commit
ef5c75fd34
7 changed files with 196 additions and 216 deletions
219
ollama.py
219
ollama.py
|
@ -1,216 +1,3 @@
|
|||
import json
|
||||
import os
|
||||
import threading
|
||||
import click
|
||||
from tqdm import tqdm
|
||||
from pathlib import Path
|
||||
from llama_cpp import Llama
|
||||
from flask import Flask, Response, stream_with_context, request
|
||||
from flask_cors import CORS
|
||||
from template import template
|
||||
|
||||
app = Flask(__name__)
|
||||
CORS(app) # enable CORS for all routes
|
||||
|
||||
# llms tracks which models are loaded
|
||||
llms = {}
|
||||
lock = threading.Lock()
|
||||
|
||||
|
||||
def models_directory():
|
||||
home_dir = Path.home()
|
||||
models_dir = home_dir / ".ollama/models"
|
||||
|
||||
if not models_dir.exists():
|
||||
models_dir.mkdir(parents=True)
|
||||
|
||||
return models_dir
|
||||
|
||||
|
||||
def load(model):
|
||||
"""
|
||||
Load a model.
|
||||
|
||||
Args:
|
||||
model (str): The name or path of the model to load.
|
||||
|
||||
Returns:
|
||||
str or None: The name of the model
|
||||
dict or None: If the model cannot be loaded, a dictionary with an 'error' key is returned.
|
||||
If the model is successfully loaded, None is returned.
|
||||
"""
|
||||
|
||||
with lock:
|
||||
load_from = ""
|
||||
if os.path.exists(model) and model.endswith(".bin"):
|
||||
# model is being referenced by path rather than name directly
|
||||
path = os.path.abspath(model)
|
||||
base = os.path.basename(path)
|
||||
|
||||
load_from = path
|
||||
name = os.path.splitext(base)[0] # Split the filename and extension
|
||||
else:
|
||||
# model is being loaded from the ollama models directory
|
||||
dir = models_directory()
|
||||
|
||||
# TODO: download model from a repository if it does not exist
|
||||
load_from = str(dir / f"{model}.bin")
|
||||
name = model
|
||||
|
||||
if load_from == "":
|
||||
return None, {"error": "Model not found."}
|
||||
|
||||
if not os.path.exists(load_from):
|
||||
return None, {"error": f"The model {load_from} does not exist."}
|
||||
|
||||
if name not in llms:
|
||||
llms[name] = Llama(model_path=load_from)
|
||||
|
||||
return name, None
|
||||
|
||||
|
||||
def unload(model):
|
||||
"""
|
||||
Unload a model.
|
||||
|
||||
Remove a model from the list of loaded models. If the model is not loaded, this is a no-op.
|
||||
|
||||
Args:
|
||||
model (str): The name of the model to unload.
|
||||
"""
|
||||
llms.pop(model, None)
|
||||
|
||||
|
||||
def generate(model, prompt):
|
||||
# auto load
|
||||
name, error = load(model)
|
||||
if error is not None:
|
||||
return error
|
||||
generated = llms[name](
|
||||
str(prompt), # TODO: optimize prompt based on model
|
||||
max_tokens=4096,
|
||||
stop=["Q:", "\n"],
|
||||
stream=True,
|
||||
)
|
||||
for output in generated:
|
||||
yield json.dumps(output)
|
||||
|
||||
|
||||
def models():
|
||||
dir = models_directory()
|
||||
all_files = os.listdir(dir)
|
||||
bin_files = [
|
||||
file.replace(".bin", "") for file in all_files if file.endswith(".bin")
|
||||
]
|
||||
return bin_files
|
||||
|
||||
|
||||
@app.route("/load", methods=["POST"])
|
||||
def load_route_handler():
|
||||
data = request.get_json()
|
||||
model = data.get("model")
|
||||
if not model:
|
||||
return Response("Model is required", status=400)
|
||||
error = load(model)
|
||||
if error is not None:
|
||||
return error
|
||||
return Response(status=204)
|
||||
|
||||
|
||||
@app.route("/unload", methods=["POST"])
|
||||
def unload_route_handler():
|
||||
data = request.get_json()
|
||||
model = data.get("model")
|
||||
if not model:
|
||||
return Response("Model is required", status=400)
|
||||
unload(model)
|
||||
return Response(status=204)
|
||||
|
||||
|
||||
@app.route("/generate", methods=["POST"])
|
||||
def generate_route_handler():
|
||||
data = request.get_json()
|
||||
model = data.get("model")
|
||||
prompt = data.get("prompt")
|
||||
prompt = template(model, prompt)
|
||||
if not model:
|
||||
return Response("Model is required", status=400)
