update llama.cpp

This commit is contained in:
Michael Yang 2023-08-14 15:47:00 -07:00
parent 2ab20095b3
commit f7b613332c
18 changed files with 115 additions and 58 deletions

View file

@ -1,5 +1,5 @@
/**
* llama.cpp - git f64d44a9b9581cd58f7ec40f4fa1c3ca5ca18e1e
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
*
* MIT License
*

View file

@ -1,5 +1,5 @@
/**
* llama.cpp - git f64d44a9b9581cd58f7ec40f4fa1c3ca5ca18e1e
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
*
* MIT License
*

View file

@ -1,5 +1,5 @@
/**
* llama.cpp - git f64d44a9b9581cd58f7ec40f4fa1c3ca5ca18e1e
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
*
* MIT License
*
@ -1779,7 +1779,6 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
}
// contiguous u/y values
// also used for q5_K
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
@ -1789,19 +1788,18 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
float sumf_m = 0.0f;
#pragma unroll
for (int i0 = 0; i0 < VDR_Q4_K_Q8_1_MMQ; i0 += (QI8_1/QR4_K)) {
for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
int sumi_d = 0;
#pragma unroll
for (int i = i0; i < i0 + (QI8_1/QR4_K); ++i) {
sumi_d = __dp4a(v[2*i+0], u[2*i+0], sumi_d); // SIMD dot product
sumi_d = __dp4a(v[2*i+1], u[2*i+1], sumi_d); // SIMD dot product
for (int j = 0; j < QI8_1; ++j) {
sumi_d = __dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product
}
const float2 ds8f = __half22float2(ds8[i0 / 4]);
const float2 ds8f = __half22float2(ds8[i]);
sumf_d += ds8f.x * (sc[i0/4] * sumi_d);
sumf_m += ds8f.y * m[i0/4]; // sum of q8_1 block * q4_K min val
sumf_d += ds8f.x * (sc[i] * sumi_d);
sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
}
const float2 dm4f = __half22float2(dm4);
@ -1818,7 +1816,7 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
#define VDR_Q5_K_Q8_1_MMQ 8
// contiguous v/x values
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl(
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq(
const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc,
const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) {
@ -1855,6 +1853,40 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl(
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
// contiguous u/y values
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
float sumf_d = 0.0f;
float sumf_m = 0.0f;
#pragma unroll
for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
int sumi_d = 0;
#pragma unroll
for (int j = 0; j < QI8_1; ++j) {
sumi_d = __dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product
}
const float2 ds8f = __half22float2(ds8[i]);
sumf_d += ds8f.x * (sc[i] * sumi_d);
sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
}
const float2 dm4f = __half22float2(dm4);
return dm4f.x*sumf_d - dm4f.y*sumf_m;
#else
assert(false);
return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
#define VDR_Q6_K_Q8_1_MMVQ 1
#define VDR_Q6_K_Q8_1_MMQ 8
@ -2850,18 +2882,11 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
int v[QR4_K*VDR_Q4_K_Q8_1_MMQ];
#pragma unroll
for (int l = 0; l < VDR_Q4_K_Q8_1_MMQ; ++l) {
