercise the new build in CI (#6989)

Wire up some basic sanity testing in CI for the Go runner.  GPU runners are not covered yet.

* llama: Refine developer docs for Go server (#6842)

This enhances the documentation for development focusing on the new Go
server.  After we complete the transition further doc refinements
can remove the "transition" discussion.

* runner.go: Allocate batches for all sequences during init

We should tell the model that we could have full batches for all
sequences. We already do this when we allocate the batches but it was
missed during initialization.

* llama.go: Don't return nil from Tokenize on zero length input

Potentially receiving nil in a non-error condition is surprising to
most callers - it's better to return an empty slice.

* runner.go: Remove stop tokens from cache

If the last token is EOG then we don't return this and it isn't
present in the cache (because it was never submitted to Decode).
This works well for extending the cache entry with a new sequence.

However, for multi-token stop sequences, we won't return any of the
tokens but all but the last one will be in the cache. This means
when the conversation continues the cache will contain tokens that
don't overlap with the new prompt.

This works (we will pick up the portion where there is overlap) but
it causes unnecessary cache thrashing because we will fork the original
cache entry as it is not a perfect match.

By trimming the cache to the tokens that we actually return this
issue can be avoided.

* runner.go: Simplify flushing of pending tokens

* runner.go: Update TODOs

* runner.go: Don't panic when processing sequences

If there is an error processing a sequence, we should return a
clean HTTP error back to Ollama rather than panicing. This will
make us more resilient to transient failures.

Panics can still occur during startup as there is no way to serve
requests if that fails.

Co-authored-by: jmorganca <jmorganca@gmail.com>

* runner.go: More accurately capture timings

Currently prompt processing time doesn't capture the that it takes
to tokenize the input, only decoding time. We should capture the
full process to more accurately reflect reality. This is especially
true once we start processing images where the initial processing
can take significant time. This is also more consistent with the
existing C++ runner.

* runner.go: Support for vision models

In addition to bringing feature parity with the C++ runner, this also
incorporates several improvements:
 - Cache prompting works with images, avoiding the need to re-decode
   embeddings for every message in a conversation
 - Parallelism is supported, avoiding the need to restrict to one
   sequence at a time. (Though for now Ollama will not schedule
   them while we might need to fall back to the old runner.)

Co-authored-by: jmorganca <jmorganca@gmail.com>

* runner.go: Move Unicode checking code and add tests

* runner.go: Export external cache members

Runner and cache are in the same package so the change doesn't
affect anything but it is more internally consistent.

* runner.go: Image embedding cache

Generating embeddings from images can take significant time (on
my machine between 100ms and 8s depending on the model). Although
we already cache the result of decoding these images, the embeddings
need to be regenerated every time. This is not necessary if we get
the same image over and over again, for example, during a conversation.

This currently uses a very small cache with a very simple algorithm
but it is easy to improve as is warranted.

* llama: catch up on patches

Carry forward solar-pro and cli-unicode patches

* runner.go: Don't re-allocate memory for every batch

We can reuse memory allocated from batch to batch since batch
size is fixed. This both saves the cost of reallocation as well
keeps the cache lines hot.

This results in a roughly 1% performance improvement for token
generation with Nvidia GPUs on Linux.

* runner.go: Default to classic input cache policy

The input cache as part of the go runner implemented a cache
policy that aims to maximize hit rate in both single and multi-
user scenarios. When there is a cache hit, the response is
very fast.

However, performance is actually slower when there is an input
cache miss due to worse GPU VRAM locality. This means that
performance is generally better overall for multi-user scenarios
(better input cache hit rate, locality was relatively poor already).
But worse for single users (input cache hit rate is about the same,
locality is now worse).

This defaults the policy back to the old one to avoid a regression
but keeps the new one available through an environment variable
OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
to improve this in the future to get the best of both worlds
without user configuration.

For inputs that result in cache misses, on Nvidia/Linux this
change improves performance by 31% for prompt processing and
13% for token generation.

