client updates

This commit is contained in:
Jeffrey Morgan 2023-07-04 00:47:00 -04:00
parent 6292f4b64c
commit fd962a36e5
21 changed files with 198 additions and 3137 deletions

View file

@ -1,14 +1,13 @@
package api package api
import ( import (
"bufio"
"bytes" "bytes"
"context" "context"
"encoding/json" "encoding/json"
"fmt" "fmt"
"io" "io"
"net/http" "net/http"
"github.com/jmorganca/ollama/signature"
) )
type Client struct { type Client struct {
@ -36,7 +35,7 @@ func checkError(resp *http.Response, body []byte) error {
return apiError return apiError
} }
func (c *Client) do(ctx context.Context, method string, path string, stream bool, reqData any, respData any) error { func (c *Client) stream(ctx context.Context, method string, path string, reqData any, callback func (data []byte)) error {
var reqBody io.Reader var reqBody io.Reader
var data []byte var data []byte
var err error var err error
@ -55,17 +54,50 @@ func (c *Client) do(ctx context.Context, method string, path string, stream bool
return err return err
} }
if c.PrivateKey != nil { req.Header.Set("Content-Type", "application/json")
s := signature.SignatureData{ req.Header.Set("Accept", "application/json")
Method: method,
Path: url, for k, v := range c.Headers {
Data: data, req.Header[k] = v
} }
authHeader, err := signature.SignAuthData(s, c.PrivateKey)
res, err := c.HTTP.Do(req)
if err != nil { if err != nil {
return err return err
} }
req.Header.Set("Authorization", authHeader) defer res.Body.Close()
reader := bufio.NewReader(res.Body)
for {
line, err := reader.ReadBytes('\n')
if err != nil {
break
}
callback(bytes.TrimSuffix(line, []byte("\n")))
}
return nil
}
func (c *Client) do(ctx context.Context, method string, path string, reqData any, respData any) error {
var reqBody io.Reader
var data []byte
var err error
if reqData != nil {
data, err = json.Marshal(reqData)
if err != nil {
return err
}
reqBody = bytes.NewReader(data)
}
url := fmt.Sprintf("%s%s", c.URL, path)
req, err := http.NewRequestWithContext(ctx, method, url, reqBody)
if err != nil {
return err
} }
req.Header.Set("Content-Type", "application/json") req.Header.Set("Content-Type", "application/json")
@ -97,3 +129,14 @@ func (c *Client) do(ctx context.Context, method string, path string, stream bool
} }
return nil return nil
} }
func (c *Client) Generate(ctx context.Context, req *GenerateRequest, callback func(token string)) (*GenerateResponse, error) {
var res GenerateResponse
if err := c.stream(ctx, http.MethodPost, "/api/generate", req, func(token []byte) {
callback(string(token))
}); err != nil {
return nil, err
}
return &res, nil
}

View file

@ -2,7 +2,6 @@ package cmd
import ( import (
"context" "context"
"fmt"
"log" "log"
"net" "net"
"net/http" "net/http"
@ -10,14 +9,59 @@ import (
"path" "path"
"time" "time"
"github.com/spf13/cobra"
"github.com/jmorganca/ollama/api" "github.com/jmorganca/ollama/api"
"github.com/jmorganca/ollama/server" "github.com/jmorganca/ollama/server"
"github.com/spf13/cobra"
) )
func NewAPIClient(cmd *cobra.Command) (*api.Client, error) { func sockpath() string {
var rawKey []byte home, err := os.UserHomeDir()
if err != nil {
panic(err)
}
return path.Join(home, ".ollama", "ollama.sock")
}
func running() bool {
// Set a timeout duration
timeout := time.Second
// Dial the unix socket
conn, err := net.DialTimeout("unix", sockpath(), timeout)
if err != nil {
return false
}
if conn != nil {
defer conn.Close()
}
return true
}
func serve() error {
sp := sockpath()
if err := os.MkdirAll(path.Dir(sp), 0o700); err != nil {
return err
}
if err := os.RemoveAll(sp); err != nil {
return err
}
ln, err := net.Listen("unix", sp)
if err != nil {
return err
}
if err := os.Chmod(sp, 0o700); err != nil {
return err
}
return server.Serve(ln)
}
func NewAPIClient() (*api.Client, error) {
var err error var err error
home, err := os.UserHomeDir() home, err := os.UserHomeDir()
@ -31,16 +75,6 @@ func NewAPIClient(cmd *cobra.Command) (*api.Client, error) {
Timeout: 10 * time.Second, Timeout: 10 * time.Second,
} }
k, _ := cmd.Flags().GetString("key")
if k != "" {
fn := path.Join(home, ".ollama/keys/", k)
rawKey, err = os.ReadFile(fn)
if err != nil {
return nil, err
}
}
return &api.Client{ return &api.Client{
URL: "http://localhost", URL: "http://localhost",
HTTP: http.Client{ HTTP: http.Client{
@ -50,7 +84,6 @@ func NewAPIClient(cmd *cobra.Command) (*api.Client, error) {
}, },
}, },
}, },
PrivateKey: rawKey,
}, nil }, nil
} }
@ -69,28 +102,12 @@ func NewCLI() *cobra.Command {
}, },
} }
rootCmd.PersistentFlags().StringP("key", "k", "", "Private key to use for authenticating")
cobra.EnableCommandSorting = false cobra.EnableCommandSorting = false
modelsCmd := &cobra.Command{
Use: "models",
Args: cobra.MaximumNArgs(1),
Short: "List models",
Long: "List the models",
RunE: func(cmd *cobra.Command, args []string) error {
client, err := NewAPIClient(cmd)
if err != nil {
return err
}
fmt.Printf("client = %q\n", client)
return nil
},
}
runCmd := &cobra.Command{ runCmd := &cobra.Command{
Use: "run", Use: "run MODEL",
Short: "Run a model and submit prompts.", Short: "Run a model",
Args: cobra.ExactArgs(1),
RunE: func(cmd *cobra.Command,args []string) error { RunE: func(cmd *cobra.Command,args []string) error {
return nil return nil
}, },
@ -101,35 +118,11 @@ func NewCLI() *cobra.Command {
Aliases: []string{"start"}, Aliases: []string{"start"},
Short: "Start ollama", Short: "Start ollama",
RunE: func(cmd *cobra.Command, args []string) error { RunE: func(cmd *cobra.Command, args []string) error {
home, err := os.UserHomeDir() return serve()
if err != nil {
return err
}
socket := path.Join(home, ".ollama", "ollama.sock")
if err := os.MkdirAll(path.Dir(socket), 0o700); err != nil {
return err
}
if err := os.RemoveAll(socket); err != nil {
return err
}
ln, err := net.Listen("unix", socket)
if err != nil {
return err
}
if err := os.Chmod(socket, 0o700); err != nil {
return err
}
return server.Serve(ln)
}, },
} }
rootCmd.AddCommand( rootCmd.AddCommand(
modelsCmd,
serveCmd, serveCmd,
runCmd, runCmd,
) )

2
go.mod
View file

@ -5,7 +5,6 @@ go 1.20
require ( require (
github.com/gin-gonic/gin v1.9.1 github.com/gin-gonic/gin v1.9.1
github.com/spf13/cobra v1.7.0 github.com/spf13/cobra v1.7.0
golang.org/x/crypto v0.10.0
) )
require ( require (
@ -30,6 +29,7 @@ require (
github.com/twitchyliquid64/golang-asm v0.15.1 // indirect github.com/twitchyliquid64/golang-asm v0.15.1 // indirect
github.com/ugorji/go/codec v1.2.11 // indirect github.com/ugorji/go/codec v1.2.11 // indirect
golang.org/x/arch v0.3.0 // indirect golang.org/x/arch v0.3.0 // indirect
golang.org/x/crypto v0.10.0 // indirect
golang.org/x/net v0.10.0 // indirect golang.org/x/net v0.10.0 // indirect
golang.org/x/sys v0.9.0 // indirect golang.org/x/sys v0.9.0 // indirect
golang.org/x/text v0.10.0 // indirect golang.org/x/text v0.10.0 // indirect

1
go.sum
View file

@ -79,7 +79,6 @@ golang.org/x/sys v0.0.0-20220704084225-05e143d24a9e/go.mod h1:oPkhp1MJrh7nUepCBc
golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg= golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.9.0 h1:KS/R3tvhPqvJvwcKfnBHJwwthS11LRhmM5D59eEXa0s= golang.org/x/sys v0.9.0 h1:KS/R3tvhPqvJvwcKfnBHJwwthS11LRhmM5D59eEXa0s=
golang.org/x/sys v0.9.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg= golang.org/x/sys v0.9.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/term v0.9.0 h1:GRRCnKYhdQrD8kfRAdQ6Zcw1P0OcELxGLKJvtjVMZ28=
golang.org/x/text v0.10.0 h1:UpjohKhiEgNc0CSauXmwYftY1+LlaC75SJwh0SgCX58= golang.org/x/text v0.10.0 h1:UpjohKhiEgNc0CSauXmwYftY1+LlaC75SJwh0SgCX58=
golang.org/x/text v0.10.0/go.mod h1:TvPlkZtksWOMsz7fbANvkp4WM8x/WCo/om8BMLbz+aE= golang.org/x/text v0.10.0/go.mod h1:TvPlkZtksWOMsz7fbANvkp4WM8x/WCo/om8BMLbz+aE=
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0= golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=

View file

@ -55,78 +55,14 @@ void sigint_handler(int signo) {
} }
#endif #endif
int get_embeddings(void *params_ptr, void *state_pr, float *res_embeddings) { int eval(void *p, void *c, char *text) {
gpt_params *params_p = (gpt_params *)params_ptr; gpt_params *params = (gpt_params *)params;
llama_context *ctx = (llama_context *)state_pr; llama_context *ctx = (llama_context *)ctx;
gpt_params params = *params_p;
if (params.seed <= 0) {
params.seed = time(NULL);
}
std::mt19937 rng(params.seed);
llama_init_backend(params.numa);
int n_past = 0;
// Add a space in front of the first character to match OG llama tokenizer
// behavior
params.prompt.insert(0, 1, ' ');
// tokenize the prompt
auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
// determine newline token
auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
if (embd_inp.size() > 0) {
if (llama_eval(ctx, embd_inp.data(), embd_inp.size(), n_past,
params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
}
const int n_embd = llama_n_embd(ctx);
const auto embeddings = llama_get_embeddings(ctx);
for (int i = 0; i < n_embd; i++) {
res_embeddings[i] = embeddings[i];
}
return 0;
}
int get_token_embeddings(void *params_ptr, void *state_pr, int *tokens,
int tokenSize, float *res_embeddings) {
gpt_params *params_p = (gpt_params *)params_ptr;
llama_context *ctx = (llama_context *)state_pr;
gpt_params params = *params_p;
for (int i = 0; i < tokenSize; i++) {
auto token_str = llama_token_to_str(ctx, tokens[i]);
if (token_str == nullptr) {
continue;
}
std::vector<std::string> my_vector;
std::string str_token(token_str); // create a new std::string from the char*
params_p->prompt += str_token;
}
return get_embeddings(params_ptr, state_pr, res_embeddings);
}
int eval(void *params_ptr, void *state_pr, char *text) {
gpt_params *params_p = (gpt_params *)params_ptr;
llama_context *ctx = (llama_context *)state_pr;
auto n_past = 0; auto n_past = 0;
auto last_n_tokens_data = auto last_n_tokens_data = std::vector<llama_token>(params->repeat_last_n, 0);
std::vector<llama_token>(params_p->repeat_last_n, 0);
auto tokens = std::vector<llama_token>(params_p->n_ctx); auto tokens = std::vector<llama_token>(params->n_ctx);
auto n_prompt_tokens = auto n_prompt_tokens =
llama_tokenize(ctx, text, tokens.data(), tokens.size(), true); llama_tokenize(ctx, text, tokens.data(), tokens.size(), true);
@ -135,26 +71,22 @@ int eval(void *params_ptr, void *state_pr, char *text) {
return 1; return 1;
} }
// evaluate prompt
return llama_eval(ctx, tokens.data(), n_prompt_tokens, n_past, return llama_eval(ctx, tokens.data(), n_prompt_tokens, n_past,
params_p->n_threads); params->n_threads);
} }
int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug) { int llama_predict(void *p, void *c, char *result, bool debug) {
gpt_params *params_p = (gpt_params *)params_ptr; gpt_params *params = (gpt_params *)params;
llama_context *ctx = (llama_context *)state_pr; llama_context *ctx = (llama_context *)ctx;
gpt_params params = *params_p;
const int n_ctx = llama_n_ctx(ctx); const int n_ctx = llama_n_ctx(ctx);
if (params.seed <= 0) { if (params->seed <= 0) {
params.seed = time(NULL); params->seed = time(NULL);
} }
std::mt19937 rng(params.seed); std::mt19937 rng(params->seed);
std::string path_session = params->path_prompt_cache;
std::string path_session = params.path_prompt_cache;
std::vector<llama_token> session_tokens; std::vector<llama_token> session_tokens;
if (!path_session.empty()) { if (!path_session.empty()) {
@ -177,7 +109,7 @@ int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug) {
return 1; return 1;
} }
session_tokens.resize(n_token_count_out); session_tokens.resize(n_token_count_out);
llama_set_rng_seed(ctx, params.seed); llama_set_rng_seed(ctx, params->seed);
if (debug) { if (debug) {
fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n", fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n",
__func__, (int)session_tokens.size()); __func__, (int)session_tokens.size());
@ -191,12 +123,12 @@ int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug) {
} }
std::vector<llama_token> embd_inp; std::vector<llama_token> embd_inp;
if (!params.prompt.empty() || session_tokens.empty()) { if (!params->prompt.empty() || session_tokens.empty()) {
// Add a space in front of the first character to match OG llama tokenizer // Add a space in front of the first character to match OG llama tokenizer
// behavior // behavior
params.prompt.insert(0, 1, ' '); params->prompt.insert(0, 1, ' ');
embd_inp = ::llama_tokenize(ctx, params.prompt, true); embd_inp = ::llama_tokenize(ctx, params->prompt, true);
} else { } else {
embd_inp = session_tokens; embd_inp = session_tokens;
} }
@ -212,7 +144,7 @@ int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug) {
n_matching_session_tokens++; n_matching_session_tokens++;
} }
if (debug) { if (debug) {
if (params.prompt.empty() && if (params->prompt.empty() &&
n_matching_session_tokens == embd_inp.size()) { n_matching_session_tokens == embd_inp.size()) {
fprintf(stderr, "%s: using full prompt from session file\n", __func__); fprintf(stderr, "%s: using full prompt from session file\n", __func__);
} else if (n_matching_session_tokens >= embd_inp.size()) { } else if (n_matching_session_tokens >= embd_inp.size()) {
@ -237,8 +169,8 @@ int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug) {
session_tokens.resize(embd_inp.size() - 1); session_tokens.resize(embd_inp.size() - 1);
} }
// number of tokens to keep when resetting context // number of tokens to keep when resetting context
if (params.n_keep < 0 || params.n_keep > (int)embd_inp.size()) { if (params->n_keep < 0 || params->n_keep > (int)embd_inp.size()) {
params.n_keep = (int)embd_inp.size(); params->n_keep = (int)embd_inp.size();
} }
// determine newline token // determine newline token
@ -251,7 +183,7 @@ int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug) {
bool need_to_save_session = bool need_to_save_session =
!path_session.empty() && n_matching_session_tokens < embd_inp.size(); !path_session.empty() && n_matching_session_tokens < embd_inp.size();
int n_past = 0; int n_past = 0;
int n_remain = params.n_predict; int n_remain = params->n_predict;
int n_consumed = 0; int n_consumed = 0;
int n_session_consumed = 0; int n_session_consumed = 0;
@ -263,7 +195,7 @@ int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug) {
const std::vector<llama_token> tmp = { const std::vector<llama_token> tmp = {
llama_token_bos(), llama_token_bos(),
}; };
llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads); llama_eval(ctx, tmp.data(), tmp.size(), 0, params->n_threads);
llama_reset_timings(ctx); llama_reset_timings(ctx);
} }
@ -276,10 +208,10 @@ int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug) {
// - take half of the last (n_ctx - n_keep) tokens and recompute the // - take half of the last (n_ctx - n_keep) tokens and recompute the
// logits in batches // logits in batches
if (n_past + (int)embd.size() > n_ctx) { if (n_past + (int)embd.size() > n_ctx) {
const int n_left = n_past - params.n_keep; const int n_left = n_past - params->n_keep;
// always keep the first token - BOS // always keep the first token - BOS
n_past = std::max(1, params.n_keep); n_past = std::max(1, params->n_keep);
// insert n_left/2 tokens at the start of embd from last_n_tokens // insert n_left/2 tokens at the start of embd from last_n_tokens
embd.insert(embd.begin(), embd.insert(embd.begin(),
@ -288,14 +220,6 @@ int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug) {
// stop saving session if we run out of context // stop saving session if we run out of context
path_session.clear(); path_session.clear();
// printf("\n---\n");
// printf("resetting: '");
// for (int i = 0; i < (int) embd.size(); i++) {
// printf("%s", llama_token_to_str(ctx, embd[i]));
// }
// printf("'\n");
// printf("\n---\n");
} }
// try to reuse a matching prefix from the loaded session instead of // try to reuse a matching prefix from the loaded session instead of
@ -324,15 +248,17 @@ int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug) {
// evaluate tokens in batches // evaluate tokens in batches
// embd is typically prepared beforehand to fit within a batch, but not // embd is typically prepared beforehand to fit within a batch, but not
// always // always
for (int i = 0; i < (int)embd.size(); i += params.n_batch) { for (int i = 0; i < (int)embd.size(); i += params->n_batch) {
int n_eval = (int)embd.size() - i; int n_eval = (int)embd.size() - i;
if (n_eval > params.n_batch) { if (n_eval > params->n_batch) {
n_eval = params.n_batch; n_eval = params->n_batch;
} }
if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads)) {
if (llama_eval(ctx, &embd[i], n_eval, n_past, params->n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__); fprintf(stderr, "%s : failed to eval\n", __func__);
return 1; return 1;
} }
n_past += n_eval; n_past += n_eval;
} }
@ -346,26 +272,26 @@ int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug) {
if ((int)embd_inp.size() <= n_consumed) { if ((int)embd_inp.size() <= n_consumed) {
// out of user input, sample next token // out of user input, sample next token
const float temp = params.temp; const float temp = params->temp;
const int32_t top_k = const int32_t top_k =
params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k; params->top_k <= 0 ? llama_n_vocab(ctx) : params->top_k;
const float top_p = params.top_p; const float top_p = params->top_p;
const float tfs_z = params.tfs_z; const float tfs_z = params->tfs_z;
const float typical_p = params.typical_p; const float typical_p = params->typical_p;
const int32_t repeat_last_n = const int32_t repeat_last_n =
params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n; params->repeat_last_n < 0 ? n_ctx : params->repeat_last_n;
const float repeat_penalty = params.repeat_penalty; const float repeat_penalty = params->repeat_penalty;
const float alpha_presence = params.presence_penalty; const float alpha_presence = params->presence_penalty;
const float alpha_frequency = params.frequency_penalty; const float alpha_frequency = params->frequency_penalty;
const int mirostat = params.mirostat; const int mirostat = params->mirostat;
const float mirostat_tau = params.mirostat_tau; const float mirostat_tau = params->mirostat_tau;
const float mirostat_eta = params.mirostat_eta; const float mirostat_eta = params->mirostat_eta;
const bool penalize_nl = params.penalize_nl; const bool penalize_nl = params->penalize_nl;
// optionally save the session on first sample (for faster prompt loading // optionally save the session on first sample (for faster prompt loading
// next time) // next time)
if (!path_session.empty() && need_to_save_session && if (!path_session.empty() && need_to_save_session &&
!params.prompt_cache_ro) { !params->prompt_cache_ro) {
need_to_save_session = false; need_to_save_session = false;
llama_save_session_file(ctx, path_session.c_str(), llama_save_session_file(ctx, path_session.c_str(),
session_tokens.data(), session_tokens.size()); session_tokens.data(), session_tokens.size());
@ -378,8 +304,8 @@ int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug) {
auto n_vocab = llama_n_vocab(ctx); auto n_vocab = llama_n_vocab(ctx);
// Apply params.logit_bias map // Apply params.logit_bias map
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); for (auto it = params->logit_bias.begin();
it++) { it != params->logit_bias.end(); it++) {
logits[it->first] += it->second; logits[it->first] += it->second;
} }
@ -435,7 +361,6 @@ int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug) {
id = llama_sample_token(ctx, &candidates_p); id = llama_sample_token(ctx, &candidates_p);
} }
} }
// printf("`%d`", candidates_p.size);
last_n_tokens.erase(last_n_tokens.begin()); last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(id); last_n_tokens.push_back(id);
@ -450,7 +375,7 @@ int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug) {
// call the token callback, no need to check if one is actually // call the token callback, no need to check if one is actually
// registered, that will be handled on the Go side. // registered, that will be handled on the Go side.
auto token_str = llama_token_to_str(ctx, id); auto token_str = llama_token_to_str(ctx, id);
if (!tokenCallback(state_pr, (char *)token_str)) { if (!tokenCallback(ctx, (char *)token_str)) {
break; break;
} }
} else { } else {
@ -461,7 +386,7 @@ int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug) {
last_n_tokens.erase(last_n_tokens.begin()); last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(embd_inp[n_consumed]); last_n_tokens.push_back(embd_inp[n_consumed]);
++n_consumed; ++n_consumed;
if ((int)embd.size() >= params.n_batch) { if ((int)embd.size() >= params->n_batch) {
break; break;
} }
} }
@ -472,13 +397,13 @@ int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug) {
} }
// check for stop prompt // check for stop prompt
if (params.antiprompt.size()) { if (params->antiprompt.size()) {
std::string last_output; std::string last_output;
for (auto id : last_n_tokens) { for (auto id : last_n_tokens) {
last_output += llama_token_to_str(ctx, id); last_output += llama_token_to_str(ctx, id);
} }
// Check if each of the reverse prompts appears at the end of the output. // Check if each of the reverse prompts appears at the end of the output.
for (std::string &antiprompt : params.antiprompt) { for (std::string &antiprompt : params->antiprompt) {
// size_t extra_padding = params.interactive ? 0 : 2; // size_t extra_padding = params.interactive ? 0 : 2;
size_t extra_padding = 2; size_t extra_padding = 2;
size_t search_start_pos = size_t search_start_pos =
@ -501,8 +426,8 @@ int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug) {
} }
} }
if (!path_session.empty() && params.prompt_cache_all && if (!path_session.empty() && params->prompt_cache_all &&
!params.prompt_cache_ro) { !params->prompt_cache_ro) {
if (debug) { if (debug) {
fprintf(stderr, "\n%s: saving final output to session file '%s'\n", fprintf(stderr, "\n%s: saving final output to session file '%s'\n",
__func__, path_session.c_str()); __func__, path_session.c_str());
@ -525,68 +450,8 @@ end:
return 0; return 0;
} }
void llama_binding_free_model(void *state_ptr) { void llama_binding_free_model(void *ctx) { llama_free((llama_context *)ctx); }
llama_context *ctx = (llama_context *)state_ptr; void llama_free_params(void *params) { delete (gpt_params *)params; }
llama_free(ctx);
}
void llama_free_params(void *params_ptr) {
gpt_params *params = (gpt_params *)params_ptr;
delete params;
}
std::vector<std::string> create_vector(const char **strings, int count) {
std::vector<std::string> *vec = new std::vector<std::string>;
for (int i = 0; i < count; i++) {
vec->push_back(std::string(strings[i]));
}
return *vec;
}
void delete_vector(std::vector<std::string> *vec) { delete vec; }
int load_state(void *ctx, char *statefile, char *modes) {
llama_context *state = (llama_context *)ctx;
const llama_context *constState = static_cast<const llama_context *>(state);
const size_t state_size = llama_get_state_size(state);
uint8_t *state_mem = new uint8_t[state_size];
{
FILE *fp_read = fopen(statefile, modes);
if (state_size != llama_get_state_size(constState)) {
fprintf(stderr, "\n%s : failed to validate state size\n", __func__);
return 1;
}
const size_t ret = fread(state_mem, 1, state_size, fp_read);
if (ret != state_size) {
fprintf(stderr, "\n%s : failed to read state\n", __func__);
return 1;
}
llama_set_state_data(
state, state_mem); // could also read directly from memory mapped file
fclose(fp_read);
}
return 0;
}
void save_state(void *ctx, char *dst, char *modes) {
llama_context *state = (llama_context *)ctx;
const size_t state_size = llama_get_state_size(state);
uint8_t *state_mem = new uint8_t[state_size];
// Save state (rng, logits, embedding and kv_cache) to file
{
FILE *fp_write = fopen(dst, modes);
llama_copy_state_data(
state, state_mem); // could also copy directly to memory mapped file
fwrite(state_mem, 1, state_size, fp_write);
fclose(fp_write);
}
}
void *llama_allocate_params( void *llama_allocate_params(
const char *prompt, int seed, int threads, int tokens, int top_k, const char *prompt, int seed, int threads, int tokens, int top_k,
@ -640,9 +505,13 @@ void *llama_allocate_params(
if (ignore_eos) { if (ignore_eos) {
params->logit_bias[llama_token_eos()] = -INFINITY; params->logit_bias[llama_token_eos()] = -INFINITY;
} }
if (antiprompt_count > 0) { if (antiprompt_count > 0) {
params->antiprompt = create_vector(antiprompt, antiprompt_count); for (int i = 0; i < antiprompt_count; i++) {
params->antiprompt.push_back(std::string(antiprompt[i]));
} }
}
params->tfs_z = tfs_z; params->tfs_z = tfs_z;
params->typical_p = typical_p; params->typical_p = typical_p;
params->presence_penalty = presence_penalty; params->presence_penalty = presence_penalty;
@ -650,6 +519,7 @@ void *llama_allocate_params(
params->mirostat_eta = mirostat_eta; params->mirostat_eta = mirostat_eta;
params->mirostat_tau = mirostat_tau; params->mirostat_tau = mirostat_tau;
params->penalize_nl = penalize_nl; params->penalize_nl = penalize_nl;
std::stringstream ss(logit_bias); std::stringstream ss(logit_bias);
llama_token key; llama_token key;
char sign; char sign;
@ -669,7 +539,6 @@ void *load_model(const char *fname, int n_ctx, int n_seed, bool memory_f16,
bool mlock, bool embeddings, bool mmap, bool low_vram, bool mlock, bool embeddings, bool mmap, bool low_vram,
bool vocab_only, int n_gpu_layers, int n_batch, bool vocab_only, int n_gpu_layers, int n_batch,
const char *maingpu, const char *tensorsplit, bool numa) { const char *maingpu, const char *tensorsplit, bool numa) {
// load the model
auto lparams = llama_context_default_params(); auto lparams = llama_context_default_params();
lparams.n_ctx = n_ctx; lparams.n_ctx = n_ctx;
@ -706,25 +575,11 @@ void *load_model(const char *fname, int n_ctx, int n_seed, bool memory_f16,
lparams.n_batch = n_batch; lparams.n_batch = n_batch;
llama_init_backend(numa); llama_init_backend(numa);
void *res = nullptr;
try { struct llama_model *model = llama_load_model_from_file(fname, lparams);
llama_model *model = llama_load_model_from_file(fname, lparams); if (!model) {
if (model == NULL) { return nullptr;
fprintf(stderr, "error: failed to load model \n");
return res;
} }
llama_context *lctx = llama_new_context_with_model(model, lparams); return llama_new_context_with_model(model, lparams);
if (lctx == NULL) {
fprintf(stderr, "error: failed to create context with model \n");
llama_free_model(model);
return res;
}
} catch (std::runtime_error &e) {
fprintf(stderr, "failed %s", e.what());
return res;
}
return res;
} }