v[l + 0] = (x_ql[i * (WARP_SIZE + 1) + k + l] >> 0) & 0x0F0F0F0F;
v[l + (QI4_K/4)] = (x_ql[i * (WARP_SIZE + 1) + k + l] >> 4) & 0x0F0F0F0F;
}
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
return vec_dot_q4_K_q8_1_impl_mmq(v, &y_qs[index_y], sc, sc+8, x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
}
static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
@ -2908,7 +2933,7 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
u[2*i+1] = q8[4];
}
return vec_dot_q5_K_q8_1_impl(vl, vh, u, sc, m, bq5_K->dm, d8);
return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
#else
@ -3051,7 +3076,8 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat(
const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k;
const int index_y = j * WARP_SIZE + (QR5_K*k) % WARP_SIZE;
return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8, x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
}
static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
@ -3327,7 +3353,11 @@ template <bool need_check> static __global__ void mul_mat_q4_0(
#define MMQ_Y_Q4_1_PASCAL 64
#define NWARPS_Q4_1_PASCAL 8
template <bool need_check> static __global__ void mul_mat_q4_1(
template <bool need_check> static __global__ void
#if __CUDA_ARCH__ < CC_TURING
__launch_bounds__(WARP_SIZE*NWARPS_Q4_1_PASCAL, 2)
#endif // __CUDA_ARCH__ < CC_TURING
mul_mat_q4_1(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
@ -3497,7 +3527,11 @@ template <bool need_check> static __global__ void mul_mat_q2_K(
#define MMQ_Y_Q3_K_PASCAL 64
#define NWARPS_Q3_K_PASCAL 8
template <bool need_check> static __global__ void mul_mat_q3_K(
template <bool need_check> static __global__ void
#if __CUDA_ARCH__ < CC_TURING
__launch_bounds__(WARP_SIZE*NWARPS_Q3_K_PASCAL, 2)
#endif // __CUDA_ARCH__ < CC_TURING
mul_mat_q3_K(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
@ -3527,11 +3561,15 @@ template <bool need_check> static __global__ void mul_mat_q3_K(
#define MMQ_X_Q4_K_AMPERE 64
#define MMQ_Y_Q4_K_AMPERE 128
#define NWARPS_Q4_K_AMPERE 4
#define MMQ_X_Q4_K_PASCAL 32
#define MMQ_X_Q4_K_PASCAL 64
#define MMQ_Y_Q4_K_PASCAL 64
#define NWARPS_Q4_K_PASCAL 8
template <bool need_check> static __global__ void mul_mat_q4_K(
template <bool need_check> static __global__ void
#if __CUDA_ARCH__ < CC_TURING
__launch_bounds__(WARP_SIZE*NWARPS_Q4_K_PASCAL, 2)
#endif // __CUDA_ARCH__ < CC_TURING
mul_mat_q4_K(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
@ -3595,11 +3633,15 @@ template <bool need_check> static __global__ void mul_mat_q5_K(
#define MMQ_X_Q6_K_AMPERE 64
#define MMQ_Y_Q6_K_AMPERE 64
#define NWARPS_Q6_K_AMPERE 4
#define MMQ_X_Q6_K_PASCAL 32
#define MMQ_X_Q6_K_PASCAL 64
#define MMQ_Y_Q6_K_PASCAL 64
#define NWARPS_Q6_K_PASCAL 8
template <bool need_check> static __global__ void mul_mat_q6_K(
template <bool need_check> static __global__ void
#if __CUDA_ARCH__ < CC_TURING
__launch_bounds__(WARP_SIZE*NWARPS_Q6_K_PASCAL, 2)
#endif // __CUDA_ARCH__ < CC_TURING
mul_mat_q6_K(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {

View file

@ -1,5 +1,5 @@
/**
* llama.cpp - git f64d44a9b9581cd58f7ec40f4fa1c3ca5ca18e1e
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
*
* MIT License
*

View file

@ -1,7 +1,7 @@
//go:build darwin
/**
* llama.cpp - git f64d44a9b9581cd58f7ec40f4fa1c3ca5ca18e1e
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
*
* MIT License
*

View file

@ -1,7 +1,7 @@
//go:build darwin
/**
* llama.cpp - git f64d44a9b9581cd58f7ec40f4fa1c3ca5ca18e1e
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
*
* MIT License
*
@ -154,7 +154,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error];
if (error) {
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
exit(1);
return NULL;
}
}
#else
@ -172,7 +172,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error];
if (error) {
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
exit(1);
return NULL;
}
#ifdef GGML_QKK_64
@ -184,7 +184,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
#endif
if (error) {
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
exit(1);
return NULL;
}
}
#endif

View file

@ -1,7 +1,7 @@
//go:build darwin
/**
* llama.cpp - git f64d44a9b9581cd58f7ec40f4fa1c3ca5ca18e1e
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
*
* MIT License
*

View file

@ -1,7 +1,7 @@
//go:build mpi
/**
* llama.cpp - git f64d44a9b9581cd58f7ec40f4fa1c3ca5ca18e1e
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
*
* MIT License
*

View file

@ -1,7 +1,7 @@
//go:build mpi
/**
* llama.cpp - git f64d44a9b9581cd58f7ec40f4fa1c3ca5ca18e1e
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
*
* MIT License
*

View file

@ -1,7 +1,7 @@
//go:build opencl
/**
* llama.cpp - git f64d44a9b9581cd58f7ec40f4fa1c3ca5ca18e1e
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
*
* MIT License
*

View file

@ -1,7 +1,7 @@
//go:build opencl
/**
* llama.cpp - git f64d44a9b9581cd58f7ec40f4fa1c3ca5ca18e1e
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
*
* MIT License
*

View file

@ -1,5 +1,5 @@
/**
* llama.cpp - git f64d44a9b9581cd58f7ec40f4fa1c3ca5ca18e1e
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
*
* MIT License
*

View file

@ -1,5 +1,5 @@
/**
* llama.cpp - git f64d44a9b9581cd58f7ec40f4fa1c3ca5ca18e1e
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
*
* MIT License
*

View file

@ -1,5 +1,5 @@
/**
* llama.cpp - git f64d44a9b9581cd58f7ec40f4fa1c3ca5ca18e1e
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
*
* MIT License
*

View file

@ -1,5 +1,5 @@
/**
* llama.cpp - git f64d44a9b9581cd58f7ec40f4fa1c3ca5ca18e1e
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
*
* MIT License
*

View file

@ -1,5 +1,5 @@
/**
* llama.cpp - git f64d44a9b9581cd58f7ec40f4fa1c3ca5ca18e1e
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
*
* MIT License
*
@ -297,20 +297,29 @@ struct llama_mmap {
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
}
#if _WIN32_WINNT >= _WIN32_WINNT_WIN8
if (prefetch) {
// Advise the kernel to preload the mapped memory
// The PrefetchVirtualMemory API is only present on Windows 8 and above, so we
// will dynamically load it using GetProcAddress.
BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
HMODULE hKernel32;
// This call is guaranteed to succeed.
hKernel32 = GetModuleHandleW(L"kernel32.dll");
// This call may fail if on a pre-Win8 system.
pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
if (pPrefetchVirtualMemory) {
// Advise the kernel to preload the mapped memory.
WIN32_MEMORY_RANGE_ENTRY range;
range.VirtualAddress = addr;
range.NumberOfBytes = (SIZE_T)size;
if (!PrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
#pragma message("warning: You are building for pre-Windows 8; prefetch not supported")
#endif // _WIN32_WINNT >= _WIN32_WINNT_WIN8
}
}
~llama_mmap() {

View file

@ -1,5 +1,5 @@
/**
* llama.cpp - git f64d44a9b9581cd58f7ec40f4fa1c3ca5ca18e1e
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
*
* MIT License
*
@ -3363,6 +3363,12 @@ struct llama_context * llama_new_context_with_model(
// this allocates all Metal resources and memory buffers
ctx->ctx_metal = ggml_metal_init(1);
if (!ctx->ctx_metal) {
LLAMA_LOG_ERROR("%s: ggml_metal_init() failed\n", __func__);
llama_free(ctx);
return NULL;
}
void * data_ptr = NULL;
size_t data_size = 0;

View file

@ -1,5 +1,5 @@
/**
* llama.cpp - git f64d44a9b9581cd58f7ec40f4fa1c3ca5ca18e1e
* llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
*
* MIT License
*