* runner.go: Increase size of response channel

Generally the CPU can easily keep up with handling reponses that
are generated but there's no reason not to let generation continue
and handle things in larger batches if needed.

* llama: Add CI to verify all vendored changes have patches (#7066)

Make sure we don't accidentally merge changes in the vendored code
that aren't also reflected in the patches.

* llama: adjust clip patch for mingw utf-16 (#7065)

* llama: adjust clip patch for mingw utf-16

* llama: ensure static linking of runtime libs

Avoid runtime dependencies on non-standard libraries

* runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)

These are two features that are shown on llama.cpp's system info
that are currently different between the two runners. On my test
systems the performance difference is very small to negligible
but it is probably still good to equalize the features.

* llm: Don't add BOS/EOS for tokenize requests

This is consistent with what server.cpp currently does. It affects
things like token processing counts for embedding requests.

* runner.go: Don't cache prompts for embeddings

Our integration with server.cpp implicitly disables prompt caching
because it is not part of the JSON object being parsed, this makes
the Go runner behavior similarly.

Prompt caching has been seen to affect the results of text completions
on certain hardware. The results are not wrong either way but they
are non-deterministic. However, embeddings seem to be affected even
on hardware that does not show this behavior for completions. For
now, it is best to maintain consistency with the existing behavior.

* runner.go: Adjust debug log levels

Add system info printed at startup and quiet down noisier logging.

* llama: fix compiler flag differences (#7082)

Adjust the flags for the new Go server to more closely match the
generate flow

* llama: refine developer docs (#7121)

* llama: doc and example clean up (#7122)

* llama: doc and example clean up

* llama: Move new dockerfile into llama dir

Temporary home until we fully transition to the Go server

* llama: runner doc cleanup

* llama.go: Add description for Tokenize error case

---------

Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 08:53:54 -07:00
Daniel Hiltgen
d632e23fba
Add Windows arm64 support to official builds (#5712)
* Unified arm/x86 windows installer

This adjusts the installer payloads to be architecture aware so we can cary
both amd64 and arm64 binaries in the installer, and install only the applicable
architecture at install time.

* Include arm64 in official windows build

* Harden schedule test for slow windows timers

This test seems to be a bit flaky on windows, so give it more time to converge
2024-09-20 13:09:38 -07:00
Michael Yang
7bd7b02712 make patches git am-able
raw diffs can be applied using `git apply` but not with `git am`. git
patches, e.g. through `git format-patch` are both apply-able and am-able
2024-09-17 15:26:40 -07:00
Daniel Hiltgen
56b9af336a
Fix incremental builds on linux (#6780)
scripts: fix incremental builds on linux or similar
2024-09-13 08:24:08 -07:00
Daniel Hiltgen
fda0d3be52
Use GOARCH for build dirs (#6779)
Corrects x86_64 vs amd64 discrepancy
2024-09-12 16:38:05 -07:00
Daniel Hiltgen
cd5c8f6471
Optimize container images for startup (#6547)
* Optimize container images for startup

This change adjusts how to handle runner payloads to support
container builds where we keep them extracted in the filesystem.
This makes it easier to optimize the cpu/cuda vs cpu/rocm images for
size, and should result in faster startup times for container images.