View file

@ -30,22 +30,13 @@ extern "C" {
extern unsigned char tokenCallback(void *, char *); extern unsigned char tokenCallback(void *, char *);
int load_state(void *ctx, char *statefile, char *modes); int eval(void *p, void *c, char *text);
int eval(void *params_ptr, void *ctx, char *text);
void save_state(void *ctx, char *dst, char *modes);
void *load_model(const char *fname, int n_ctx, int n_seed, bool memory_f16, void *load_model(const char *fname, int n_ctx, int n_seed, bool memory_f16,
bool mlock, bool embeddings, bool mmap, bool low_vram, bool mlock, bool embeddings, bool mmap, bool low_vram,
bool vocab_only, int n_gpu, int n_batch, const char *maingpu, bool vocab_only, int n_gpu, int n_batch, const char *maingpu,
const char *tensorsplit, bool numa); const char *tensorsplit, bool numa);
int get_embeddings(void *params_ptr, void *state_pr, float *res_embeddings);
int get_token_embeddings(void *params_ptr, void *state_pr, int *tokens,
int tokenSize, float *res_embeddings);
void *llama_allocate_params( void *llama_allocate_params(
const char *prompt, int seed, int threads, int tokens, int top_k, const char *prompt, int seed, int threads, int tokens, int top_k,
float top_p, float temp, float repeat_penalty, int repeat_last_n, float top_p, float temp, float repeat_penalty, int repeat_last_n,
@ -59,13 +50,11 @@ void *llama_allocate_params(
void llama_free_params(void *params_ptr); void llama_free_params(void *params_ptr);
void llama_binding_free_model(void *state); void llama_binding_free_model(void *ctx);
int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug); int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug);
#ifdef __cplusplus #ifdef __cplusplus
} }
std::vector<std::string> create_vector(const char **strings, int count);
void delete_vector(std::vector<std::string> *vec);
#endif #endif

View file

@ -31,135 +31,35 @@ package llama
import "C" import "C"
import ( import (
"fmt" "fmt"
"os"
"strings" "strings"
"sync" "sync"
"unsafe" "unsafe"
) )
type LLama struct { type LLama struct {
state unsafe.Pointer ctx unsafe.Pointer
embeddings bool embeddings bool
contextSize int contextSize int
} }
func New(model string, opts ...ModelOption) (*LLama, error) { func New(model string, opts ...ModelOption) (*LLama, error) {
mo := NewModelOptions(opts...) mo := NewModelOptions(opts...)
// TODO: free this pointer
modelPath := C.CString(model) modelPath := C.CString(model)
result := C.load_model(modelPath, C.int(mo.ContextSize), C.int(mo.Seed), C.bool(mo.F16Memory), C.bool(mo.MLock), C.bool(mo.Embeddings), C.bool(mo.MMap), C.bool(mo.LowVRAM), C.bool(mo.VocabOnly), C.int(mo.NGPULayers), C.int(mo.NBatch), C.CString(mo.MainGPU), C.CString(mo.TensorSplit), C.bool(mo.NUMA))
if result == nil { ctx := C.load_model(modelPath, C.int(mo.ContextSize), C.int(mo.Seed), C.bool(mo.F16Memory), C.bool(mo.MLock), C.bool(mo.Embeddings), C.bool(mo.MMap), C.bool(mo.LowVRAM), C.bool(mo.VocabOnly), C.int(mo.NGPULayers), C.int(mo.NBatch), C.CString(mo.MainGPU), C.CString(mo.TensorSplit), C.bool(mo.NUMA))
if ctx == nil {
return nil, fmt.Errorf("failed loading model") return nil, fmt.Errorf("failed loading model")
} }
ll := &LLama{state: result, contextSize: mo.ContextSize, embeddings: mo.Embeddings} ll := &LLama{ctx: ctx, contextSize: mo.ContextSize, embeddings: mo.Embeddings}
return ll, nil return ll, nil
} }
func (l *LLama) Free() { func (l *LLama) Free() {
C.llama_binding_free_model(l.state) C.llama_binding_free_model(l.ctx)
}
func (l *LLama) LoadState(state string) error {
d := C.CString(state)
w := C.CString("rb")
result := C.load_state(l.state, d, w)
if result != 0 {
return fmt.Errorf("error while loading state")
}
return nil
}
func (l *LLama) SaveState(dst string) error {
d := C.CString(dst)
w := C.CString("wb")
C.save_state(l.state, d, w)
_, err := os.Stat(dst)
return err
}
// Token Embeddings
func (l *LLama) TokenEmbeddings(tokens []int, opts ...PredictOption) ([]float32, error) {
if !l.embeddings {
return []float32{}, fmt.Errorf("model loaded without embeddings")
}
po := NewPredictOptions(opts...)
outSize := po.Tokens
if po.Tokens == 0 {
outSize = 9999999
}
floats := make([]float32, outSize)
myArray := (*C.int)(C.malloc(C.size_t(len(tokens)) * C.sizeof_int))
// Copy the values from the Go slice to the C array
for i, v := range tokens {
(*[1<<31 - 1]int32)(unsafe.Pointer(myArray))[i] = int32(v)
}
params := C.llama_allocate_params(C.CString(""), C.int(po.Seed), C.int(po.Threads), C.int(po.Tokens), C.int(po.TopK),
C.float(po.TopP), C.float(po.Temperature), C.float(po.Penalty), C.int(po.Repeat),
C.bool(po.IgnoreEOS), C.bool(po.F16KV),
C.int(po.Batch), C.int(po.NKeep), nil, C.int(0),
C.float(po.TailFreeSamplingZ), C.float(po.TypicalP), C.float(po.FrequencyPenalty), C.float(po.PresencePenalty),
C.int(po.Mirostat), C.float(po.MirostatETA), C.float(po.MirostatTAU), C.bool(po.PenalizeNL), C.CString(po.LogitBias),
C.CString(po.PathPromptCache), C.bool(po.PromptCacheAll), C.bool(po.MLock), C.bool(po.MMap),
C.CString(po.MainGPU), C.CString(po.TensorSplit),
C.bool(po.PromptCacheRO),
)
ret := C.get_token_embeddings(params, l.state, myArray, C.int(len(tokens)), (*C.float)(&floats[0]))
if ret != 0 {
return floats, fmt.Errorf("embedding inference failed")
}
return floats, nil
}
// Embeddings
func (l *LLama) Embeddings(text string, opts ...PredictOption) ([]float32, error) {
if !l.embeddings {
return []float32{}, fmt.Errorf("model loaded without embeddings")
}
po := NewPredictOptions(opts...)
input := C.CString(text)
if po.Tokens == 0 {
po.Tokens = 99999999
}
floats := make([]float32, po.Tokens)
reverseCount := len(po.StopPrompts)
reversePrompt := make([]*C.char, reverseCount)
var pass **C.char
for i, s := range po.StopPrompts {
cs := C.CString(s)
reversePrompt[i] = cs
pass = &reversePrompt[0]
}
params := C.llama_allocate_params(input, C.int(po.Seed), C.int(po.Threads), C.int(po.Tokens), C.int(po.TopK),
C.float(po.TopP), C.float(po.Temperature), C.float(po.Penalty), C.int(po.Repeat),
C.bool(po.IgnoreEOS), C.bool(po.F16KV),
C.int(po.Batch), C.int(po.NKeep), pass, C.int(reverseCount),
C.float(po.TailFreeSamplingZ), C.float(po.TypicalP), C.float(po.FrequencyPenalty), C.float(po.PresencePenalty),
C.int(po.Mirostat), C.float(po.MirostatETA), C.float(po.MirostatTAU), C.bool(po.PenalizeNL), C.CString(po.LogitBias),
C.CString(po.PathPromptCache), C.bool(po.PromptCacheAll), C.bool(po.MLock), C.bool(po.MMap),
C.CString(po.MainGPU), C.CString(po.TensorSplit),
C.bool(po.PromptCacheRO),
)
ret := C.get_embeddings(params, l.state, (*C.float)(&floats[0]))
if ret != 0 {
return floats, fmt.Errorf("embedding inference failed")
}
return floats, nil
} }
func (l *LLama) Eval(text string, opts ...PredictOption) error { func (l *LLama) Eval(text string, opts ...PredictOption) error {
@ -189,7 +89,7 @@ func (l *LLama) Eval(text string, opts ...PredictOption) error {
C.CString(po.MainGPU), C.CString(po.TensorSplit), C.CString(po.MainGPU), C.CString(po.TensorSplit),
C.bool(po.PromptCacheRO), C.bool(po.PromptCacheRO),
) )
ret := C.eval(params, l.state, input) ret := C.eval(params, l.ctx, input)
if ret != 0 { if ret != 0 {
return fmt.Errorf("inference failed") return fmt.Errorf("inference failed")
} }
@ -203,7 +103,7 @@ func (l *LLama) Predict(text string, opts ...PredictOption) (string, error) {
po := NewPredictOptions(opts...) po := NewPredictOptions(opts...)
if po.TokenCallback != nil { if po.TokenCallback != nil {
setCallback(l.state, po.TokenCallback) setCallback(l.ctx, po.TokenCallback)
} }
input := C.CString(text) input := C.CString(text)
@ -231,7 +131,7 @@ func (l *LLama) Predict(text string, opts ...PredictOption) (string, error) {
C.CString(po.MainGPU), C.CString(po.TensorSplit), C.CString(po.MainGPU), C.CString(po.TensorSplit),
C.bool(po.PromptCacheRO), C.bool(po.PromptCacheRO),
) )
ret := C.llama_predict(params, l.state, (*C.char)(unsafe.Pointer(&out[0])), C.bool(po.DebugMode)) ret := C.llama_predict(params, l.ctx, (*C.char)(unsafe.Pointer(&out[0])), C.bool(po.DebugMode))
if ret != 0 { if ret != 0 {
return "", fmt.Errorf("inference failed") return "", fmt.Errorf("inference failed")
} }
@ -248,7 +148,7 @@ func (l *LLama) Predict(text string, opts ...PredictOption) (string, error) {
C.llama_free_params(params) C.llama_free_params(params)
if po.TokenCallback != nil { if po.TokenCallback != nil {
setCallback(l.state, nil) setCallback(l.ctx, nil)
} }
return res, nil return res, nil
@ -268,7 +168,7 @@ func (l *LLama) Predict(text string, opts ...PredictOption) (string, error) {
// //
// It is save to call this method while a prediction is running. // It is save to call this method while a prediction is running.
func (l *LLama) SetTokenCallback(callback func(token string) bool) { func (l *LLama) SetTokenCallback(callback func(token string) bool) {
setCallback(l.state, callback) setCallback(l.ctx, callback)
} }
var ( var (

