disable gpu for certain model architectures and fix divide-by-zero on memory estimation

This commit is contained in:
Jeffrey Morgan 2024-03-09 12:51:38 -08:00
parent ac64cd4ef9
commit f9cd55c70b

View file

@ -6,6 +6,7 @@ import (
"log/slog"
"os"
"runtime"
"slices"
"github.com/jmorganca/ollama/api"
"github.com/jmorganca/ollama/gpu"
@ -19,6 +20,10 @@ type LLM interface {
Close()
}
var cpuOnlyFamilies = []string{
"mamba",
}
func New(model string, adapters, projectors []string, opts api.Options) (LLM, error) {
if _, err := os.Stat(model); err != nil {
return nil, err
@ -48,13 +53,18 @@ func New(model string, adapters, projectors []string, opts api.Options) (LLM, er
size := ggml.Size
// fp16 k,v matrices require = n_ctx * n_layer * n_embd / n_head * n_head_kv * 2 bytes each * 2 key and value
kv := 2 * 2 * int64(opts.NumCtx) * int64(ggml.NumLayers()) * int64(ggml.NumEmbed()) * int64(ggml.NumHeadKv()) / int64(ggml.NumHead())
kv := 2 * 2 * int64(opts.NumCtx) * int64(ggml.NumLayers()) * int64(ggml.NumEmbed()) * int64(ggml.NumHeadKv()) / int64(max(ggml.NumHead(), 1))
// this amount is the overhead + tensors in memory
// TODO: get this from the llama.cpp's graph calculations instead of
// estimating it's 1/6 * kv_cache_size * num_gqa
graph := int64(ggml.NumGQA()) * kv / 6
// certain model architectures don't support gpu inference yet
if slices.Contains(cpuOnlyFamilies, ggml.ModelFamily()) {
opts.NumGPU = 0
}
info := gpu.GetGPUInfo()
switch runtime.GOOS {
case "darwin":
@ -63,9 +73,7 @@ func New(model string, adapters, projectors []string, opts api.Options) (LLM, er
}
if size+kv+graph > vram {
slog.Info("not enough vram available, falling back to CPU only")
info.Library = "cpu"
info.Variant = gpu.GetCPUVariant()
slog.Info("not enough vram available, setting num_gpu=0")
opts.NumGPU = 0
break
}