This commit changes the 'ollama run' command to defer fetching model
information until it really needs it. That is, when in interactive mode.
It also removes one such case where the model information is fetch in
duplicate, just before calling generateInteractive and then again, first
thing, in generateInteractive.
This positively impacts the performance of the command:
; time ./before run llama3 'hi'
Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?
./before run llama3 'hi' 0.02s user 0.01s system 2% cpu 1.168 total
; time ./before run llama3 'hi'
Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?
./before run llama3 'hi' 0.02s user 0.01s system 2% cpu 1.220 total
; time ./before run llama3 'hi'
Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?
./before run llama3 'hi' 0.02s user 0.01s system 2% cpu 1.217 total
; time ./after run llama3 'hi'
Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?
./after run llama3 'hi' 0.02s user 0.01s system 4% cpu 0.652 total
; time ./after run llama3 'hi'
Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?
./after run llama3 'hi' 0.01s user 0.01s system 5% cpu 0.498 total
; time ./after run llama3 'hi'
Hi! It's nice to meet you. Is there something I can help you with or would you like to chat?
./after run llama3 'hi' 0.01s user 0.01s system 3% cpu 0.479 total
; time ./after run llama3 'hi'
Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?
./after run llama3 'hi' 0.02s user 0.01s system 5% cpu 0.507 total
; time ./after run llama3 'hi'
Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?
./after run llama3 'hi' 0.02s user 0.01s system 5% cpu 0.507 total
Until ROCm v6.2 ships, we wont be able to get accurate free memory
reporting on windows, which makes automatic concurrency too risky.
Users can still opt-in but will need to pay attention to model sizes otherwise they may thrash/page VRAM or cause OOM crashes.
All other platforms and GPUs have accurate VRAM reporting wired
up now, so we can turn on concurrency by default.
This adjusts our default settings to enable multiple models and parallel
requests to a single model. Users can still override these by the same
env var settings as before. Parallel has a direct impact on
num_ctx, which in turn can have a significant impact on small VRAM GPUs
so this change also refines the algorithm so that when parallel is not
explicitly set by the user, we try to find a reasonable default that fits
the model on their GPU(s). As before, multiple models will only load
concurrently if they fully fit in VRAM.
* API Show Extended
* Initial Draft of Information
Co-Authored-By: Patrick Devine <pdevine@sonic.net>
* Clean Up
* Descriptive arg error messages and other fixes
* Second Draft of Show with Projectors Included
* Remove Chat Template
* Touches
* Prevent wrapping from files
* Verbose functionality
* Docs
* Address Feedback
* Lint
* Resolve Conflicts
* Function Name
* Tests for api/show model info
* Show Test File
* Add Projector Test
* Clean routes
* Projector Check
* Move Show Test
* Touches
* Doc update
---------
Co-authored-by: Patrick Devine <pdevine@sonic.net>
The Digest type in its current form is awkward to work with and presents
challenges with regard to how it serializes via String using the '-'
prefix.
We currently only use this in ollama.com, so we'll move our specific
needs around digest parsing and validation there.
The recent refactoring of the memory prediction assumed all layers
are the same size, but for some models (like deepseek-coder-v2) this
is not the case, so our predictions were significantly off.
Prior to this change, we logged the memory prediction multiple times
as the scheduler iterates to find a suitable configuration, which can be
confusing since only the last log before the server starts is actually valid.
This now logs once just before starting the server on the final configuration.
It also reports what library instead of always saying "offloading to gpu" when
using CPU.
On Windows, recent llama.cpp changes make mmap slower in most
cases, so default to off. This also implements a tri-state for
use_mmap so we can detect the difference between a user provided
value of true/false, or unspecified.
We update the PATH on windows to get the CLI mapped, but this has
an unintended side effect of causing other apps that may use our bundled
DLLs to get terminated when we upgrade.