View file

@ -1,39 +0,0 @@
# Ollama Python bindings
```
pip install ollama
```
## Developing
Ollama is built using Python 3 and uses [Poetry](https://python-poetry.org/) to manage dependencies and build packages.
```
pip install poetry
```
Install ollama and its dependencies:
```
poetry install --extras server --with dev
```
Run ollama server:
```
poetry run ollama server
```
Update dependencies:
```
poetry update --extras server --with dev
poetry lock
poetry export >requirements.txt
```
Build binary package:
```
poetry build
```

View file

@ -1,9 +0,0 @@
from ollama.model import models
from ollama.engine import generate, load, unload
__all__ = [
'models',
'generate',
'load',
'unload',
]

View file

@ -1,4 +0,0 @@
from ollama.cmd import cli
if __name__ == '__main__':
cli.main()

View file

@ -1,192 +0,0 @@
import os
import sys
from argparse import ArgumentParser, HelpFormatter, PARSER
from yaspin import yaspin
from ollama import model, engine
from ollama.cmd import server
class CustomHelpFormatter(HelpFormatter):
"""
This class is used to customize the way the argparse help text is displayed.
We specifically override the _format_action method to exclude the line that
shows all the subparser command options in the help text. This line is typically
in the form "{serve,models,pull,run}".
"""
def _format_action(self, action):
# get the original help text
parts = super()._format_action(action)
if action.nargs == PARSER:
# remove the unwanted first line
parts = "\n".join(parts.split("\n")[1:])
return parts
def main():
parser = ArgumentParser(
description='Ollama: Run any large language model on any machine.',
formatter_class=CustomHelpFormatter,
)
# create models home if it doesn't exist
os.makedirs(model.MODELS_CACHE_PATH, exist_ok=True)
subparsers = parser.add_subparsers(
title='commands',
)
list_parser = subparsers.add_parser(
"models",
description="List all available models stored locally.",
help="List all available models stored locally.",
)
list_parser.set_defaults(fn=list_models)
search_parser = subparsers.add_parser(
"search",
description="Search for compatible models that Ollama can run.",
help="Search for compatible models that Ollama can run. Usage: search [model]",
)
search_parser.add_argument(
"query",
nargs="?",
help="Optional name of the model to search for.",
)
search_parser.set_defaults(fn=search)
pull_parser = subparsers.add_parser(
"pull",
description="Download a specified model from a remote source.",
help="Download a specified model from a remote source. Usage: pull [model]",
)
pull_parser.add_argument("model", help="Name of the model to download.")
pull_parser.set_defaults(fn=pull)
run_parser = subparsers.add_parser(
"run",
description="Run a model and submit prompts.",
help="Run a model and submit prompts. Usage: run [model] [prompt]",
)
run_parser.add_argument("model", help="Name of the model to run.")
run_parser.add_argument(
"prompt",
nargs="?",
help="Optional prompt for the model, interactive mode enabled when not specified.",
)
run_parser.set_defaults(fn=run)
server.set_parser(
subparsers.add_parser(
"serve",
description="Start a persistent server to interact with models via the API.",
help="Start a persistent server to interact with models via the API.",
)
)
args = parser.parse_args()
args = vars(args)
try:
fn = args.pop("fn")
fn(**args)
except KeyboardInterrupt:
pass
except KeyError:
parser.print_help()
except Exception as e:
print(e)
def list_models(*args, **kwargs):
for m in model.models(*args, **kwargs):
print(m)
def generate(*args, **kwargs):
if prompt := kwargs.get("prompt"):
print(">>>", prompt, flush=True)
generate_oneshot(*args, **kwargs)
return
if sys.stdin.isatty():
return generate_interactive(*args, **kwargs)
return generate_batch(*args, **kwargs)
def generate_oneshot(*args, **kwargs):
print(flush=True)
spinner = yaspin()
spinner.start()
spinner_running = True
try:
for output in engine.generate(model_name=kwargs.pop('model'), *args, **kwargs):
choices = output.get("choices", [])
if len(choices) > 0:
if spinner_running:
spinner.stop()
spinner_running = False
print("\r", end="") # move cursor back to beginning of line again
print(choices[0].get("text", ""), end="", flush=True)
except Exception:
spinner.stop()
raise
# end with a new line
print(flush=True)
print(flush=True)
def generate_interactive(*args, **kwargs):
while True:
print(">>> ", end="", flush=True)
line = next(sys.stdin)
if not line:
return
kwargs.update({"prompt": line})
generate_oneshot(*args, **kwargs)
def generate_batch(*args, **kwargs):
for line in sys.stdin:
print(">>> ", line, end="", flush=True)
kwargs.update({"prompt": line})
generate_oneshot(*args, **kwargs)
def search(*args, **kwargs):
try:
model_names = model.search_directory(*args, **kwargs)
if len(model_names) == 0:
print("No models found.")
return
elif len(model_names) == 1:
print(f"Found {len(model_names)} available model:")
else:
print(f"Found {len(model_names)} available models:")
for model_name in model_names:
print(model_name.lower())
except Exception as e:
print("Failed to fetch available models, check your network connection")
def pull(*args, **kwargs):
try:
model.pull(model_name=kwargs.pop('model'), *args, **kwargs)
print("Up to date.")
except Exception as e:
print(f"An error occurred: {e}")
def run(*args, **kwargs):
try:
name = model.pull(model_name=kwargs.pop('model'), *args, **kwargs)
kwargs.update({"model": name})
print(f"Running {name}...")
generate(*args, **kwargs)
except Exception as e:
print(f"An error occurred: {e}")

View file

@ -1,94 +0,0 @@
import json
import aiohttp_cors
from aiohttp import web
from ollama import engine
def set_parser(parser):
parser.add_argument("--host", default="127.0.0.1")
parser.add_argument("--port", default=7734)
parser.set_defaults(fn=serve)
def serve(*args, **kwargs):
app = web.Application()
cors = aiohttp_cors.setup(
app,
defaults={
"*": aiohttp_cors.ResourceOptions(
allow_credentials=True,
expose_headers="*",
allow_headers="*",
)
},
)
app.add_routes(
[
web.post("/load", load),
web.post("/unload", unload),
web.post("/generate", generate),
]
)
for route in app.router.routes():
cors.add(route)
app.update(
{
"models": {},
}
)
web.run_app(app, **kwargs)
async def load(request):
body = await request.json()
name = body.get("model")
if not name:
raise web.HTTPBadRequest()
kwargs = {
"models": request.app.get("models"),
}
engine.load(name, **kwargs)
return web.Response()
async def unload(request):
body = await request.json()
name = body.get("model")
if not name:
raise web.HTTPBadRequest()
engine.unload(name, models=request.app.get("models"))
return web.Response()
async def generate(request):
body = await request.json()
name = body.get("model")
if not name:
raise web.HTTPBadRequest()
prompt = body.get("prompt")
if not prompt:
raise web.HTTPBadRequest()
response = web.StreamResponse()
await response.prepare(request)
kwargs = {
"models": request.app.get("models"),
}
for output in engine.generate(name, prompt, **kwargs):
output = json.dumps(output).encode('utf-8')
await response.write(output)
await response.write(b"\n")
return response

View file

@ -1,121 +0,0 @@
import os
import sys
from os import path
from contextlib import contextmanager
from thefuzz import process
from llama_cpp import Llama
from ctransformers import AutoModelForCausalLM
import ollama.prompt
from ollama.model import MODELS_CACHE_PATH
@contextmanager
def suppress(file):
original = os.dup(file.fileno())
with open(os.devnull, "w") as devnull:
os.dup2(devnull.fileno(), file.fileno())
yield
os.dup2(original, file.fileno())
def generate(model_name, prompt, models={}, *args, **kwargs):
model = load(model_name, models=models)
inputs = ollama.prompt.template(model_name, prompt)
return model.generate(inputs, *args, **kwargs)
def load(model_name, models={}):
if not models.get(model_name, None):
model_path = path.expanduser(model_name)
if not path.exists(model_path):
model_path = str(MODELS_CACHE_PATH / (model_name + ".bin"))
runners = {
model_type: cls
for cls in [LlamaCppRunner, CtransformerRunner]
for model_type in cls.model_types()
}
for match, _ in process.extract(model_path, runners.keys(), limit=len(runners)):
try:
model = runners.get(match)
runner = model(model_path, match)
models.update({model_name: runner})
return runner
except Exception:
pass
raise Exception("failed to load model", model_path, model_name)
def unload(model_name, models={}):
if model_name in models:
models.pop(model_name)
class LlamaCppRunner:
def __init__(self, model_path, model_type):
try:
with suppress(sys.stderr), suppress(sys.stdout):
self.model = Llama(model_path, verbose=False, n_gpu_layers=1, seed=-1)
except Exception:
raise Exception("Failed to load model", model_path, model_type)
@staticmethod
def model_types():
return [
'llama',
'orca',
'vicuna',
'ultralm',
]
def generate(self, prompt, *args, **kwargs):
if "max_tokens" not in kwargs:
kwargs.update({"max_tokens": 512})
if "stop" not in kwargs:
kwargs.update({"stop": ["Q:"]})
if "stream" not in kwargs:
kwargs.update({"stream": True})
with suppress(sys.stderr):
for output in self.model(prompt, *args, **kwargs):
yield output
class CtransformerRunner:
def __init__(self, model_path, model_type):
self.model = AutoModelForCausalLM.from_pretrained(
model_path, model_type=model_type, local_files_only=True
)
@staticmethod
def model_types():
return [
'falcon',
'mpt',
'starcoder',
]
def generate(self, prompt, *args, **kwargs):
if "max_new_tokens" not in kwargs:
kwargs.update({"max_new_tokens": 512})
if "stop" not in kwargs:
kwargs.update({"stop": ["User"]})
if "stream" not in kwargs:
kwargs.update({"stream": True})
for output in self.model(prompt, *args, **kwargs):
yield {
'choices': [
{
'text': output,
},
],
}

View file

@ -1,157 +0,0 @@
import requests
import validators
from pathlib import Path
from os import path, walk
from urllib.parse import urlsplit, urlunsplit
from tqdm import tqdm
MODELS_MANIFEST = 'https://ollama.ai/api/models'
MODELS_CACHE_PATH = Path.home() / '.ollama' / 'models'
def models(*args, **kwargs):
for _, _, files in walk(MODELS_CACHE_PATH):
for file in files:
base, ext = path.splitext(file)
if ext == '.bin':
yield base
# search the directory and return all models which contain the search term as a substring,
# or all models if no search term is provided
def search_directory(query):
response = requests.get(MODELS_MANIFEST)
response.raise_for_status()
directory = response.json()
model_names = []
for model_info in directory:
if not query or query.lower() in model_info.get('name', '').lower():
model_names.append(model_info.get('name'))
return model_names
# get the url of the model from our curated directory
def get_url_from_directory(model):
response = requests.get(MODELS_MANIFEST)
response.raise_for_status()
directory = response.json()
for model_info in directory:
if model_info.get('name').lower() == model.lower():
return model_info.get('url')
return model
def download_from_repo(url, file_name):
parts = urlsplit(url)
path_parts = parts.path.split('/tree/')
if len(path_parts) == 1:
location = path_parts[0]
branch = 'main'
else:
location, branch = path_parts
location = location.strip('/')
if file_name == '':
file_name = path.basename(location).lower()
download_url = urlunsplit(
(
'https',
parts.netloc,
f'/api/models/{location}/tree/{branch}',
parts.query,
parts.fragment,
)
)
response = requests.get(download_url)
response.raise_for_status()
json_response = response.json()
download_url, file_size = find_bin_file(json_response, location, branch)
return download_file(download_url, file_name, file_size)
def find_bin_file(json_response, location, branch):
download_url = None
file_size = 0
for file_info in json_response:
if file_info.get('type') == 'file' and file_info.get('path').endswith('.bin'):
f_path = file_info.get('path')
download_url = (
f'https://huggingface.co/{location}/resolve/{branch}/{f_path}'
)
file_size = file_info.get('size')
if download_url is None:
raise Exception('No model found')
return download_url, file_size
def download_file(download_url, file_name, file_size):
local_filename = MODELS_CACHE_PATH / str(file_name + '.bin')
first_byte = path.getsize(local_filename) if path.exists(local_filename) else 0
if first_byte >= file_size:
return local_filename
print(f'Pulling {file_name}...')
header = {'Range': f'bytes={first_byte}-'} if first_byte != 0 else {}
response = requests.get(download_url, headers=header, stream=True)
response.raise_for_status()
total_size = int(response.headers.get('content-length', 0)) + first_byte
with open(local_filename, 'ab' if first_byte else 'wb') as file, tqdm(
total=total_size,
unit='iB',
unit_scale=True,
unit_divisor=1024,
initial=first_byte,
ascii=' ==',
bar_format='Downloading [{bar}] {percentage:3.2f}% {rate_fmt}{postfix}',
) as bar:
for data in response.iter_content(chunk_size=1024):
size = file.write(data)
bar.update(size)
return local_filename
def pull(model_name, *args, **kwargs):
# check the remote model location and see if it needs to be downloaded
url = model_name
file_name = ""
if not validators.url(url) and not url.startswith('huggingface.co'):
try:
url = get_url_from_directory(model_name)
except Exception as e:
# may not have been able to check remote directory, return now
return model_name
if url is model_name:
# this is not a model from our directory, so can't check remote
maybe_existing_model_location = MODELS_CACHE_PATH / str(model_name + '.bin')
if path.exists(model_name) or path.exists(maybe_existing_model_location):
# a file on the filesystem is being specified
return model_name
raise Exception("unknown model")
else:
# this is a model from our directory, check remote
file_name = model_name
if not (url.startswith('http://') or url.startswith('https://')):
url = f'https://{url}'
if not validators.url(url):
if model_name in models(MODELS_CACHE_PATH):
# the model is already downloaded, and specified by name
return model_name
raise Exception(f'Unknown model {model_name}')
local_filename = download_from_repo(url, file_name)
return local_filename

View file

@ -1,12 +0,0 @@
from os import path
from difflib import get_close_matches
from jinja2 import Environment, PackageLoader
def template(name, prompt):
environment = Environment(loader=PackageLoader(__name__, 'templates'))
best_templates = get_close_matches(
path.basename(name), environment.list_templates(), n=1, cutoff=0
)
template = environment.get_template(best_templates.pop())
return template.render(prompt=prompt)

1214
python/poetry.lock generated

File diff suppressed because it is too large Load diff

View file

@ -1,25 +0,0 @@
[tool.poetry]
name = "ollama"
version = "0.0.9"
description = "Run ai models locally"
authors = ["ollama team"]
readme = "README.md"
packages = [{include = "ollama"}]
scripts = {ollama = "ollama.cmd.cli:main"}
[tool.poetry.dependencies]
python = "^3.8"
aiohttp = "^3.8.4"
aiohttp-cors = "^0.7.0"
jinja2 = "^3.1.2"
requests = "^2.31.0"
tqdm = "^4.65.0"
validators = "^0.20.0"
yaspin = "^2.3.0"
llama-cpp-python = "^0.1.67"
ctransformers = "^0.2.10"
thefuzz = {version = "^0.19.0", extras = ["speedup"]}
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