* Refactor payload logic and add buildx support for faster builds

* Move payloads around

* Review comments

* Converge to buildx based helper scripts

* Use docker buildx action for release
2024-09-12 12:10:30 -07:00
Jeffrey Morgan
5e2653f9fe
llm: update llama.cpp commit to 8962422 (#6618) 2024-09-03 21:12:39 -04:00
Michael Yang
11018196e0 remove any unneeded build artifacts 2024-08-29 13:40:47 -07:00
Daniel Hiltgen
0b03b9c32f
llm: Align cmake define for cuda no peer copy (#6455)
Define changed recently and this slipped through the cracks with the old
name.
2024-08-23 11:20:39 -07:00
Daniel Hiltgen
a017cf2fea
Split rocm back out of bundle (#6432)
We're over budget for github's maximum release artifact size with rocm + 2 cuda
versions.  This splits rocm back out as a discrete artifact, but keeps the layout so it can
be extracted into the same location as the main bundle.
2024-08-20 07:26:38 -07:00
Daniel Hiltgen
f9e31da946 Review comments 2024-08-19 10:36:15 -07:00
Daniel Hiltgen
88bb9e3328 Adjust layout to bin+lib/ollama 2024-08-19 09:38:53 -07:00
Daniel Hiltgen
927d98a6cd Add windows cuda v12 + v11 support 2024-08-19 09:38:53 -07:00
Daniel Hiltgen
d470ebe78b Add Jetson cuda variants for arm
This adds new variants for arm64 specific to Jetson platforms
2024-08-19 09:38:53 -07:00
Daniel Hiltgen
c7bcb00319 Wire up ccache and pigz in the docker based build
This should help speed things up a little
2024-08-19 09:38:53 -07:00
Daniel Hiltgen
74d45f0102 Refactor linux packaging
This adjusts linux to follow a similar model to windows with a discrete archive
(zip/tgz) to cary the primary executable, and dependent libraries. Runners are
still carried as payloads inside the main binary

Darwin retain the payload model where the go binary is fully self contained.
2024-08-19 09:38:53 -07:00
Daniel Hiltgen
283948c83b Adjust windows ROCm discovery
The v5 hip library returns unsupported GPUs which wont enumerate at
inference time in the runner so this makes sure we align discovery.  The
gfx906 cards are no longer supported so we shouldn't compile with that
GPU type as it wont enumerate at runtime.
2024-07-20 15:17:50 -07:00
Jeffrey Morgan
efbf41ed81
llm: dont link cuda with compat libs (#5621) 2024-07-10 20:01:52 -07:00
Jeffrey Morgan
4e262eb2a8
remove GGML_CUDA_FORCE_MMQ=on from build (#5588) 2024-07-10 13:17:13 -07:00
Daniel Hiltgen
1f50356e8e Bump ROCm on windows to 6.1.2
This also adjusts our algorithm to favor our bundled ROCm.
I've confirmed VRAM reporting still doesn't work properly so we
can't yet enable concurrency by default.
2024-07-10 11:01:22 -07:00
Daniel Hiltgen
0bacb30007 Workaround broken ROCm p2p copy
Enable the build flag for llama.cpp to use CPU copy for multi-GPU scenarios.
2024-07-08 09:40:52 -07:00
Jeffrey Morgan
4607c70641
llm: add -DBUILD_SHARED_LIBS=off to common cpu cmake flags (#5520) 2024-07-06 18:58:16 -04:00
jmorganca
f1a379aa56 llm: statically link pthread and stdc++ dependencies in windows build 2024-07-06 12:54:02 -04:00
jmorganca
9ae146993e llm: add GGML_STATIC flag to windows static lib 2024-07-06 03:27:05 -04:00
Jeffrey Morgan
e0348d3fe8
llm: add COMMON_DARWIN_DEFS to arm static build (#5513) 2024-07-05 22:42:42 -04:00
Jeffrey Morgan
2cc854f8cb
llm: fix missing dylibs by restoring old build behavior on Linux and macOS (#5511)
* Revert "fix cmake build (#5505)"

This reverts commit 4fd5f3526a.