|
||||
if not prompt:
|
||||
return Response("Prompt is required", status=400)
|
||||
if not os.path.exists(f"{model}"):
|
||||
return {"error": "The model does not exist."}, 400
|
||||
return Response(
|
||||
stream_with_context(generate(model, prompt)), mimetype="text/event-stream"
|
||||
)
|
||||
|
||||
|
||||
@app.route("/models", methods=["GET"])
|
||||
def models_route_handler():
|
||||
bin_files = models()
|
||||
return Response(json.dumps(bin_files), mimetype="application/json")
|
||||
|
||||
|
||||
@click.group(invoke_without_command=True)
|
||||
@click.pass_context
|
||||
def cli(ctx):
|
||||
# allows the script to respond to command line input when executed directly
|
||||
if ctx.invoked_subcommand is None:
|
||||
click.echo(ctx.get_help())
|
||||
|
||||
|
||||
@cli.command()
|
||||
@click.option("--port", default=7734, help="Port to run the server on")
|
||||
@click.option("--debug", default=False, help="Enable debug mode")
|
||||
def serve(port, debug):
|
||||
print("Serving on http://localhost:{port}")
|
||||
app.run(host="0.0.0.0", port=port, debug=debug)
|
||||
|
||||
|
||||
@cli.command(name="load")
|
||||
@click.argument("model")
|
||||
@click.option("--file", default=False, help="Indicates that a file path is provided")
|
||||
def load_cli(model, file):
|
||||
if file:
|
||||
error = load(path=model)
|
||||
else:
|
||||
error = load(model)
|
||||
if error is not None:
|
||||
print(error)
|
||||
return
|
||||
print("Model loaded")
|
||||
|
||||
|
||||
@cli.command(name="generate")
|
||||
@click.argument("model")
|
||||
@click.option("--prompt", default="", help="The prompt for the model")
|
||||
def generate_cli(model, prompt):
|
||||
if prompt == "":
|
||||
prompt = input("Prompt: ")
|
||||
output = ""
|
||||
prompt = template(model, prompt)
|
||||
for generated in generate(model, prompt):
|
||||
generated_json = json.loads(generated)
|
||||
text = generated_json["choices"][0]["text"]
|
||||
output += text
|
||||
print(f"\r{output}", end="", flush=True)
|
||||
|
||||
|
||||
@cli.command(name="models")
|
||||
def models_cli():
|
||||
print(models())
|
||||
|
||||
|
||||
@cli.command(name="pull")
|
||||
@click.argument("model")
|
||||
def pull_cli(model):
|
||||
print("not implemented")
|
||||
|
||||
|
||||
@cli.command(name="import")
|
||||
@click.argument("model")
|
||||
def import_cli(model):
|
||||
print("not implemented")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
cli()
|
||||
from ollama.cmd.cli import main
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
|
9
ollama/__init__.py
Normal file
9
ollama/__init__.py
Normal file
|
@ -0,0 +1,9 @@
|
|||
from ollama.model import models
|
||||
from ollama.engine import generate, load, unload
|
||||
|
||||
__all__ = [
|
||||
'models',
|
||||
'generate',
|
||||
'load',
|
||||
'unload',
|
||||
]
|
0
ollama/cmd/__init__.py
Normal file
0
ollama/cmd/__init__.py
Normal file
43
ollama/cmd/cli.py
Normal file
43
ollama/cmd/cli.py
Normal file
|
@ -0,0 +1,43 @@
|
|||
import json
|
||||
from pathlib import Path
|
||||
from argparse import ArgumentParser
|
||||
|
||||
from ollama import model, engine
|
||||
from ollama.cmd import server
|
||||
|
||||
|
||||
def main():
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument('--models-home', default=Path.home() / '.ollama' / 'models')
|
||||
|
||||
subparsers = parser.add_subparsers()
|
||||
|
||||
server.set_parser(subparsers.add_parser('serve'))
|
||||
|
||||
list_parser = subparsers.add_parser('list')
|
||||
list_parser.set_defaults(fn=list)
|
||||
|
||||
generate_parser = subparsers.add_parser('generate')
|
||||
generate_parser.add_argument('model')
|
||||
generate_parser.add_argument('prompt')
|
||||
generate_parser.set_defaults(fn=generate)
|
||||
|
||||
args = parser.parse_args()
|
||||
args = vars(args)
|
||||
|
||||
fn = args.pop('fn')
|
||||
fn(**args)
|
||||
|
||||
|
||||
def list(*args, **kwargs):
|
||||
for m in model.models(*args, **kwargs):
|
||||
print(m)
|
||||
|
||||
|
||||