View file

@ -1,779 +0,0 @@
aiohttp-cors==0.7.0 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:0451ba59fdf6909d0e2cd21e4c0a43752bc0703d33fc78ae94d9d9321710193e \
--hash=sha256:4d39c6d7100fd9764ed1caf8cebf0eb01bf5e3f24e2e073fda6234bc48b19f5d
aiohttp==3.8.4 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:03543dcf98a6619254b409be2d22b51f21ec66272be4ebda7b04e6412e4b2e14 \
--hash=sha256:03baa76b730e4e15a45f81dfe29a8d910314143414e528737f8589ec60cf7391 \
--hash=sha256:0a63f03189a6fa7c900226e3ef5ba4d3bd047e18f445e69adbd65af433add5a2 \
--hash=sha256:10c8cefcff98fd9168cdd86c4da8b84baaa90bf2da2269c6161984e6737bf23e \
--hash=sha256:147ae376f14b55f4f3c2b118b95be50a369b89b38a971e80a17c3fd623f280c9 \
--hash=sha256:176a64b24c0935869d5bbc4c96e82f89f643bcdf08ec947701b9dbb3c956b7dd \
--hash=sha256:17b79c2963db82086229012cff93ea55196ed31f6493bb1ccd2c62f1724324e4 \
--hash=sha256:1a45865451439eb320784918617ba54b7a377e3501fb70402ab84d38c2cd891b \
--hash=sha256:1b3ea7edd2d24538959c1c1abf97c744d879d4e541d38305f9bd7d9b10c9ec41 \
--hash=sha256:22f6eab15b6db242499a16de87939a342f5a950ad0abaf1532038e2ce7d31567 \
--hash=sha256:3032dcb1c35bc330134a5b8a5d4f68c1a87252dfc6e1262c65a7e30e62298275 \
--hash=sha256:33587f26dcee66efb2fff3c177547bd0449ab7edf1b73a7f5dea1e38609a0c54 \
--hash=sha256:34ce9f93a4a68d1272d26030655dd1b58ff727b3ed2a33d80ec433561b03d67a \
--hash=sha256:3a80464982d41b1fbfe3154e440ba4904b71c1a53e9cd584098cd41efdb188ef \
--hash=sha256:3b90467ebc3d9fa5b0f9b6489dfb2c304a1db7b9946fa92aa76a831b9d587e99 \
--hash=sha256:3d89efa095ca7d442a6d0cbc755f9e08190ba40069b235c9886a8763b03785da \
--hash=sha256:3d8ef1a630519a26d6760bc695842579cb09e373c5f227a21b67dc3eb16cfea4 \
--hash=sha256:3f43255086fe25e36fd5ed8f2ee47477408a73ef00e804cb2b5cba4bf2ac7f5e \
--hash=sha256:40653609b3bf50611356e6b6554e3a331f6879fa7116f3959b20e3528783e699 \
--hash=sha256:41a86a69bb63bb2fc3dc9ad5ea9f10f1c9c8e282b471931be0268ddd09430b04 \
--hash=sha256:493f5bc2f8307286b7799c6d899d388bbaa7dfa6c4caf4f97ef7521b9cb13719 \
--hash=sha256:4a6cadebe132e90cefa77e45f2d2f1a4b2ce5c6b1bfc1656c1ddafcfe4ba8131 \
--hash=sha256:4c745b109057e7e5f1848c689ee4fb3a016c8d4d92da52b312f8a509f83aa05e \
--hash=sha256:4d347a172f866cd1d93126d9b239fcbe682acb39b48ee0873c73c933dd23bd0f \
--hash=sha256:4dac314662f4e2aa5009977b652d9b8db7121b46c38f2073bfeed9f4049732cd \
--hash=sha256:4ddaae3f3d32fc2cb4c53fab020b69a05c8ab1f02e0e59665c6f7a0d3a5be54f \
--hash=sha256:5393fb786a9e23e4799fec788e7e735de18052f83682ce2dfcabaf1c00c2c08e \
--hash=sha256:59f029a5f6e2d679296db7bee982bb3d20c088e52a2977e3175faf31d6fb75d1 \
--hash=sha256:5a7bdf9e57126dc345b683c3632e8ba317c31d2a41acd5800c10640387d193ed \
--hash=sha256:5b3f2e06a512e94722886c0827bee9807c86a9f698fac6b3aee841fab49bbfb4 \
--hash=sha256:5ce45967538fb747370308d3145aa68a074bdecb4f3a300869590f725ced69c1 \
--hash=sha256:5e14f25765a578a0a634d5f0cd1e2c3f53964553a00347998dfdf96b8137f777 \
--hash=sha256:618c901dd3aad4ace71dfa0f5e82e88b46ef57e3239fc7027773cb6d4ed53531 \
--hash=sha256:652b1bff4f15f6287550b4670546a2947f2a4575b6c6dff7760eafb22eacbf0b \
--hash=sha256:6c08e8ed6fa3d477e501ec9db169bfac8140e830aa372d77e4a43084d8dd91ab \
--hash=sha256:6ddb2a2026c3f6a68c3998a6c47ab6795e4127315d2e35a09997da21865757f8 \
--hash=sha256:6e601588f2b502c93c30cd5a45bfc665faaf37bbe835b7cfd461753068232074 \
--hash=sha256:6e74dd54f7239fcffe07913ff8b964e28b712f09846e20de78676ce2a3dc0bfc \
--hash=sha256:7235604476a76ef249bd64cb8274ed24ccf6995c4a8b51a237005ee7a57e8643 \
--hash=sha256:7ab43061a0c81198d88f39aaf90dae9a7744620978f7ef3e3708339b8ed2ef01 \
--hash=sha256:7c7837fe8037e96b6dd5cfcf47263c1620a9d332a87ec06a6ca4564e56bd0f36 \
--hash=sha256:80575ba9377c5171407a06d0196b2310b679dc752d02a1fcaa2bc20b235dbf24 \
--hash=sha256:80a37fe8f7c1e6ce8f2d9c411676e4bc633a8462844e38f46156d07a7d401654 \
--hash=sha256:8189c56eb0ddbb95bfadb8f60ea1b22fcfa659396ea36f6adcc521213cd7b44d \
--hash=sha256:854f422ac44af92bfe172d8e73229c270dc09b96535e8a548f99c84f82dde241 \
--hash=sha256:880e15bb6dad90549b43f796b391cfffd7af373f4646784795e20d92606b7a51 \
--hash=sha256:8b631e26df63e52f7cce0cce6507b7a7f1bc9b0c501fcde69742130b32e8782f \
--hash=sha256:8c29c77cc57e40f84acef9bfb904373a4e89a4e8b74e71aa8075c021ec9078c2 \
--hash=sha256:91f6d540163f90bbaef9387e65f18f73ffd7c79f5225ac3d3f61df7b0d01ad15 \
--hash=sha256:92c0cea74a2a81c4c76b62ea1cac163ecb20fb3ba3a75c909b9fa71b4ad493cf \
--hash=sha256:9bcb89336efa095ea21b30f9e686763f2be4478f1b0a616969551982c4ee4c3b \
--hash=sha256:a1f4689c9a1462f3df0a1f7e797791cd6b124ddbee2b570d34e7f38ade0e2c71 \
--hash=sha256:a3fec6a4cb5551721cdd70473eb009d90935b4063acc5f40905d40ecfea23e05 \
--hash=sha256:a5d794d1ae64e7753e405ba58e08fcfa73e3fad93ef9b7e31112ef3c9a0efb52 \
--hash=sha256:a86d42d7cba1cec432d47ab13b6637bee393a10f664c425ea7b305d1301ca1a3 \
--hash=sha256:adfbc22e87365a6e564c804c58fc44ff7727deea782d175c33602737b7feadb6 \
--hash=sha256:aeb29c84bb53a84b1a81c6c09d24cf33bb8432cc5c39979021cc0f98c1292a1a \
--hash=sha256:aede4df4eeb926c8fa70de46c340a1bc2c6079e1c40ccf7b0eae1313ffd33519 \
--hash=sha256:b744c33b6f14ca26b7544e8d8aadff6b765a80ad6164fb1a430bbadd593dfb1a \
--hash=sha256:b7a00a9ed8d6e725b55ef98b1b35c88013245f35f68b1b12c5cd4100dddac333 \
--hash=sha256:bb96fa6b56bb536c42d6a4a87dfca570ff8e52de2d63cabebfd6fb67049c34b6 \
--hash=sha256:bbcf1a76cf6f6dacf2c7f4d2ebd411438c275faa1dc0c68e46eb84eebd05dd7d \
--hash=sha256:bca5f24726e2919de94f047739d0a4fc01372801a3672708260546aa2601bf57 \
--hash=sha256:bf2e1a9162c1e441bf805a1fd166e249d574ca04e03b34f97e2928769e91ab5c \
--hash=sha256:c4eb3b82ca349cf6fadcdc7abcc8b3a50ab74a62e9113ab7a8ebc268aad35bb9 \
--hash=sha256:c6cc15d58053c76eacac5fa9152d7d84b8d67b3fde92709195cb984cfb3475ea \
--hash=sha256:c6cd05ea06daca6ad6a4ca3ba7fe7dc5b5de063ff4daec6170ec0f9979f6c332 \
--hash=sha256:c844fd628851c0bc309f3c801b3a3d58ce430b2ce5b359cd918a5a76d0b20cb5 \
--hash=sha256:c9cb1565a7ad52e096a6988e2ee0397f72fe056dadf75d17fa6b5aebaea05622 \
--hash=sha256:cab9401de3ea52b4b4c6971db5fb5c999bd4260898af972bf23de1c6b5dd9d71 \
--hash=sha256:cd468460eefef601ece4428d3cf4562459157c0f6523db89365202c31b6daebb \
--hash=sha256:d1e6a862b76f34395a985b3cd39a0d949ca80a70b6ebdea37d3ab39ceea6698a \
--hash=sha256:d1f9282c5f2b5e241034a009779e7b2a1aa045f667ff521e7948ea9b56e0c5ff \
--hash=sha256:d265f09a75a79a788237d7f9054f929ced2e69eb0bb79de3798c468d8a90f945 \
--hash=sha256:db3fc6120bce9f446d13b1b834ea5b15341ca9ff3f335e4a951a6ead31105480 \
--hash=sha256:dbf3a08a06b3f433013c143ebd72c15cac33d2914b8ea4bea7ac2c23578815d6 \
--hash=sha256:de04b491d0e5007ee1b63a309956eaed959a49f5bb4e84b26c8f5d49de140fa9 \
--hash=sha256:e4b09863aae0dc965c3ef36500d891a3ff495a2ea9ae9171e4519963c12ceefd \
--hash=sha256:e595432ac259af2d4630008bf638873d69346372d38255774c0e286951e8b79f \
--hash=sha256:e75b89ac3bd27d2d043b234aa7b734c38ba1b0e43f07787130a0ecac1e12228a \
--hash=sha256:ea9eb976ffdd79d0e893869cfe179a8f60f152d42cb64622fca418cd9b18dc2a \
--hash=sha256:eafb3e874816ebe2a92f5e155f17260034c8c341dad1df25672fb710627c6949 \
--hash=sha256:ee3c36df21b5714d49fc4580247947aa64bcbe2939d1b77b4c8dcb8f6c9faecc \
--hash=sha256:f352b62b45dff37b55ddd7b9c0c8672c4dd2eb9c0f9c11d395075a84e2c40f75 \
--hash=sha256:fabb87dd8850ef0f7fe2b366d44b77d7e6fa2ea87861ab3844da99291e81e60f \
--hash=sha256:fe11310ae1e4cd560035598c3f29d86cef39a83d244c7466f95c27ae04850f10 \
--hash=sha256:fe7ba4a51f33ab275515f66b0a236bcde4fb5561498fe8f898d4e549b2e4509f
aiosignal==1.3.1 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:54cd96e15e1649b75d6c87526a6ff0b6c1b0dd3459f43d9ca11d48c339b68cfc \
--hash=sha256:f8376fb07dd1e86a584e4fcdec80b36b7f81aac666ebc724e2c090300dd83b17
async-timeout==4.0.2 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:2163e1640ddb52b7a8c80d0a67a08587e5d245cc9c553a74a847056bc2976b15 \
--hash=sha256:8ca1e4fcf50d07413d66d1a5e416e42cfdf5851c981d679a09851a6853383b3c
attrs==23.1.0 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:1f28b4522cdc2fb4256ac1a020c78acf9cba2c6b461ccd2c126f3aa8e8335d04 \
--hash=sha256:6279836d581513a26f1bf235f9acd333bc9115683f14f7e8fae46c98fc50e015
certifi==2023.5.7 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:0f0d56dc5a6ad56fd4ba36484d6cc34451e1c6548c61daad8c320169f91eddc7 \
--hash=sha256:c6c2e98f5c7869efca1f8916fed228dd91539f9f1b444c314c06eef02980c716
charset-normalizer==3.1.0 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:04afa6387e2b282cf78ff3dbce20f0cc071c12dc8f685bd40960cc68644cfea6 \
--hash=sha256:04eefcee095f58eaabe6dc3cc2262f3bcd776d2c67005880894f447b3f2cb9c1 \
--hash=sha256:0be65ccf618c1e7ac9b849c315cc2e8a8751d9cfdaa43027d4f6624bd587ab7e \
--hash=sha256:0c95f12b74681e9ae127728f7e5409cbbef9cd914d5896ef238cc779b8152373 \
--hash=sha256:0ca564606d2caafb0abe6d1b5311c2649e8071eb241b2d64e75a0d0065107e62 \
--hash=sha256:10c93628d7497c81686e8e5e557aafa78f230cd9e77dd0c40032ef90c18f2230 \
--hash=sha256:11d117e6c63e8f495412d37e7dc2e2fff09c34b2d09dbe2bee3c6229577818be \
--hash=sha256:11d3bcb7be35e7b1bba2c23beedac81ee893ac9871d0ba79effc7fc01167db6c \
--hash=sha256:12a2b561af122e3d94cdb97fe6fb2bb2b82cef0cdca131646fdb940a1eda04f0 \
--hash=sha256:12d1a39aa6b8c6f6248bb54550efcc1c38ce0d8096a146638fd4738e42284448 \
--hash=sha256:1435ae15108b1cb6fffbcea2af3d468683b7afed0169ad718451f8db5d1aff6f \
--hash=sha256:1c60b9c202d00052183c9be85e5eaf18a4ada0a47d188a83c8f5c5b23252f649 \
--hash=sha256:1e8fcdd8f672a1c4fc8d0bd3a2b576b152d2a349782d1eb0f6b8e52e9954731d \
--hash=sha256:20064ead0717cf9a73a6d1e779b23d149b53daf971169289ed2ed43a71e8d3b0 \
--hash=sha256:21fa558996782fc226b529fdd2ed7866c2c6ec91cee82735c98a197fae39f706 \
--hash=sha256:22908891a380d50738e1f978667536f6c6b526a2064156203d418f4856d6e86a \
--hash=sha256:3160a0fd9754aab7d47f95a6b63ab355388d890163eb03b2d2b87ab0a30cfa59 \
--hash=sha256:322102cdf1ab682ecc7d9b1c5eed4ec59657a65e1c146a0da342b78f4112db23 \
--hash=sha256:34e0a2f9c370eb95597aae63bf85eb5e96826d81e3dcf88b8886012906f509b5 \
--hash=sha256:3573d376454d956553c356df45bb824262c397c6e26ce43e8203c4c540ee0acb \
--hash=sha256:3747443b6a904001473370d7810aa19c3a180ccd52a7157aacc264a5ac79265e \
--hash=sha256:38e812a197bf8e71a59fe55b757a84c1f946d0ac114acafaafaf21667a7e169e \
--hash=sha256:3a06f32c9634a8705f4ca9946d667609f52cf130d5548881401f1eb2c39b1e2c \
--hash=sha256:3a5fc78f9e3f501a1614a98f7c54d3969f3ad9bba8ba3d9b438c3bc5d047dd28 \
--hash=sha256:3d9098b479e78c85080c98e1e35ff40b4a31d8953102bb0fd7d1b6f8a2111a3d \
--hash=sha256:3dc5b6a8ecfdc5748a7e429782598e4f17ef378e3e272eeb1340ea57c9109f41 \
--hash=sha256:4155b51ae05ed47199dc5b2a4e62abccb274cee6b01da5b895099b61b1982974 \
--hash=sha256:49919f8400b5e49e961f320c735388ee686a62327e773fa5b3ce6721f7e785ce \
--hash=sha256:53d0a3fa5f8af98a1e261de6a3943ca631c526635eb5817a87a59d9a57ebf48f \
--hash=sha256:5f008525e02908b20e04707a4f704cd286d94718f48bb33edddc7d7b584dddc1 \
--hash=sha256:628c985afb2c7d27a4800bfb609e03985aaecb42f955049957814e0491d4006d \
--hash=sha256:65ed923f84a6844de5fd29726b888e58c62820e0769b76565480e1fdc3d062f8 \
--hash=sha256:6734e606355834f13445b6adc38b53c0fd45f1a56a9ba06c2058f86893ae8017 \
--hash=sha256:6baf0baf0d5d265fa7944feb9f7451cc316bfe30e8df1a61b1bb08577c554f31 \
--hash=sha256:6f4f4668e1831850ebcc2fd0b1cd11721947b6dc7c00bf1c6bd3c929ae14f2c7 \
--hash=sha256:6f5c2e7bc8a4bf7c426599765b1bd33217ec84023033672c1e9a8b35eaeaaaf8 \
--hash=sha256:6f6c7a8a57e9405cad7485f4c9d3172ae486cfef1344b5ddd8e5239582d7355e \
--hash=sha256:7381c66e0561c5757ffe616af869b916c8b4e42b367ab29fedc98481d1e74e14 \
--hash=sha256:73dc03a6a7e30b7edc5b01b601e53e7fc924b04e1835e8e407c12c037e81adbd \
--hash=sha256:74db0052d985cf37fa111828d0dd230776ac99c740e1a758ad99094be4f1803d \
--hash=sha256:75f2568b4189dda1c567339b48cba4ac7384accb9c2a7ed655cd86b04055c795 \
--hash=sha256:78cacd03e79d009d95635e7d6ff12c21eb89b894c354bd2b2ed0b4763373693b \
--hash=sha256:80d1543d58bd3d6c271b66abf454d437a438dff01c3e62fdbcd68f2a11310d4b \
--hash=sha256:830d2948a5ec37c386d3170c483063798d7879037492540f10a475e3fd6f244b \
--hash=sha256:891cf9b48776b5c61c700b55a598621fdb7b1e301a550365571e9624f270c203 \
--hash=sha256:8f25e17ab3039b05f762b0a55ae0b3632b2e073d9c8fc88e89aca31a6198e88f \
--hash=sha256:9a3267620866c9d17b959a84dd0bd2d45719b817245e49371ead79ed4f710d19 \
--hash=sha256:a04f86f41a8916fe45ac5024ec477f41f886b3c435da2d4e3d2709b22ab02af1 \
--hash=sha256:aaf53a6cebad0eae578f062c7d462155eada9c172bd8c4d250b8c1d8eb7f916a \
--hash=sha256:abc1185d79f47c0a7aaf7e2412a0eb2c03b724581139193d2d82b3ad8cbb00ac \
--hash=sha256:ac0aa6cd53ab9a31d397f8303f92c42f534693528fafbdb997c82bae6e477ad9 \
--hash=sha256:ac3775e3311661d4adace3697a52ac0bab17edd166087d493b52d4f4f553f9f0 \
--hash=sha256:b06f0d3bf045158d2fb8837c5785fe9ff9b8c93358be64461a1089f5da983137 \
--hash=sha256:b116502087ce8a6b7a5f1814568ccbd0e9f6cfd99948aa59b0e241dc57cf739f \
--hash=sha256:b82fab78e0b1329e183a65260581de4375f619167478dddab510c6c6fb04d9b6 \
--hash=sha256:bd7163182133c0c7701b25e604cf1611c0d87712e56e88e7ee5d72deab3e76b5 \
--hash=sha256:c36bcbc0d5174a80d6cccf43a0ecaca44e81d25be4b7f90f0ed7bcfbb5a00909 \
--hash=sha256:c3af8e0f07399d3176b179f2e2634c3ce9c1301379a6b8c9c9aeecd481da494f \
--hash=sha256:c84132a54c750fda57729d1e2599bb598f5fa0344085dbde5003ba429a4798c0 \
--hash=sha256:cb7b2ab0188829593b9de646545175547a70d9a6e2b63bf2cd87a0a391599324 \
--hash=sha256:cca4def576f47a09a943666b8f829606bcb17e2bc2d5911a46c8f8da45f56755 \
--hash=sha256:cf6511efa4801b9b38dc5546d7547d5b5c6ef4b081c60b23e4d941d0eba9cbeb \
--hash=sha256:d16fd5252f883eb074ca55cb622bc0bee49b979ae4e8639fff6ca3ff44f9f854 \
--hash=sha256:d2686f91611f9e17f4548dbf050e75b079bbc2a82be565832bc8ea9047b61c8c \
--hash=sha256:d7fc3fca01da18fbabe4625d64bb612b533533ed10045a2ac3dd194bfa656b60 \
--hash=sha256:dd5653e67b149503c68c4018bf07e42eeed6b4e956b24c00ccdf93ac79cdff84 \
--hash=sha256:de5695a6f1d8340b12a5d6d4484290ee74d61e467c39ff03b39e30df62cf83a0 \
--hash=sha256:e0ac8959c929593fee38da1c2b64ee9778733cdf03c482c9ff1d508b6b593b2b \
--hash=sha256:e1b25e3ad6c909f398df8921780d6a3d120d8c09466720226fc621605b6f92b1 \
--hash=sha256:e633940f28c1e913615fd624fcdd72fdba807bf53ea6925d6a588e84e1151531 \
--hash=sha256:e89df2958e5159b811af9ff0f92614dabf4ff617c03a4c1c6ff53bf1c399e0e1 \
--hash=sha256:ea9f9c6034ea2d93d9147818f17c2a0860d41b71c38b9ce4d55f21b6f9165a11 \
--hash=sha256:f645caaf0008bacf349875a974220f1f1da349c5dbe7c4ec93048cdc785a3326 \
--hash=sha256:f8303414c7b03f794347ad062c0516cee0e15f7a612abd0ce1e25caf6ceb47df \
--hash=sha256:fca62a8301b605b954ad2e9c3666f9d97f63872aa4efcae5492baca2056b74ab
colorama==0.4.6 ; python_version >= "3.8" and python_version < "4.0" and platform_system == "Windows" \
--hash=sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44 \
--hash=sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6
ctransformers==0.2.10 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:912a80859bd252e2a389b4716d44b0663657148a85fbfbe6c5503a7ee69fd235 \
--hash=sha256:d82a299690f1494fe93db136f71b1b9b2cd4ada535e2afa07aaee1d180117a2d
decorator==5.1.1 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330 \
--hash=sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186
diskcache==5.6.1 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:558c6a2d5d7c721bb00e40711803d6804850c9f76c426ed81ecc627fe9d2ce2d \
--hash=sha256:e4c978532feff5814c4cc00fe1e11e40501985946643d73220d41ee7737c72c3
filelock==3.12.2 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:002740518d8aa59a26b0c76e10fb8c6e15eae825d34b6fdf670333fd7b938d81 \
--hash=sha256:cbb791cdea2a72f23da6ac5b5269ab0a0d161e9ef0100e653b69049a7706d1ec
