This adjusts linux to follow a similar model to windows with a discrete archive
(zip/tgz) to cary the primary executable, and dependent libraries. Runners are
still carried as payloads inside the main binary
Darwin retain the payload model where the go binary is fully self contained.
This also adjusts our algorithm to favor our bundled ROCm.
I've confirmed VRAM reporting still doesn't work properly so we
can't yet enable concurrency by default.
This change adds support for multiple concurrent requests, as well as
loading multiple models by spawning multiple runners. The default
settings are currently set at 1 concurrent request per model and only 1
loaded model at a time, but these can be adjusted by setting
OLLAMA_NUM_PARALLEL and OLLAMA_MAX_LOADED_MODELS.
This fixes a few bugs in the new sysfs discovery logic. iGPUs are now
correctly identified by their <1G VRAM reported. the sysfs IDs are off
by one compared to what HIP wants due to the CPU being reported
in amdgpu, but HIP only cares about GPUs.
This refines where we extract the LLM libraries to by adding a new
OLLAMA_HOME env var, that defaults to `~/.ollama` The logic was already
idempotenent, so this should speed up startups after the first time a
new release is deployed. It also cleans up after itself.
We now build only a single ROCm version (latest major) on both windows
and linux. Given the large size of ROCms tensor files, we split the
dependency out. It's bundled into the installer on windows, and a
separate download on windows. The linux install script is now smart and
detects the presence of AMD GPUs and looks to see if rocm v6 is already
present, and if not, then downloads our dependency tar file.
For Linux discovery, we now use sysfs and check each GPU against what
ROCm supports so we can degrade to CPU gracefully instead of having
llama.cpp+rocm assert/crash on us. For Windows, we now use go's windows
dynamic library loading logic to access the amdhip64.dll APIs to query
the GPU information.