* llm: fix missing dylibs by restoring old build behavior

* crlf -> lf
2024-07-05 21:48:31 -04:00
Jeffrey Morgan
4fd5f3526a
fix cmake build (#5505) 2024-07-05 19:07:01 -04:00
Jeffrey Morgan
8f8e736b13
update llama.cpp submodule to d7fd29f (#5475) 2024-07-05 13:25:58 -04:00
Daniel Hiltgen
96624aa412
Merge pull request #5072 from dhiltgen/windows_path
Move libraries out of users path
2024-06-19 09:13:39 -07:00
Daniel Hiltgen
b0930626c5 Add back lower level parallel flags
nvcc supports parallelism (threads) and cmake + make can use -j,
while msbuild requires /p:CL_MPcount=8
2024-06-17 13:44:46 -07:00
Daniel Hiltgen
e890be4814 Revert "More parallelism on windows generate"
This reverts commit 0577af98f4.
2024-06-17 13:32:46 -07:00
Daniel Hiltgen
b2799f111b Move libraries out of users path
We update the PATH on windows to get the CLI mapped, but this has
an unintended side effect of causing other apps that may use our bundled
DLLs to get terminated when we upgrade.
2024-06-17 13:12:18 -07:00
Jeffrey Morgan
152fc202f5
llm: update llama.cpp commit to 7c26775 (#4896)
* llm: update llama.cpp submodule to `7c26775`

* disable `LLAMA_BLAS` for now

* `-DLLAMA_OPENMP=off`
2024-06-17 15:56:16 -04:00
Daniel Hiltgen
0577af98f4 More parallelism on windows generate
Make the build faster
2024-06-15 07:44:55 -07:00
Daniel Hiltgen
ab8c929e20 Add ability to skip oneapi generate
This follows the same pattern for cuda and rocm to allow
disabling the build even when we detect the dependent libraries
2024-06-07 08:32:49 -07:00
Jeffrey Morgan
7ca9605f54
speed up tests by only building static lib (#4740) 2024-05-30 21:43:15 -07:00
Daniel Hiltgen
646371f56d
Merge pull request #3278 from zhewang1-intc/rebase_ollama_main
Enabling ollama to run on Intel GPUs with SYCL backend
2024-05-28 16:30:50 -07:00
Wang,Zhe
fd5971be0b support ollama run on Intel GPUs 2024-05-24 11:18:27 +08:00
Daniel Hiltgen
c48c1d7c46 Port cuda/rocm skip build vars to linux
Windows already implements these, carry over to linux.
2024-05-15 15:56:43 -07:00
Hernan Martinez
8a65717f55 Do not build AVX runners on ARM64 2024-04-26 23:55:32 -06:00
Hernan Martinez
b438d485f1 Use architecture specific folders in the generate script 2024-04-26 23:34:12 -06:00
Daniel Hiltgen
e4859c4563 Fine grain control over windows generate steps
This will speed up CI which already tries to only build static for unit tests
2024-04-26 15:49:46 -07:00
Daniel Hiltgen
ed5fb088c4 Fix target in gen_windows.ps1 2024-04-26 15:10:42 -07:00
Daniel Hiltgen
421c878a2d Put back non-avx CPU build for windows 2024-04-26 12:44:07 -07:00
Daniel Hiltgen
8671fdeda6 Refactor windows generate for more modular usage 2024-04-26 08:35:50 -07:00
Daniel Hiltgen
8feb97dc0d Move cuda/rocm dependency gathering into generate script
This will make it simpler for CI to accumulate artifacts from prior steps
2024-04-25 22:38:44 -07:00
Roy Yang
5f73c08729
Remove trailing spaces (#3889) 2024-04-25 14:32:26 -04:00
Daniel Hiltgen
058f6cd2cc Move nested payloads to installer and zip file on windows
Now that the llm runner is an executable and not just a dll, more users are facing
problems with security policy configurations on windows that prevent users
writing to directories and then executing binaries from the same location.
This change removes payloads from the main executable on windows and shifts them
over to be packaged in the installer and discovered based on the executables location.
This also adds a new zip file for people who want to "roll their own" installation model.
2024-04-23 16:14:47 -07:00
Daniel Hiltgen
cc5a71e0e3
Merge pull request #3709 from remy415/custom-gpu-defs
Adds support for customizing GPU build flags in llama.cpp
2024-04-23 09:28:34 -07:00
Jeremy
9c0db4cc83
Update gen_windows.ps1
Fixed improper env references
2024-04-21 16:13:41 -04:00