frozenlist==1.3.3 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:008a054b75d77c995ea26629ab3a0c0d7281341f2fa7e1e85fa6153ae29ae99c \
--hash=sha256:02c9ac843e3390826a265e331105efeab489ffaf4dd86384595ee8ce6d35ae7f \
--hash=sha256:034a5c08d36649591be1cbb10e09da9f531034acfe29275fc5454a3b101ce41a \
--hash=sha256:05cdb16d09a0832eedf770cb7bd1fe57d8cf4eaf5aced29c4e41e3f20b30a784 \
--hash=sha256:0693c609e9742c66ba4870bcee1ad5ff35462d5ffec18710b4ac89337ff16e27 \
--hash=sha256:0771aed7f596c7d73444c847a1c16288937ef988dc04fb9f7be4b2aa91db609d \
--hash=sha256:0af2e7c87d35b38732e810befb9d797a99279cbb85374d42ea61c1e9d23094b3 \
--hash=sha256:14143ae966a6229350021384870458e4777d1eae4c28d1a7aa47f24d030e6678 \
--hash=sha256:180c00c66bde6146a860cbb81b54ee0df350d2daf13ca85b275123bbf85de18a \
--hash=sha256:1841e200fdafc3d51f974d9d377c079a0694a8f06de2e67b48150328d66d5483 \
--hash=sha256:23d16d9f477bb55b6154654e0e74557040575d9d19fe78a161bd33d7d76808e8 \
--hash=sha256:2b07ae0c1edaa0a36339ec6cce700f51b14a3fc6545fdd32930d2c83917332cf \
--hash=sha256:2c926450857408e42f0bbc295e84395722ce74bae69a3b2aa2a65fe22cb14b99 \
--hash=sha256:2e24900aa13212e75e5b366cb9065e78bbf3893d4baab6052d1aca10d46d944c \
--hash=sha256:303e04d422e9b911a09ad499b0368dc551e8c3cd15293c99160c7f1f07b59a48 \
--hash=sha256:352bd4c8c72d508778cf05ab491f6ef36149f4d0cb3c56b1b4302852255d05d5 \
--hash=sha256:3843f84a6c465a36559161e6c59dce2f2ac10943040c2fd021cfb70d58c4ad56 \
--hash=sha256:394c9c242113bfb4b9aa36e2b80a05ffa163a30691c7b5a29eba82e937895d5e \
--hash=sha256:3bbdf44855ed8f0fbcd102ef05ec3012d6a4fd7c7562403f76ce6a52aeffb2b1 \
--hash=sha256:40de71985e9042ca00b7953c4f41eabc3dc514a2d1ff534027f091bc74416401 \
--hash=sha256:41fe21dc74ad3a779c3d73a2786bdf622ea81234bdd4faf90b8b03cad0c2c0b4 \
--hash=sha256:47df36a9fe24054b950bbc2db630d508cca3aa27ed0566c0baf661225e52c18e \
--hash=sha256:4ea42116ceb6bb16dbb7d526e242cb6747b08b7710d9782aa3d6732bd8d27649 \
--hash=sha256:58bcc55721e8a90b88332d6cd441261ebb22342e238296bb330968952fbb3a6a \
--hash=sha256:5c11e43016b9024240212d2a65043b70ed8dfd3b52678a1271972702d990ac6d \
--hash=sha256:5cf820485f1b4c91e0417ea0afd41ce5cf5965011b3c22c400f6d144296ccbc0 \
--hash=sha256:5d8860749e813a6f65bad8285a0520607c9500caa23fea6ee407e63debcdbef6 \
--hash=sha256:6327eb8e419f7d9c38f333cde41b9ae348bec26d840927332f17e887a8dcb70d \
--hash=sha256:65a5e4d3aa679610ac6e3569e865425b23b372277f89b5ef06cf2cdaf1ebf22b \
--hash=sha256:66080ec69883597e4d026f2f71a231a1ee9887835902dbe6b6467d5a89216cf6 \
--hash=sha256:783263a4eaad7c49983fe4b2e7b53fa9770c136c270d2d4bbb6d2192bf4d9caf \
--hash=sha256:7f44e24fa70f6fbc74aeec3e971f60a14dde85da364aa87f15d1be94ae75aeef \
--hash=sha256:7fdfc24dcfce5b48109867c13b4cb15e4660e7bd7661741a391f821f23dfdca7 \
--hash=sha256:810860bb4bdce7557bc0febb84bbd88198b9dbc2022d8eebe5b3590b2ad6c842 \
--hash=sha256:841ea19b43d438a80b4de62ac6ab21cfe6827bb8a9dc62b896acc88eaf9cecba \
--hash=sha256:84610c1502b2461255b4c9b7d5e9c48052601a8957cd0aea6ec7a7a1e1fb9420 \
--hash=sha256:899c5e1928eec13fd6f6d8dc51be23f0d09c5281e40d9cf4273d188d9feeaf9b \
--hash=sha256:8bae29d60768bfa8fb92244b74502b18fae55a80eac13c88eb0b496d4268fd2d \
--hash=sha256:8df3de3a9ab8325f94f646609a66cbeeede263910c5c0de0101079ad541af332 \
--hash=sha256:8fa3c6e3305aa1146b59a09b32b2e04074945ffcfb2f0931836d103a2c38f936 \
--hash=sha256:924620eef691990dfb56dc4709f280f40baee568c794b5c1885800c3ecc69816 \
--hash=sha256:9309869032abb23d196cb4e4db574232abe8b8be1339026f489eeb34a4acfd91 \
--hash=sha256:9545a33965d0d377b0bc823dcabf26980e77f1b6a7caa368a365a9497fb09420 \
--hash=sha256:9ac5995f2b408017b0be26d4a1d7c61bce106ff3d9e3324374d66b5964325448 \
--hash=sha256:9bbbcedd75acdfecf2159663b87f1bb5cfc80e7cd99f7ddd9d66eb98b14a8411 \
--hash=sha256:a4ae8135b11652b08a8baf07631d3ebfe65a4c87909dbef5fa0cdde440444ee4 \
--hash=sha256:a6394d7dadd3cfe3f4b3b186e54d5d8504d44f2d58dcc89d693698e8b7132b32 \
--hash=sha256:a97b4fe50b5890d36300820abd305694cb865ddb7885049587a5678215782a6b \
--hash=sha256:ae4dc05c465a08a866b7a1baf360747078b362e6a6dbeb0c57f234db0ef88ae0 \
--hash=sha256:b1c63e8d377d039ac769cd0926558bb7068a1f7abb0f003e3717ee003ad85530 \
--hash=sha256:b1e2c1185858d7e10ff045c496bbf90ae752c28b365fef2c09cf0fa309291669 \
--hash=sha256:b4395e2f8d83fbe0c627b2b696acce67868793d7d9750e90e39592b3626691b7 \
--hash=sha256:b756072364347cb6aa5b60f9bc18e94b2f79632de3b0190253ad770c5df17db1 \
--hash=sha256:ba64dc2b3b7b158c6660d49cdb1d872d1d0bf4e42043ad8d5006099479a194e5 \
--hash=sha256:bed331fe18f58d844d39ceb398b77d6ac0b010d571cba8267c2e7165806b00ce \
--hash=sha256:c188512b43542b1e91cadc3c6c915a82a5eb95929134faf7fd109f14f9892ce4 \
--hash=sha256:c21b9aa40e08e4f63a2f92ff3748e6b6c84d717d033c7b3438dd3123ee18f70e \
--hash=sha256:ca713d4af15bae6e5d79b15c10c8522859a9a89d3b361a50b817c98c2fb402a2 \
--hash=sha256:cd4210baef299717db0a600d7a3cac81d46ef0e007f88c9335db79f8979c0d3d \
--hash=sha256:cfe33efc9cb900a4c46f91a5ceba26d6df370ffddd9ca386eb1d4f0ad97b9ea9 \
--hash=sha256:d5cd3ab21acbdb414bb6c31958d7b06b85eeb40f66463c264a9b343a4e238642 \
--hash=sha256:dfbac4c2dfcc082fcf8d942d1e49b6aa0766c19d3358bd86e2000bf0fa4a9cf0 \
--hash=sha256:e235688f42b36be2b6b06fc37ac2126a73b75fb8d6bc66dd632aa35286238703 \
--hash=sha256:eb82dbba47a8318e75f679690190c10a5e1f447fbf9df41cbc4c3afd726d88cb \
--hash=sha256:ebb86518203e12e96af765ee89034a1dbb0c3c65052d1b0c19bbbd6af8a145e1 \
--hash=sha256:ee78feb9d293c323b59a6f2dd441b63339a30edf35abcb51187d2fc26e696d13 \
--hash=sha256:eedab4c310c0299961ac285591acd53dc6723a1ebd90a57207c71f6e0c2153ab \
--hash=sha256:efa568b885bca461f7c7b9e032655c0c143d305bf01c30caf6db2854a4532b38 \
--hash=sha256:efce6ae830831ab6a22b9b4091d411698145cb9b8fc869e1397ccf4b4b6455cb \
--hash=sha256:f163d2fd041c630fed01bc48d28c3ed4a3b003c00acd396900e11ee5316b56bb \
--hash=sha256:f20380df709d91525e4bee04746ba612a4df0972c1b8f8e1e8af997e678c7b81 \
--hash=sha256:f30f1928162e189091cf4d9da2eac617bfe78ef907a761614ff577ef4edfb3c8 \
--hash=sha256:f470c92737afa7d4c3aacc001e335062d582053d4dbe73cda126f2d7031068dd \
--hash=sha256:ff8bf625fe85e119553b5383ba0fb6aa3d0ec2ae980295aaefa552374926b3f4
fsspec==2023.6.0 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:1cbad1faef3e391fba6dc005ae9b5bdcbf43005c9167ce78c915549c352c869a \
--hash=sha256:d0b2f935446169753e7a5c5c55681c54ea91996cc67be93c39a154fb3a2742af
huggingface-hub==0.15.1 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:05b0fb0abbf1f625dfee864648ac3049fe225ac4371c7bafaca0c2d3a2f83445 \
--hash=sha256:a61b7d1a7769fe10119e730277c72ab99d95c48d86a3d6da3e9f3d0f632a4081
idna==3.4 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:814f528e8dead7d329833b91c5faa87d60bf71824cd12a7530b5526063d02cb4 \
--hash=sha256:90b77e79eaa3eba6de819a0c442c0b4ceefc341a7a2ab77d7562bf49f425c5c2
jinja2==3.1.2 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:31351a702a408a9e7595a8fc6150fc3f43bb6bf7e319770cbc0db9df9437e852 \
--hash=sha256:6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61
levenshtein==0.21.1 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:023dffdde576639e48cab3cc835bfaf9c441df7a8e2829bf20104868db6e4f72 \
--hash=sha256:04d338c9153ddf70a32f324cf9f902fe94a6da82122b8037ccde969d4cc0a94b \
--hash=sha256:06da6c47aa459c725ee90dab467cd2f66956c5f9a43ddb51a0fe2496960f1d3e \
--hash=sha256:0d997da10fdf1a82e208fd1b05aba40705ca3f053919c84d2e952141d33e3ab3 \
--hash=sha256:11694c6f7119d68cc199ff3b1407560c0efb0cc49f288169f28b2e032ee03cda \
--hash=sha256:12bb3540e021c73c5d8796ecf8148afd441c4471731924a112bc31bc25abeabf \
--hash=sha256:13e87517ce788d71deaa73e37332a67c4085c13e58ea3a0218092d555d1872ce \
--hash=sha256:1dc54aeb02f38a36f16bca6b0f9d07462686d92716424d9a4a3fdd11f3624528 \
--hash=sha256:20361f42f6e7efa5853f69a41a272e9ecb90da284bec4312e42b58fa42b9a752 \
--hash=sha256:248348e94dee05c787b44f16533a366ec5bf8ba949c604ad0db69d0c872f3539 \
--hash=sha256:267ad98befffeed90e73b8c644a297027adb81f61044843aeade7b4a44ccc7d7 \
--hash=sha256:267bc6725506571fd3c03afcc871fa5cbf3d2cb6e4bd11043790fa60cbb0f8a4 \
--hash=sha256:2d880a87aca186342bc2fe16b064c3ed434d2a0c170c419f23b4e00261a5340a \
--hash=sha256:2e2ed817fa682243ef2e8a2728fcd0f9352d4e5edd104db44862d0bb55c75a7e \
--hash=sha256:2e4fc4522f9bf73c6ab4cedec834783999b247312ec9e3d1435a5424ad5bc908 \
--hash=sha256:309f134f3d42fa7df7efbbd7975f2331de8c36da3ebdb3fad59abae84268abba \
--hash=sha256:31aa08e8ddac402edd530aaf708ab085fea7299c499404989eabfde143377911 \
--hash=sha256:35a603d952e9f286fe8053332862c8cff426f5d8a85ee962c3a0f597f4c463c4 \
--hash=sha256:3824e9f75ec9f373fc8b4df23eae668918953487f5ff06db282ddcb3f9c802d2 \
--hash=sha256:39e8a1866325b6d54de4e7d1bffffaf4b4c8cbf0988f47f0f2e929edfbeb870d \
--hash=sha256:3c13450450d537ec7ede3781be72d72db37cb131943148c8ada58b34e143fc6f \
--hash=sha256:40a5e38d0c3e488d1dca5dc9c2691c000764813d4006c243f2ebd39e0b331e95 \
--hash=sha256:41e0e539638a27b5e90a5d46679375f93a1cb65cf06efe7c413cf76f71d3d467 \
--hash=sha256:4217ae380f42f825862eb8e2f9beca627fe9ab613f36e206842c003bb1affafc \
--hash=sha256:43a06b0b492e0d936deff751ad4757786ba7cb5eee510d53b6dfe92c924ff733 \
--hash=sha256:463fd7558f25c477c7e4a59af35c661e133473f62bb02ed2c07c9c95e1c2dc66 \
--hash=sha256:47e6d66fe0110fd8e6efb1939d686099170c27b3ca838eab0c215f0781f05f06 \
--hash=sha256:4a6cd85ac5f7800e8127b3194fa02c59be735b6bdfe55b8516d094652235e038 \
--hash=sha256:50fbe01be99554f644657c32a9e3085369d23e8ccc540d855c683947d3b48b67 \
--hash=sha256:58eaab403b77e62e096cbcbaf61728c8736f9f7a3e36a58fb663461e5d70144f \
--hash=sha256:59e5054c9dea821840af4623a4059c8f0ae56548a5eae8b9c7aaa0b3f1e33340 \
--hash=sha256:5a10fc3be2bfb05b03b868d462941e4099b680b7f358a90b8c6d7d5946e9e97c \
--hash=sha256:5acb7e84ccd619dcff6e04928fa8d8cc24f55bb2c9cdfe96620ed85b0a82a7c7 \
--hash=sha256:5da0e2dbddb98da890fb779823df991ad50f184b3d986b8c68784eecbb087f01 \
--hash=sha256:622bc670b906c4bf219755625e9fa704ff07c561a90f1aa35f3f2d8ecd3ec088 \
--hash=sha256:62dca15301bdba4ec7fcf53c39dd8d9c198194990cf035def3f47b7cb9c3213e \
--hash=sha256:656c70814280c4002af89112f1457b6ad24c42dfba58dcb2047a249ae8ccdd04 \
--hash=sha256:675ba3afaa9e8ec393eb1eeee651697036e8391be54e6c28eae4bfdff4d5e64e \
--hash=sha256:6833f8cefb96b8ccac457ad421866a74f4de973e7001699fcbbbe9ccb59a5c66 \
--hash=sha256:69a430ab564d286f309c19f7abed34fce9c144f39f984c609ee690dd175cc421 \
--hash=sha256:6c08879d0cf761cd750e976fda67bcc23cf1e485eaa030942e6628b876f4c6d8 \
--hash=sha256:6ed8f99e4e4ba8a43bb4fe0255606724f22069405fa1e3be679a2d90f74770e5 \
--hash=sha256:72b0b84adc52f4cf970a1bb276e76e115b30d693d6dbcd25fca0bcee85ca7cc7 \
--hash=sha256:78d0fb5faef0413864c1b593e5261a840eaa47842b0fa4af7be4c09d90b24a14 \
--hash=sha256:79259b10f105f78853210d8769cf77ca55dac8c368dca33b4c10ffa8965e2543 \
--hash=sha256:7d7e00e8cb45981386df9d3f99073ba7de59bdb739069766b32906421bb1026b \
--hash=sha256:832951ad7b5ee0df8152f239a9fc602322da055264459dcf4d50d3ed68e68045 \
--hash=sha256:863d507cba67de2fa66d5501ed1bc5029363d2b393662ac7d740dd0330c66aba \
--hash=sha256:87edb05fc6e4eb14008433f02e89815a756fe4ecc32d7180bb757f26e4161e06 \
--hash=sha256:8d01425bd54c482ccbbc6d953633450a2bdbb7d12450d9eeba6073a6d0f06a3c \
--hash=sha256:918f2e0f590cacb30edb88e7eccbf71b340d5f080c9e69009f1f00dc24810a67 \
--hash=sha256:91dca7085aa358da71fa50682fc8ff7e21365c99ef17dc1962a7bbf488003528 \
--hash=sha256:938581ba87b306675bc41e21c2b2822a9eb83fb1a0e4a4903b7398d7845b22e3 \
--hash=sha256:9437c2342937decf3cf5ac79d0b9497734897c0a09dc813378c97f2916b7aa76 \
--hash=sha256:94a6ffd7257d12c64de34bc9f801a211e2daa624ec276305f8c67963a9896efa \
--hash=sha256:952e72f173a65f271dfee102b5571004b6594d4f199864ddead77115a2c147fd \
--hash=sha256:9546ded45fb3cf8773ade9c91de164c6cb2cb4927516289abd422a262e81906c \
--hash=sha256:9817dca597abde9fc9571d56a7eca8bd667e9dfc0867b190f1e8b43ce4fde761 \
--hash=sha256:9a8d60084e1c9e87ae247c601e331708de09ed23219b5e39af7c8e9115ab8152 \
--hash=sha256:9bcb3abbe97975cc6a97baf24a3b6e0491472ecedbc0247a41eb2c8d73ecde5d \
--hash=sha256:9dda976c1dae2a0b41a109facc48d1d242c7acb30ab4c04d8421496da6e153aa \
--hash=sha256:9e96217a7c6a7d43071c830b1353a3ee669757ae477673f0fd3e3a97def6d410 \
--hash=sha256:a0fa251b3b4c561d2f650d9a61fb8980815492bb088a0a521236995a1872e171 \
--hash=sha256:a1cd48db3d03adb88bf71b45de77b9720f96d3b9d5ab7a32304352baec482689 \
--hash=sha256:a51974fcb8a94284325cb88b474b76227532a25b035938a46167bebd1646718e \
--hash=sha256:aee4f570652ad77961e5ab871d11fd42752e7d2117b08324a0c8801a7ee0a7c5 \
--hash=sha256:b2410469cc8fd0f42aa00e63063c42f8aff501996cd5424a5c904739bdaaf4fe \
--hash=sha256:b33e2cbaca6f7d01092a28711605568dbc08a3bb7b796d8986bf5d0d651a0b09 \
--hash=sha256:bff4f236d1b6c556a77975812a4d51071181721f3a29c08b42e5c4aa11730957 \
--hash=sha256:c37609f4e460e570810ec5176c5cdf91c494a9979638f7fef5fd345597245d17 \
--hash=sha256:c8126d2b51621483823c6e31d16bc1f5a964ae976aab4f241bbe74ed19d93770 \
--hash=sha256:c89a5ac319a80c131ca8d499ae0f7a91d4dd1dc3b2e9d8b095e991597b79c8f9 \
--hash=sha256:c9a072cb0f6e90092c4323cd7731eb539a79ac360045dbe3cc49a123ba381fc5 \
--hash=sha256:ca992783feaf1d6e25403340157fb584cf71371b094a575134393bba10b974fa \
--hash=sha256:cc8eb12c48598b20b4b99128bc2bd62974dfb65204ceb37807480788b1e66e64 \
--hash=sha256:ccd0b89300a25decdb34d7c4efe2a971438015f552eeb416b8da12918cb3edc0 \
--hash=sha256:cdba9f8a7a98b0c4c0bc004b811fb31a96521cd264aeb5375898478e7703de4d \
--hash=sha256:d17c2ee8aa380c012b3ba015b87502934662c51b7609ef17366c76863e9551d6 \
--hash=sha256:d3f855669e1399597f7a2670310cf20fc04a35c6c446dd70320398e9aa481b3d \
--hash=sha256:d4bf11b89d8d7a7707ae5cac1ef86ac4ff78491482df037289470db8f0378043 \
--hash=sha256:d66d8f3ebde14840a310a557c8f69eed3e153f2477747365355d058208eea515 \
--hash=sha256:d83b8c0ce41e410af143bd3abef94e480d143fdb83e60a01bab9069bf565dada \
--hash=sha256:dcc712696d4332962ecab6e4df40d5126d7379c6612e6058ee2e9d3f924387e3 \
--hash=sha256:e4c2fe1f49f1d8476fe44e243569d775c5454dca70a13be568430d2d2d760ea2 \
--hash=sha256:e701b9dfb121faf71b0c5757485fc49e1b511b7b8a80034aa1f580488f8f872e \
--hash=sha256:e8ab4d5acdd3ac17161539d9f2ea764497dc269dcd8dc722ae4a394c7b64ae7f \
--hash=sha256:ea042ba262ea2a95d93c4d2d5879df956cf6c85ce22c037e3f0d4491182f10c5 \
--hash=sha256:ed73d619e203aad54e2e6119a2b58b7568a36bd50a547817d13618ea0acf4412 \
--hash=sha256:edac6490f84e8a0456cb40f6729d4199311ce50ca0ea4958572e1b7ea99f546c \
--hash=sha256:ee847d3e49870e914074fd31c069a1aaba6f71bee650d41de48e7e4b11671bf0 \
--hash=sha256:eea308d98c64dbea48ac351011c4adf66acd936c4de2bf9955826ba8435197e2 \
--hash=sha256:eec8a1eaaeadc217c15bc77d01bb29e146acdae73a0b2e9df1ad162263c9752e \
--hash=sha256:ef365ec78938597623d4fb96c8b0db423ab484fcfc00fae44c34b738b1eb1924 \
--hash=sha256:f00495a80c5850466f0a57ea874761f78079702e28b63a1b6573ad254f828e44 \
--hash=sha256:f0e51ff6d5665884b0e39b4ae0ef4e2d2d0174147147db7a870ddc4123882212 \
--hash=sha256:f282711a220d1bdf245da508e1fefdf7680d1f7482a094e37465674a7e6985ae \
--hash=sha256:f30474b2906301594c8fb64cb7492c6978290c466a717c4b5316887a18b77af5 \
--hash=sha256:f4f187f0929a35b6ddabc1324161e8c73ddbd4a7747249f10ec9ceaa793e904f \
--hash=sha256:f5a1f28b34a15dd2d67bcc324f6661df8cfe66d6ec7ee7a64e921af8ae4c39b7 \
--hash=sha256:f5f7ce639bea0f5e95a1f71963624b85521a39928a2a1bb0e66f6180facf5969 \
--hash=sha256:f9e3a5f4386c8f1811153f309a0ba3dc47d17e81a6dd29aa22d3e10212a2fd73 \
--hash=sha256:ffa6762f8ef1e7dfba101babe43de6edc541cbe64d33d816314ac67cd76c3979
llama-cpp-python==0.1.67 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:33bdcd42b30df3c21d56ce094132e1cdc0da0f8a27109f8eaf698addad02fd20
markupsafe==2.1.3 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:05fb21170423db021895e1ea1e1f3ab3adb85d1c2333cbc2310f2a26bc77272e \
--hash=sha256:0a4e4a1aff6c7ac4cd55792abf96c915634c2b97e3cc1c7129578aa68ebd754e \
--hash=sha256:10bbfe99883db80bdbaff2dcf681dfc6533a614f700da1287707e8a5d78a8431 \
--hash=sha256:134da1eca9ec0ae528110ccc9e48041e0828d79f24121a1a146161103c76e686 \
--hash=sha256:1577735524cdad32f9f694208aa75e422adba74f1baee7551620e43a3141f559 \
--hash=sha256:1b40069d487e7edb2676d3fbdb2b0829ffa2cd63a2ec26c4938b2d34391b4ecc \
--hash=sha256:282c2cb35b5b673bbcadb33a585408104df04f14b2d9b01d4c345a3b92861c2c \
--hash=sha256:2c1b19b3aaacc6e57b7e25710ff571c24d6c3613a45e905b1fde04d691b98ee0 \
--hash=sha256:2ef12179d3a291be237280175b542c07a36e7f60718296278d8593d21ca937d4 \
--hash=sha256:338ae27d6b8745585f87218a3f23f1512dbf52c26c28e322dbe54bcede54ccb9 \
--hash=sha256:3c0fae6c3be832a0a0473ac912810b2877c8cb9d76ca48de1ed31e1c68386575 \
--hash=sha256:3fd4abcb888d15a94f32b75d8fd18ee162ca0c064f35b11134be77050296d6ba \
--hash=sha256:42de32b22b6b804f42c5d98be4f7e5e977ecdd9ee9b660fda1a3edf03b11792d \
--hash=sha256:504b320cd4b7eff6f968eddf81127112db685e81f7e36e75f9f84f0df46041c3 \
--hash=sha256:525808b8019e36eb524b8c68acdd63a37e75714eac50e988180b169d64480a00 \
--hash=sha256:56d9f2ecac662ca1611d183feb03a3fa4406469dafe241673d521dd5ae92a155 \
--hash=sha256:5bbe06f8eeafd38e5d0a4894ffec89378b6c6a625ff57e3028921f8ff59318ac \
--hash=sha256:65c1a9bcdadc6c28eecee2c119465aebff8f7a584dd719facdd9e825ec61ab52 \
--hash=sha256:68e78619a61ecf91e76aa3e6e8e33fc4894a2bebe93410754bd28fce0a8a4f9f \
--hash=sha256:69c0f17e9f5a7afdf2cc9fb2d1ce6aabdb3bafb7f38017c0b77862bcec2bbad8 \
--hash=sha256:6b2b56950d93e41f33b4223ead100ea0fe11f8e6ee5f641eb753ce4b77a7042b \
--hash=sha256:787003c0ddb00500e49a10f2844fac87aa6ce977b90b0feaaf9de23c22508b24 \
--hash=sha256:7ef3cb2ebbf91e330e3bb937efada0edd9003683db6b57bb108c4001f37a02ea \
--hash=sha256:8023faf4e01efadfa183e863fefde0046de576c6f14659e8782065bcece22198 \
--hash=sha256:8758846a7e80910096950b67071243da3e5a20ed2546e6392603c096778d48e0 \
--hash=sha256:8afafd99945ead6e075b973fefa56379c5b5c53fd8937dad92c662da5d8fd5ee \
--hash=sha256:8c41976a29d078bb235fea9b2ecd3da465df42a562910f9022f1a03107bd02be \
--hash=sha256:8e254ae696c88d98da6555f5ace2279cf7cd5b3f52be2b5cf97feafe883b58d2 \
--hash=sha256:9402b03f1a1b4dc4c19845e5c749e3ab82d5078d16a2a4c2cd2df62d57bb0707 \
--hash=sha256:962f82a3086483f5e5f64dbad880d31038b698494799b097bc59c2edf392fce6 \
--hash=sha256:9dcdfd0eaf283af041973bff14a2e143b8bd64e069f4c383416ecd79a81aab58 \
--hash=sha256:aa7bd130efab1c280bed0f45501b7c8795f9fdbeb02e965371bbef3523627779 \
--hash=sha256:ab4a0df41e7c16a1392727727e7998a467472d0ad65f3ad5e6e765015df08636 \
--hash=sha256:ad9e82fb8f09ade1c3e1b996a6337afac2b8b9e365f926f5a61aacc71adc5b3c \
--hash=sha256:af598ed32d6ae86f1b747b82783958b1a4ab8f617b06fe68795c7f026abbdcad \
--hash=sha256:b076b6226fb84157e3f7c971a47ff3a679d837cf338547532ab866c57930dbee \
--hash=sha256:b7ff0f54cb4ff66dd38bebd335a38e2c22c41a8ee45aa608efc890ac3e3931bc \
--hash=sha256:bfce63a9e7834b12b87c64d6b155fdd9b3b96191b6bd334bf37db7ff1fe457f2 \
--hash=sha256:c011a4149cfbcf9f03994ec2edffcb8b1dc2d2aede7ca243746df97a5d41ce48 \
--hash=sha256:c9c804664ebe8f83a211cace637506669e7890fec1b4195b505c214e50dd4eb7 \
--hash=sha256:ca379055a47383d02a5400cb0d110cef0a776fc644cda797db0c5696cfd7e18e \
--hash=sha256:cb0932dc158471523c9637e807d9bfb93e06a95cbf010f1a38b98623b929ef2b \
--hash=sha256:cd0f502fe016460680cd20aaa5a76d241d6f35a1c3350c474bac1273803893fa \
--hash=sha256:ceb01949af7121f9fc39f7d27f91be8546f3fb112c608bc4029aef0bab86a2a5 \
--hash=sha256:d080e0a5eb2529460b30190fcfcc4199bd7f827663f858a226a81bc27beaa97e \
--hash=sha256:dd15ff04ffd7e05ffcb7fe79f1b98041b8ea30ae9234aed2a9168b5797c3effb \
--hash=sha256:df0be2b576a7abbf737b1575f048c23fb1d769f267ec4358296f31c2479db8f9 \
--hash=sha256:e09031c87a1e51556fdcb46e5bd4f59dfb743061cf93c4d6831bf894f125eb57 \
--hash=sha256:e4dd52d80b8c83fdce44e12478ad2e85c64ea965e75d66dbeafb0a3e77308fcc \
--hash=sha256:fec21693218efe39aa7f8599346e90c705afa52c5b31ae019b2e57e8f6542bb2
multidict==6.0.4 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:01a3a55bd90018c9c080fbb0b9f4891db37d148a0a18722b42f94694f8b6d4c9 \
--hash=sha256:0b1a97283e0c85772d613878028fec909f003993e1007eafa715b24b377cb9b8 \
--hash=sha256:0dfad7a5a1e39c53ed00d2dd0c2e36aed4650936dc18fd9a1826a5ae1cad6f03 \
--hash=sha256:11bdf3f5e1518b24530b8241529d2050014c884cf18b6fc69c0c2b30ca248710 \
--hash=sha256:1502e24330eb681bdaa3eb70d6358e818e8e8f908a22a1851dfd4e15bc2f8161 \
--hash=sha256:16ab77bbeb596e14212e7bab8429f24c1579234a3a462105cda4a66904998664 \
--hash=sha256:16d232d4e5396c2efbbf4f6d4df89bfa905eb0d4dc5b3549d872ab898451f569 \
--hash=sha256:21a12c4eb6ddc9952c415f24eef97e3e55ba3af61f67c7bc388dcdec1404a067 \
--hash=sha256:27c523fbfbdfd19c6867af7346332b62b586eed663887392cff78d614f9ec313 \
--hash=sha256:281af09f488903fde97923c7744bb001a9b23b039a909460d0f14edc7bf59706 \
--hash=sha256:33029f5734336aa0d4c0384525da0387ef89148dc7191aae00ca5fb23d7aafc2 \
--hash=sha256:3601a3cece3819534b11d4efc1eb76047488fddd0c85a3948099d5da4d504636 \
--hash=sha256:3666906492efb76453c0e7b97f2cf459b0682e7402c0489a95484965dbc1da49 \
--hash=sha256:36c63aaa167f6c6b04ef2c85704e93af16c11d20de1d133e39de6a0e84582a93 \
--hash=sha256:39ff62e7d0f26c248b15e364517a72932a611a9b75f35b45be078d81bdb86603 \
--hash=sha256:43644e38f42e3af682690876cff722d301ac585c5b9e1eacc013b7a3f7b696a0 \
--hash=sha256:4372381634485bec7e46718edc71528024fcdc6f835baefe517b34a33c731d60 \
--hash=sha256:458f37be2d9e4c95e2d8866a851663cbc76e865b78395090786f6cd9b3bbf4f4 \
--hash=sha256:45e1ecb0379bfaab5eef059f50115b54571acfbe422a14f668fc8c27ba410e7e \
--hash=sha256:4b9d9e4e2b37daddb5c23ea33a3417901fa7c7b3dee2d855f63ee67a0b21e5b1 \
--hash=sha256:4ceef517eca3e03c1cceb22030a3e39cb399ac86bff4e426d4fc6ae49052cc60 \
--hash=sha256:4d1a3d7ef5e96b1c9e92f973e43aa5e5b96c659c9bc3124acbbd81b0b9c8a951 \
--hash=sha256:4dcbb0906e38440fa3e325df2359ac6cb043df8e58c965bb45f4e406ecb162cc \
--hash=sha256:509eac6cf09c794aa27bcacfd4d62c885cce62bef7b2c3e8b2e49d365b5003fe \
--hash=sha256:52509b5be062d9eafc8170e53026fbc54cf3b32759a23d07fd935fb04fc22d95 \
--hash=sha256:52f2dffc8acaba9a2f27174c41c9e57f60b907bb9f096b36b1a1f3be71c6284d \
--hash=sha256:574b7eae1ab267e5f8285f0fe881f17efe4b98c39a40858247720935b893bba8 \
--hash=sha256:5979b5632c3e3534e42ca6ff856bb24b2e3071b37861c2c727ce220d80eee9ed \
--hash=sha256:59d43b61c59d82f2effb39a93c48b845efe23a3852d201ed2d24ba830d0b4cf2 \
--hash=sha256:5a4dcf02b908c3b8b17a45fb0f15b695bf117a67b76b7ad18b73cf8e92608775 \
--hash=sha256:5cad9430ab3e2e4fa4a2ef4450f548768400a2ac635841bc2a56a2052cdbeb87 \
--hash=sha256:5fc1b16f586f049820c5c5b17bb4ee7583092fa0d1c4e28b5239181ff9532e0c \
--hash=sha256:62501642008a8b9871ddfccbf83e4222cf8ac0d5aeedf73da36153ef2ec222d2 \
--hash=sha256:64bdf1086b6043bf519869678f5f2757f473dee970d7abf6da91ec00acb9cb98 \
--hash=sha256:64da238a09d6039e3bd39bb3aee9c21a5e34f28bfa5aa22518581f910ff94af3 \
--hash=sha256:666daae833559deb2d609afa4490b85830ab0dfca811a98b70a205621a6109fe \
--hash=sha256:67040058f37a2a51ed8ea8f6b0e6ee5bd78ca67f169ce6122f3e2ec80dfe9b78 \
--hash=sha256:6748717bb10339c4760c1e63da040f5f29f5ed6e59d76daee30305894069a660 \
--hash=sha256:6b181d8c23da913d4ff585afd1155a0e1194c0b50c54fcfe286f70cdaf2b7176 \
--hash=sha256:6ed5f161328b7df384d71b07317f4d8656434e34591f20552c7bcef27b0ab88e \
--hash=sha256:7582a1d1030e15422262de9f58711774e02fa80df0d1578995c76214f6954988 \
--hash=sha256:7d18748f2d30f94f498e852c67d61261c643b349b9d2a581131725595c45ec6c \
--hash=sha256:7d6ae9d593ef8641544d6263c7fa6408cc90370c8cb2bbb65f8d43e5b0351d9c \
--hash=sha256:81a4f0b34bd92df3da93315c6a59034df95866014ac08535fc819f043bfd51f0 \
--hash=sha256:8316a77808c501004802f9beebde51c9f857054a0c871bd6da8280e718444449 \
--hash=sha256:853888594621e6604c978ce2a0444a1e6e70c8d253ab65ba11657659dcc9100f \
--hash=sha256:99b76c052e9f1bc0721f7541e5e8c05db3941eb9ebe7b8553c625ef88d6eefde \
--hash=sha256:a2e4369eb3d47d2034032a26c7a80fcb21a2cb22e1173d761a162f11e562caa5 \
--hash=sha256:ab55edc2e84460694295f401215f4a58597f8f7c9466faec545093045476327d \
--hash=sha256:af048912e045a2dc732847d33821a9d84ba553f5c5f028adbd364dd4765092ac \
--hash=sha256:b1a2eeedcead3a41694130495593a559a668f382eee0727352b9a41e1c45759a \
--hash=sha256:b1e8b901e607795ec06c9e42530788c45ac21ef3aaa11dbd0c69de543bfb79a9 \
--hash=sha256:b41156839806aecb3641f3208c0dafd3ac7775b9c4c422d82ee2a45c34ba81ca \
--hash=sha256:b692f419760c0e65d060959df05f2a531945af31fda0c8a3b3195d4efd06de11 \
--hash=sha256:bc779e9e6f7fda81b3f9aa58e3a6091d49ad528b11ed19f6621408806204ad35 \
--hash=sha256:bf6774e60d67a9efe02b3616fee22441d86fab4c6d335f9d2051d19d90a40063 \
--hash=sha256:c048099e4c9e9d615545e2001d3d8a4380bd403e1a0578734e0d31703d1b0c0b \
--hash=sha256:c5cb09abb18c1ea940fb99360ea0396f34d46566f157122c92dfa069d3e0e982 \
--hash=sha256:cc8e1d0c705233c5dd0c5e6460fbad7827d5d36f310a0fadfd45cc3029762258 \
--hash=sha256:d5e3fc56f88cc98ef8139255cf8cd63eb2c586531e43310ff859d6bb3a6b51f1 \
--hash=sha256:d6aa0418fcc838522256761b3415822626f866758ee0bc6632c9486b179d0b52 \
--hash=sha256:d6c254ba6e45d8e72739281ebc46ea5eb5f101234f3ce171f0e9f5cc86991480 \
--hash=sha256:d6d635d5209b82a3492508cf5b365f3446afb65ae7ebd755e70e18f287b0adf7 \
--hash=sha256:dcfe792765fab89c365123c81046ad4103fcabbc4f56d1c1997e6715e8015461 \
--hash=sha256:ddd3915998d93fbcd2566ddf9cf62cdb35c9e093075f862935573d265cf8f65d \
--hash=sha256:ddff9c4e225a63a5afab9dd15590432c22e8057e1a9a13d28ed128ecf047bbdc \
--hash=sha256:e41b7e2b59679edfa309e8db64fdf22399eec4b0b24694e1b2104fb789207779 \
--hash=sha256:e69924bfcdda39b722ef4d9aa762b2dd38e4632b3641b1d9a57ca9cd18f2f83a \
--hash=sha256:ea20853c6dbbb53ed34cb4d080382169b6f4554d394015f1bef35e881bf83547 \
--hash=sha256:ee2a1ece51b9b9e7752e742cfb661d2a29e7bcdba2d27e66e28a99f1890e4fa0 \
--hash=sha256:eeb6dcc05e911516ae3d1f207d4b0520d07f54484c49dfc294d6e7d63b734171 \
--hash=sha256:f70b98cd94886b49d91170ef23ec5c0e8ebb6f242d734ed7ed677b24d50c82cf \
--hash=sha256:fc35cb4676846ef752816d5be2193a1e8367b4c1397b74a565a9d0389c433a1d \
--hash=sha256:ff959bee35038c4624250473988b24f846cbeb2c6639de3602c073f10410ceba
numpy==1.24.4 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f \
--hash=sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61 \
--hash=sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7 \
--hash=sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400 \
--hash=sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef \
--hash=sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2 \
--hash=sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d \
--hash=sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc \
--hash=sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835 \
--hash=sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706 \
--hash=sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5 \
--hash=sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4 \
--hash=sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6 \
--hash=sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463 \
--hash=sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a \
--hash=sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f \
--hash=sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e \
--hash=sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e \
--hash=sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694 \
--hash=sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8 \
--hash=sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64 \
--hash=sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d \
--hash=sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc \
--hash=sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254 \
--hash=sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2 \
--hash=sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1 \
--hash=sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810 \
--hash=sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9
packaging==23.1 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:994793af429502c4ea2ebf6bf664629d07c1a9fe974af92966e4b8d2df7edc61 \
--hash=sha256:a392980d2b6cffa644431898be54b0045151319d1e7ec34f0cfed48767dd334f
python-levenshtein==0.21.1 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:01ea6828c03738a475ee18ea8b86a674eb45ce80e9cce88376d132cf3ab26060 \
--hash=sha256:5f49ebb4772a274aac4aeb190fc23ad537ebe778dec15a8f17975f746478c691
pyyaml==6.0 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:01b45c0191e6d66c470b6cf1b9531a771a83c1c4208272ead47a3ae4f2f603bf \
--hash=sha256:0283c35a6a9fbf047493e3a0ce8d79ef5030852c51e9d911a27badfde0605293 \
--hash=sha256:055d937d65826939cb044fc8c9b08889e8c743fdc6a32b33e2390f66013e449b \
--hash=sha256:07751360502caac1c067a8132d150cf3d61339af5691fe9e87803040dbc5db57 \
--hash=sha256:0b4624f379dab24d3725ffde76559cff63d9ec94e1736b556dacdfebe5ab6d4b \
--hash=sha256:0ce82d761c532fe4ec3f87fc45688bdd3a4c1dc5e0b4a19814b9009a29baefd4 \
--hash=sha256:1e4747bc279b4f613a09eb64bba2ba602d8a6664c6ce6396a4d0cd413a50ce07 \
--hash=sha256:213c60cd50106436cc818accf5baa1aba61c0189ff610f64f4a3e8c6726218ba \
--hash=sha256:231710d57adfd809ef5d34183b8ed1eeae3f76459c18fb4a0b373ad56bedcdd9 \
--hash=sha256:277a0ef2981ca40581a47093e9e2d13b3f1fbbeffae064c1d21bfceba2030287 \
--hash=sha256:2cd5df3de48857ed0544b34e2d40e9fac445930039f3cfe4bcc592a1f836d513 \
--hash=sha256:40527857252b61eacd1d9af500c3337ba8deb8fc298940291486c465c8b46ec0 \
--hash=sha256:432557aa2c09802be39460360ddffd48156e30721f5e8d917f01d31694216782 \
--hash=sha256:473f9edb243cb1935ab5a084eb238d842fb8f404ed2193a915d1784b5a6b5fc0 \
--hash=sha256:48c346915c114f5fdb3ead70312bd042a953a8ce5c7106d5bfb1a5254e47da92 \
--hash=sha256:50602afada6d6cbfad699b0c7bb50d5ccffa7e46a3d738092afddc1f9758427f \
--hash=sha256:68fb519c14306fec9720a2a5b45bc9f0c8d1b9c72adf45c37baedfcd949c35a2 \
--hash=sha256:77f396e6ef4c73fdc33a9157446466f1cff553d979bd00ecb64385760c6babdc \
--hash=sha256:81957921f441d50af23654aa6c5e5eaf9b06aba7f0a19c18a538dc7ef291c5a1 \
--hash=sha256:819b3830a1543db06c4d4b865e70ded25be52a2e0631ccd2f6a47a2822f2fd7c \
--hash=sha256:897b80890765f037df3403d22bab41627ca8811ae55e9a722fd0392850ec4d86 \
--hash=sha256:98c4d36e99714e55cfbaaee6dd5badbc9a1ec339ebfc3b1f52e293aee6bb71a4 \
--hash=sha256:9df7ed3b3d2e0ecfe09e14741b857df43adb5a3ddadc919a2d94fbdf78fea53c \
--hash=sha256:9fa600030013c4de8165339db93d182b9431076eb98eb40ee068700c9c813e34 \
--hash=sha256:a80a78046a72361de73f8f395f1f1e49f956c6be882eed58505a15f3e430962b \
--hash=sha256:afa17f5bc4d1b10afd4466fd3a44dc0e245382deca5b3c353d8b757f9e3ecb8d \
--hash=sha256:b3d267842bf12586ba6c734f89d1f5b871df0273157918b0ccefa29deb05c21c \
--hash=sha256:b5b9eccad747aabaaffbc6064800670f0c297e52c12754eb1d976c57e4f74dcb \
--hash=sha256:bfaef573a63ba8923503d27530362590ff4f576c626d86a9fed95822a8255fd7 \
--hash=sha256:c5687b8d43cf58545ade1fe3e055f70eac7a5a1a0bf42824308d868289a95737 \
--hash=sha256:cba8c411ef271aa037d7357a2bc8f9ee8b58b9965831d9e51baf703280dc73d3 \
--hash=sha256:d15a181d1ecd0d4270dc32edb46f7cb7733c7c508857278d3d378d14d606db2d \
--hash=sha256:d4b0ba9512519522b118090257be113b9468d804b19d63c71dbcf4a48fa32358 \
--hash=sha256:d4db7c7aef085872ef65a8fd7d6d09a14ae91f691dec3e87ee5ee0539d516f53 \
--hash=sha256:d4eccecf9adf6fbcc6861a38015c2a64f38b9d94838ac1810a9023a0609e1b78 \
--hash=sha256:d67d839ede4ed1b28a4e8909735fc992a923cdb84e618544973d7dfc71540803 \
--hash=sha256:daf496c58a8c52083df09b80c860005194014c3698698d1a57cbcfa182142a3a \
--hash=sha256:dbad0e9d368bb989f4515da330b88a057617d16b6a8245084f1b05400f24609f \
--hash=sha256:e61ceaab6f49fb8bdfaa0f92c4b57bcfbea54c09277b1b4f7ac376bfb7a7c174 \
--hash=sha256:f84fbc98b019fef2ee9a1cb3ce93e3187a6df0b2538a651bfb890254ba9f90b5
rapidfuzz==3.1.1 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:0843c53d54d5b7d6122d8f1d7574d8c91a7aacc5c316f74d6e33d98aec82949d \
--hash=sha256:086a2d84c2e497e3ab160ccf164e319bca874d9383d008fcadf91ede8ac7997f \
--hash=sha256:09a6f5cd9f1282da49b8d0747c40f3fea2d64ab5e4c2cc2295baf87ff7a0d062 \
--hash=sha256:0de229cb613be060580c71c1674acbde57921c7ed33d7a726e071a2562924113 \
--hash=sha256:10313075642a9f1f948d356f4f0803ae28a496d7967b466b9cae1a4be8aa4df3 \
--hash=sha256:10f56af1d46fbeaaa0dc50901c2dc439c7a455cfdac2f1acf6cffeb65ae82c48 \
--hash=sha256:1465ea085154378e69bf4bc5e27bdac5c94684416882ace31865232adc9239a2 \
--hash=sha256:15260263a0c7bffac934a53b6622d77e06e10929ee4d2e62ac6f70c13988f351 \
--hash=sha256:167dbce2da6bb5b73d43e53434c5a9d7d1214b658b315420e44044782f4c482b \
--hash=sha256:16c506bac2e0a6f6581b334a7802c2f0d8343ec1d77e5cf9452c33d6219abef8 \
--hash=sha256:17b017f9e1b88dfd6d9b03170ef8e86477de0d9d37fbfcbe72ca070cacbe1b65 \
--hash=sha256:17e4cbe6632aae7c35101c4b7c498e83f6eacf61be0def4ff98167df30dc69ca \
--hash=sha256:25eea5c8006b6c8747ca204675c9e939f3c4d27167fb43b2aa211443d34f9abd \
--hash=sha256:32a5c47b5153f25eb512dbb91f9850225d2dcfb3404a1c48406726c7732b0726 \
--hash=sha256:351d253fdee62d6d0e80c75f0505accc1ce8cc73a50779c60986ef21c92f20f9 \
--hash=sha256:362e366e79fcc9a8866b41f20ef4d2987a06f8b134096e659594c059aa8a6d88 \
--hash=sha256:39c7d0dbd77a7f28ff85a1dff2afb2ed73e5cd81cca3f654450ed339a271c0ab \
--hash=sha256:3b3e953dcef0302eeb4fe8c7c4907e50d175199fc07da05ad6bd1d8d141ff138 \
--hash=sha256:3f2cd9a3760080876fc59edb26926e51d6db44dea65e85f1eb04aa5f58c3bc41 \
--hash=sha256:4019def8a18bc867ac61f08a542bf474a7a9b3f662f5d5cd169c9135866562f5 \
--hash=sha256:408007b4bc5a0a0cb9bfcdcc8cffa9b71fec6ee53ccdf9c26b57539f7e264ab5 \
--hash=sha256:49d900da023eeb3bfbe9feee126312eb9fd0458129aa5a581e4d8d8bf4483d14 \
--hash=sha256:4a64ddfb7084b678da7778c1263aee2baae5a2ca55ec5589a022defc38103eb1 \
--hash=sha256:4e951c874a0e5b375b2af9b5f264eefc679c0685c166ee0641e703ef0795509b \
--hash=sha256:51bb8f7aa4fe45618e75cdccf08491c752a7f137ffbf7d3afd1809791ac8c326 \
--hash=sha256:51f21f37aec6bc117e9083181ddc3cbbcbf56b6506492b128d8e836d3545ca80 \
--hash=sha256:53e3c588e7ea158fa80095dd0ff53f49e2ede9a8d71a3a5b964ca045d845a9b9 \
--hash=sha256:58ca539cc6ce385d650138a9b1908b05622c2dd08a23d5aea4890523ef3774d5 \
--hash=sha256:5a371846f45ed9d24927a8d5222884536c1e171543396b36250fafb2e848bc92 \
--hash=sha256:5d4d509e9aa011e1be5e4da7c5062dc4fc3688714687110536925980b3d03ac6 \
--hash=sha256:5e11e11880951e767342b56627ab2dc9d3ef90e2605b656e9b5e6e0beadaaf0f \
--hash=sha256:68d910048b36613701ea671de68f701e2c1ba2839295238def840ff1fc1b15f4 \
--hash=sha256:69d503a7641b5a63aa53c7aca0b857d38f48cd7bae39f8563679b324e3d2d47a \
--hash=sha256:6c0e96821029c46847df4ff266ea283a2b6163a4f76a4567f9986934e9c4410c \
--hash=sha256:6d4da453fbd8793ebb11bed396f8a4b9041d6227bf055903447305dd7942312f \
--hash=sha256:6ede2d42ad55bd4e7a3394e98c5f58ddace78775493391732d32be61268a4116 \
--hash=sha256:6f32791ee045a7b3d6a56208a55d996d5f7a32fdb688f5c5ee899cb7589539eb \
--hash=sha256:6f767d4823002e65c06ea273f952fda2b88775e1c2d508564f04d32cdd7f65b2 \
--hash=sha256:712331c1c70c79a219c2ac233b4e25e75ffad51042840d147d5e94519c7d8a1a \
--hash=sha256:7726f67e4a0b2b4392f03aa62e16b12a697156c6735df27b21bd3ab561b01659 \
--hash=sha256:788fb03c5acb5b48f5f918f4cbb5dc072498becf018c64e7e27d6b76e63e68b8 \
--hash=sha256:79f5a3ab7ff6c46336f38690f0564bc7689cefa180257ed9078c42f75b10c9d2 \
--hash=sha256:7af18372f576e36e93f4662bdf64043ac23dfa02d7f768d7e7e1d0211bb9cb35 \
--hash=sha256:7c74fde444bcd13ef3a803c578b28f33b4f9edf368f46ca3de57fda456065967 \
--hash=sha256:7e181411958d04d5b437a0981e87815e8f1b1909f5ae0e339246d3bc464f53e7 \
--hash=sha256:7f2024f83a9300440e845b441e71726471f7567021c1d80796ca02e71c5f0dc2 \
--hash=sha256:819d9317c3d86b508d87ab1bca5867f3abc18b902c822bc57366ccc6330a030b \
--hash=sha256:8243bb4bb4db7c3501932ced6a978b284e19c3619b6802455e47bfd0905adb81 \
--hash=sha256:83b48b789f2da1688882cba595c40179194ab15ec17ea1d4c9de9ee239649904 \
--hash=sha256:851b44130393139cb336aa54c681d595d75a3160b7be330f3acc0c3b9dabce70 \
--hash=sha256:88e77ed7d0bd8d9be530c462c921904ada8d3417671eed749784c5a315af334d \
--hash=sha256:8b966344ed4122a71ab8ccdca2954db1ce0d8049cb9bcac58db07558f9d9ec32 \
--hash=sha256:8c07e16ab38e717931319cff1340debbf2ef940a1cda4eb70e323079b62df306 \
--hash=sha256:8c85bb6946fb02231d1e60ab45c36ecee04ecf7f725e094f5beee798b6b7d36d \
--hash=sha256:91946c496e6f380939dbea14ff6ce6de87480445c09d03964f5374101462594b \
--hash=sha256:9dc7154889937ca5a004d17f62b4798e0af52f69c38eb3112dbdb52b006d4419 \
--hash=sha256:9ff1a517de2b1e80ddf1a3037a6ebca9925154c1af70751518d50d5c332e1ec8 \
--hash=sha256:a06a08be3cb7d7df7993dd16e84aaf59bd5a7ff98a9f1b3e893d18b273a71c64 \
--hash=sha256:a293370448f2e46fdc6e086ac99923015bdc53973a65d3df35aefc685e1a5809 \
--hash=sha256:a4a751f216fd1222a4a8c7ceff5180872a156202c3bdca1b337e5a5b09298dfd \
--hash=sha256:a4afab735bb0ac3ec9bafcc35376ed336d26af6140c4d81e4c869e77df77ecd5 \
--hash=sha256:a8b8f32463781e4703965c9cf7a609a19a74478f332e0d62cd9d0e7a9db91321 \
--hash=sha256:a8bb256b34fcad4f3fa00be6b57fe35bcb54f031911195929145c67d9738ffec \
--hash=sha256:aadc5a8b9859737a8f87831215b7fab0c04afeb960bb987c528421a4e6dfb8b6 \
--hash=sha256:b1bf8aba99b267aad0a01dfb44ee39803676007724abcfb72129c350476b2341 \
--hash=sha256:b408ac3c7f8c3414bfd5c6044ca4bb385b390bcf5eae3ad884cef48628c131ae \
--hash=sha256:b4995792e106c3f1ab6f56dd6089918b065888e2e55a71e3fea8d0f66bf30989 \
--hash=sha256:b7c65112c87568274d399ad7a62902cef17801c2bd047b162e79e43758b3ce27 \
--hash=sha256:c089ce856919e03f4dd8f9168d60ac580d30cd0451fd60dcdef73010eca68973 \
--hash=sha256:c53cf36cdb10819b7154fefdbffbef442ba567d9c1ca74a7e76fd759ace45e6c \
--hash=sha256:cb08db5c122fea4196483b82f7596e50ef9cab1770f7696c197bf0815ac4dd17 \
--hash=sha256:ccc1b5b467766110085c80bb9311d233fccc8ed1ce965aebba3125e1bab04cba \
--hash=sha256:cdbf9a76ea47f14026daaed43a2c2150ab0e9a4d5396909f028380f33e61c522 \
--hash=sha256:cdee4f4d04761ce167538adbefa01a64e7cab949d89aa09df39ef0d5e859fb2a \
--hash=sha256:d3264e4a02e4148e30078104fb0c1b6c8eb166ddc5ebe843a22433f58f87dc47 \
--hash=sha256:d5fe8054c244bf63be2380efc275edd86da3a706460d42911dc3ff914f3260a5 \
--hash=sha256:d72916d27fb88741bfb576b0b0639354ca00f5e91046171c985262c68a86bbb5 \
--hash=sha256:db5e71e5a810d2f1163c914e01b3ba241409a98286ac4850ff26076115ae401b \
--hash=sha256:dc7f25e20781c8d42e813516ee4ff9043ecce4a8e25fc94ee6732a83d81c1c99 \
--hash=sha256:de784bbe06d32e66617cd20766c37aae2438902d54b3fa608d2e0a929ca705f4 \
--hash=sha256:e0755f5ac6c3d1dc2505eb2e6eaf5508ff17b42c084406714fbabf2d50d098b6 \
--hash=sha256:e549da8d68ad4ee385c918ea8b9efeda875df9edf6c6b48df927bd061c00bfef \
--hash=sha256:e6772eb7cc4429f1eae5a9b41e5b0b1af8f0d50727c6e338d9ad5bceee01da5a \
--hash=sha256:ea3e46a534de97a6cad2018cb950492a0fcacad380e35440ce3c1c8fef96a261 \
--hash=sha256:ec5523d5c08c639cd4e301d42f3ad7c6fb061a1f1cd6b5b627e59af345edfed7 \
--hash=sha256:ef3ad80458e47723812976a2ea1282ff207ad20e6cb19da1917f76699bd5aaa5 \
--hash=sha256:ef6c38040d868dcc0132fad377aafeb5b2da71354759e77f41ae599316df2dee \
--hash=sha256:f1e23665be5918f979180130babedab9317fbb34cdae237c7defad7e86bc684e \
--hash=sha256:f25d1975e846d07990cf946a5927a932aa7cccd308ae9979b03a58ff1cd80087 \
--hash=sha256:f7acc5c9c7cf567372de5b6c817f93db508e7b9bd7f29bd6187df8d2cc60ced5 \
--hash=sha256:fb7049dff52cded65184a3d2ff45cfd226bff7314f49a8f4b83f943eea9181a7 \
--hash=sha256:fdd2ab5ab56fcaf839a9f58caa8756dbfeba0b3dc187850b763d0a1e6ee9c97a
requests==2.31.0 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f \
--hash=sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1
termcolor==2.3.0 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:3afb05607b89aed0ffe25202399ee0867ad4d3cb4180d98aaf8eefa6a5f7d475 \
--hash=sha256:b5b08f68937f138fe92f6c089b99f1e2da0ae56c52b78bf7075fd95420fd9a5a
thefuzz[speedup]==0.19.0 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:4fcdde8e40f5ca5e8106bc7665181f9598a9c8b18b0a4d38c41a095ba6788972 \
--hash=sha256:6f7126db2f2c8a54212b05e3a740e45f4291c497d75d20751728f635bb74aa3d
tqdm==4.65.0 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:1871fb68a86b8fb3b59ca4cdd3dcccbc7e6d613eeed31f4c332531977b89beb5 \
--hash=sha256:c4f53a17fe37e132815abceec022631be8ffe1b9381c2e6e30aa70edc99e9671
typing-extensions==4.7.0 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:5d8c9dac95c27d20df12fb1d97b9793ab8b2af8a3a525e68c80e21060c161771 \
--hash=sha256:935ccf31549830cda708b42289d44b6f74084d616a00be651601a4f968e77c82
urllib3==2.0.3 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:48e7fafa40319d358848e1bc6809b208340fafe2096f1725d05d67443d0483d1 \
--hash=sha256:bee28b5e56addb8226c96f7f13ac28cb4c301dd5ea8a6ca179c0b9835e032825
validators==0.20.0 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:24148ce4e64100a2d5e267233e23e7afeb55316b47d30faae7eb6e7292bc226a
yarl==1.9.2 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:04ab9d4b9f587c06d801c2abfe9317b77cdf996c65a90d5e84ecc45010823571 \
--hash=sha256:066c163aec9d3d073dc9ffe5dd3ad05069bcb03fcaab8d221290ba99f9f69ee3 \
--hash=sha256:13414591ff516e04fcdee8dc051c13fd3db13b673c7a4cb1350e6b2ad9639ad3 \
--hash=sha256:149ddea5abf329752ea5051b61bd6c1d979e13fbf122d3a1f9f0c8be6cb6f63c \
--hash=sha256:159d81f22d7a43e6eabc36d7194cb53f2f15f498dbbfa8edc8a3239350f59fe7 \
--hash=sha256:1b1bba902cba32cdec51fca038fd53f8beee88b77efc373968d1ed021024cc04 \
--hash=sha256:22a94666751778629f1ec4280b08eb11815783c63f52092a5953faf73be24191 \
--hash=sha256:2a96c19c52ff442a808c105901d0bdfd2e28575b3d5f82e2f5fd67e20dc5f4ea \
--hash=sha256:2b0738fb871812722a0ac2154be1f049c6223b9f6f22eec352996b69775b36d4 \
--hash=sha256:2c315df3293cd521033533d242d15eab26583360b58f7ee5d9565f15fee1bef4 \
--hash=sha256:32f1d071b3f362c80f1a7d322bfd7b2d11e33d2adf395cc1dd4df36c9c243095 \
--hash=sha256:3458a24e4ea3fd8930e934c129b676c27452e4ebda80fbe47b56d8c6c7a63a9e \
--hash=sha256:38a3928ae37558bc1b559f67410df446d1fbfa87318b124bf5032c31e3447b74 \
--hash=sha256:3da8a678ca8b96c8606bbb8bfacd99a12ad5dd288bc6f7979baddd62f71c63ef \
--hash=sha256:494053246b119b041960ddcd20fd76224149cfea8ed8777b687358727911dd33 \
--hash=sha256:50f33040f3836e912ed16d212f6cc1efb3231a8a60526a407aeb66c1c1956dde \
--hash=sha256:52a25809fcbecfc63ac9ba0c0fb586f90837f5425edfd1ec9f3372b119585e45 \
--hash=sha256:53338749febd28935d55b41bf0bcc79d634881195a39f6b2f767870b72514caf \
--hash=sha256:5415d5a4b080dc9612b1b63cba008db84e908b95848369aa1da3686ae27b6d2b \
--hash=sha256:5610f80cf43b6202e2c33ba3ec2ee0a2884f8f423c8f4f62906731d876ef4fac \
--hash=sha256:566185e8ebc0898b11f8026447eacd02e46226716229cea8db37496c8cdd26e0 \
--hash=sha256:56ff08ab5df8429901ebdc5d15941b59f6253393cb5da07b4170beefcf1b2528 \
--hash=sha256:59723a029760079b7d991a401386390c4be5bfec1e7dd83e25a6a0881859e716 \
--hash=sha256:5fcd436ea16fee7d4207c045b1e340020e58a2597301cfbcfdbe5abd2356c2fb \
--hash=sha256:61016e7d582bc46a5378ffdd02cd0314fb8ba52f40f9cf4d9a5e7dbef88dee18 \
--hash=sha256:63c48f6cef34e6319a74c727376e95626f84ea091f92c0250a98e53e62c77c72 \
--hash=sha256:646d663eb2232d7909e6601f1a9107e66f9791f290a1b3dc7057818fe44fc2b6 \
--hash=sha256:662e6016409828ee910f5d9602a2729a8a57d74b163c89a837de3fea050c7582 \
--hash=sha256:674ca19cbee4a82c9f54e0d1eee28116e63bc6fd1e96c43031d11cbab8b2afd5 \
--hash=sha256:6a5883464143ab3ae9ba68daae8e7c5c95b969462bbe42e2464d60e7e2698368 \
--hash=sha256:6e7221580dc1db478464cfeef9b03b95c5852cc22894e418562997df0d074ccc \
--hash=sha256:75df5ef94c3fdc393c6b19d80e6ef1ecc9ae2f4263c09cacb178d871c02a5ba9 \
--hash=sha256:783185c75c12a017cc345015ea359cc801c3b29a2966c2655cd12b233bf5a2be \
--hash=sha256:822b30a0f22e588b32d3120f6d41e4ed021806418b4c9f0bc3048b8c8cb3f92a \
--hash=sha256:8288d7cd28f8119b07dd49b7230d6b4562f9b61ee9a4ab02221060d21136be80 \
--hash=sha256:82aa6264b36c50acfb2424ad5ca537a2060ab6de158a5bd2a72a032cc75b9eb8 \
--hash=sha256:832b7e711027c114d79dffb92576acd1bd2decc467dec60e1cac96912602d0e6 \
--hash=sha256:838162460b3a08987546e881a2bfa573960bb559dfa739e7800ceeec92e64417 \
--hash=sha256:83fcc480d7549ccebe9415d96d9263e2d4226798c37ebd18c930fce43dfb9574 \
--hash=sha256:84e0b1599334b1e1478db01b756e55937d4614f8654311eb26012091be109d59 \
--hash=sha256:891c0e3ec5ec881541f6c5113d8df0315ce5440e244a716b95f2525b7b9f3608 \
--hash=sha256:8c2ad583743d16ddbdf6bb14b5cd76bf43b0d0006e918809d5d4ddf7bde8dd82 \
--hash=sha256:8c56986609b057b4839968ba901944af91b8e92f1725d1a2d77cbac6972b9ed1 \
--hash=sha256:8ea48e0a2f931064469bdabca50c2f578b565fc446f302a79ba6cc0ee7f384d3 \
--hash=sha256:8ec53a0ea2a80c5cd1ab397925f94bff59222aa3cf9c6da938ce05c9ec20428d \
--hash=sha256:95d2ecefbcf4e744ea952d073c6922e72ee650ffc79028eb1e320e732898d7e8 \
--hash=sha256:9b3152f2f5677b997ae6c804b73da05a39daa6a9e85a512e0e6823d81cdad7cc \
--hash=sha256:9bf345c3a4f5ba7f766430f97f9cc1320786f19584acc7086491f45524a551ac \
--hash=sha256:a60347f234c2212a9f0361955007fcf4033a75bf600a33c88a0a8e91af77c0e8 \
--hash=sha256:a74dcbfe780e62f4b5a062714576f16c2f3493a0394e555ab141bf0d746bb955 \
--hash=sha256:a83503934c6273806aed765035716216cc9ab4e0364f7f066227e1aaea90b8d0 \
--hash=sha256:ac9bb4c5ce3975aeac288cfcb5061ce60e0d14d92209e780c93954076c7c4367 \
--hash=sha256:aff634b15beff8902d1f918012fc2a42e0dbae6f469fce134c8a0dc51ca423bb \
--hash=sha256:b03917871bf859a81ccb180c9a2e6c1e04d2f6a51d953e6a5cdd70c93d4e5a2a \
--hash=sha256:b124e2a6d223b65ba8768d5706d103280914d61f5cae3afbc50fc3dfcc016623 \
--hash=sha256:b25322201585c69abc7b0e89e72790469f7dad90d26754717f3310bfe30331c2 \
--hash=sha256:b7232f8dfbd225d57340e441d8caf8652a6acd06b389ea2d3222b8bc89cbfca6 \
--hash=sha256:b8cc1863402472f16c600e3e93d542b7e7542a540f95c30afd472e8e549fc3f7 \
--hash=sha256:b9a4e67ad7b646cd6f0938c7ebfd60e481b7410f574c560e455e938d2da8e0f4 \
--hash=sha256:be6b3fdec5c62f2a67cb3f8c6dbf56bbf3f61c0f046f84645cd1ca73532ea051 \
--hash=sha256:bf74d08542c3a9ea97bb8f343d4fcbd4d8f91bba5ec9d5d7f792dbe727f88938 \
--hash=sha256:c027a6e96ef77d401d8d5a5c8d6bc478e8042f1e448272e8d9752cb0aff8b5c8 \
--hash=sha256:c0c77533b5ed4bcc38e943178ccae29b9bcf48ffd1063f5821192f23a1bd27b9 \
--hash=sha256:c1012fa63eb6c032f3ce5d2171c267992ae0c00b9e164efe4d73db818465fac3 \
--hash=sha256:c3a53ba34a636a256d767c086ceb111358876e1fb6b50dfc4d3f4951d40133d5 \
--hash=sha256:d4e2c6d555e77b37288eaf45b8f60f0737c9efa3452c6c44626a5455aeb250b9 \
--hash=sha256:de119f56f3c5f0e2fb4dee508531a32b069a5f2c6e827b272d1e0ff5ac040333 \
--hash=sha256:e65610c5792870d45d7b68c677681376fcf9cc1c289f23e8e8b39c1485384185 \
--hash=sha256:e9fdc7ac0d42bc3ea78818557fab03af6181e076a2944f43c38684b4b6bed8e3 \
--hash=sha256:ee4afac41415d52d53a9833ebae7e32b344be72835bbb589018c9e938045a560 \
--hash=sha256:f364d3480bffd3aa566e886587eaca7c8c04d74f6e8933f3f2c996b7f09bee1b \
--hash=sha256:f3b078dbe227f79be488ffcfc7a9edb3409d018e0952cf13f15fd6512847f3f7 \
--hash=sha256:f4e2d08f07a3d7d3e12549052eb5ad3eab1c349c53ac51c209a0e5991bbada78 \
--hash=sha256:f7a3d8146575e08c29ed1cd287068e6d02f1c7bdff8970db96683b9591b86ee7
yaspin==2.3.0 ; python_version >= "3.8" and python_version < "4.0" \
--hash=sha256:17b5548479b3d5b30adec7a87ffcdcddb403d14a2bb86fbcee97f37951e13427 \
--hash=sha256:547afd1a9700ac3a29a9f5591c70343bef186ed5dfb5e545a9bb0c77e561a1c9

View file

@ -17,26 +17,14 @@ import (
func Serve(ln net.Listener) error { func Serve(ln net.Listener) error {
r := gin.Default() r := gin.Default()
var l *llama.LLama // TODO: these should be request parameters
gpulayers := 0
gpulayers := 1
tokens := 512 tokens := 512
threads := runtime.NumCPU() threads := runtime.NumCPU()
model := "/Users/pdevine/.cache/gpt4all/GPT4All-13B-snoozy.ggmlv3.q4_0.bin"
r.POST("/api/load", func(c *gin.Context) {
var err error
l, err = llama.New(model, llama.EnableF16Memory, llama.SetContext(128), llama.EnableEmbeddings, llama.SetGPULayers(gpulayers))
if err != nil {
fmt.Println("Loading the model failed:", err.Error())
}
})
r.POST("/api/unload", func(c *gin.Context) {
})
r.POST("/api/generate", func(c *gin.Context) { r.POST("/api/generate", func(c *gin.Context) {
// TODO: set prompt from template // TODO: set prompt from template
fmt.Println("Generating text...")
var req api.GenerateRequest var req api.GenerateRequest
if err := c.ShouldBindJSON(&req); err != nil { if err := c.ShouldBindJSON(&req); err != nil {
@ -44,6 +32,14 @@ func Serve(ln net.Listener) error {
return return
} }
fmt.Println(req)
l, err := llama.New(req.Model, llama.EnableF16Memory, llama.SetContext(128), llama.EnableEmbeddings, llama.SetGPULayers(gpulayers))
if err != nil {
fmt.Println("Loading the model failed:", err.Error())
return
}
ch := make(chan string) ch := make(chan string)
go func() { go func() {
@ -65,11 +61,6 @@ func Serve(ln net.Listener) error {
c.SSEvent("token", tok) c.SSEvent("token", tok)
return true return true
}) })
// embeds, err := l.Embeddings(text)
// if err != nil {
// fmt.Printf("Embeddings: error %s \n", err.Error())
// }
}) })
log.Printf("Listening on %s", ln.Addr()) log.Printf("Listening on %s", ln.Addr())

View file

@ -1,63 +0,0 @@
package signature
import (
"bytes"
"crypto/sha256"
"encoding/base64"
"encoding/hex"
"fmt"
"strings"
"golang.org/x/crypto/ssh"
)
type SignatureData struct {
Method string
Path string
Data []byte
}
func GetBytesToSign(s SignatureData) []byte {
// contentHash = base64(hex(sha256(s.Data)))
hash := sha256.Sum256(s.Data)
hashHex := make([]byte, hex.EncodedLen(len(hash)))
hex.Encode(hashHex, hash[:])
contentHash := base64.StdEncoding.EncodeToString(hashHex)
// bytesToSign e.g.: "GET,http://localhost,OTdkZjM1O...
bytesToSign := []byte(strings.Join([]string{s.Method, s.Path, contentHash}, ","))
return bytesToSign
}
// SignData takes a SignatureData object and signs it with a raw private key
func SignAuthData(s SignatureData, rawKey []byte) (string, error) {
bytesToSign := GetBytesToSign(s)
// TODO replace this w/ a non-SSH based private key
privateKey, err := ssh.ParseRawPrivateKey(rawKey)
if err != nil {
return "", err
}
signer, err := ssh.NewSignerFromKey(privateKey)
if err != nil {
return "", err
}
// get the pubkey, but remove the type
pubKey := ssh.MarshalAuthorizedKey(signer.PublicKey())
parts := bytes.Split(pubKey, []byte(" "))
if len(parts) < 2 {
return "", fmt.Errorf("malformed private key")
}
signedData, err := signer.Sign(nil, bytesToSign)
if err != nil {
return "", err
}
// signature is <pubkey>:<signature>
sig := fmt.Sprintf("%s:%s", bytes.TrimSpace(parts[1]), base64.StdEncoding.EncodeToString(signedData.Blob))
return sig, nil
}