def generate(*args, **kwargs):
|
||||
for output in engine.generate(*args, **kwargs):
|
||||
output = json.loads(output)
|
||||
|
||||
choices = output.get('choices', [])
|
||||
if len(choices) > 0:
|
||||
print(choices[0].get('text', ''), end='')
|
75
ollama/cmd/server.py
Normal file
75
ollama/cmd/server.py
Normal file
|
@ -0,0 +1,75 @@
|
|||
from aiohttp import web
|
||||
|
||||
from ollama import engine
|
||||
|
||||
|
||||
def set_parser(parser):
|
||||
parser.add_argument('--host', default='127.0.0.1')
|
||||
parser.add_argument('--port', default=7734)
|
||||
parser.set_defaults(fn=serve)
|
||||
|
||||
|
||||
def serve(models_home='.', *args, **kwargs):
|
||||
app = web.Application()
|
||||
app.add_routes([
|
||||
web.post('/load', load),
|
||||
web.post('/unload', unload),
|
||||
web.post('/generate', generate),
|
||||
])
|
||||
|
||||
app.update({
|
||||
'llms': {},
|
||||
'models_home': models_home,
|
||||
})
|
||||
|
||||
web.run_app(app, **kwargs)
|
||||
|
||||
|
||||
async def load(request):
|
||||
body = await request.json()
|
||||
model = body.get('model')
|
||||
if not model:
|
||||
raise web.HTTPBadRequest()
|
||||
|
||||
kwargs = {
|
||||
'llms': request.app.get('llms'),
|
||||
'models_home': request.app.get('models_home'),
|
||||
}
|
||||
|
||||
engine.load(model, **kwargs)
|
||||
return web.Response()
|
||||
|
||||
|
||||
async def unload(request):
|
||||
body = await request.json()
|
||||
model = body.get('model')
|
||||
if not model:
|
||||
raise web.HTTPBadRequest()
|
||||
|
||||
engine.unload(model, llms=request.app.get('llms'))
|
||||
return web.Response()
|
||||
|
||||
|
||||
async def generate(request):
|
||||
body = await request.json()
|
||||
model = body.get('model')
|
||||
if not model:
|
||||
raise web.HTTPBadRequest()
|
||||
|
||||
prompt = body.get('prompt')
|
||||
if not prompt:
|
||||
raise web.HTTPBadRequest()
|
||||
|
||||
response = web.StreamResponse()
|
||||
await response.prepare(request)
|
||||
|
||||
kwargs = {
|
||||
'llms': request.app.get('llms'),
|
||||
'models_home': request.app.get('models_home'),
|
||||
}
|
||||
|
||||
for output in engine.generate(model, prompt, **kwargs):
|
||||
await response.write(output.encode('utf-8'))
|
||||
await response.write(b'\n')
|
||||
|
||||
return response
|
57
ollama/engine.py
Normal file
57
ollama/engine.py
Normal file
|
@ -0,0 +1,57 @@
|
|||
import os
|
||||
import json
|
||||
import sys
|
||||
from contextlib import contextmanager
|
||||
from llama_cpp import Llama as LLM
|
||||
|
||||
import ollama.model
|
||||
|
||||
|
||||
@contextmanager
|
||||
def suppress_stderr():
|
||||
stderr = os.dup(sys.stderr.fileno())
|
||||
with open(os.devnull, 'w') as devnull:
|
||||
os.dup2(devnull.fileno(), sys.stderr.fileno())
|
||||
yield
|
||||
|
||||
os.dup2(stderr, sys.stderr.fileno())
|
||||
|
||||
|
||||
def generate(model, prompt, models_home='.', llms={}, *args, **kwargs):
|
||||
llm = load(model, models_home=models_home, llms=llms)
|
||||
|
||||
if 'max_tokens' not in kwargs:
|
||||
kwargs.update({'max_tokens': 16384})
|
||||
|
||||
if 'stop' not in kwargs:
|
||||
kwargs.update({'stop': ['Q:', '\n']})
|
||||
|
||||
if 'stream' not in kwargs:
|
||||
kwargs.update({'stream': True})
|
||||
|
||||
for output in llm(prompt, *args, **kwargs):
|
||||
yield json.dumps(output)
|
||||
|
||||
|
||||
def load(model, models_home='.', llms={}):
|
||||
llm = llms.get(model, None)
|
||||
if not llm:
|
||||
model_path = {
|
||||
name: path
|
||||
for name, path in ollama.model.models(models_home)
|
||||
}.get(model, None)
|
||||
|
||||
if model_path is None:
|
||||
raise ValueError('Model not found')
|
||||
|
||||
# suppress LLM's output
|
||||
with suppress_stderr():
|
||||
llm = LLM(model_path, verbose=False)
|
||||
llms.update({model: llm})
|
||||
|
||||
return llm
|
||||
|
||||
|
||||
def unload(model, llms={}):
|
||||
if model in llms:
|
||||
llms.pop(model)
|
9
ollama/model.py
Normal file
9
ollama/model.py
Normal file
|
@ -0,0 +1,9 @@
|
|||
from os import walk, path
|
||||
|
||||
|
||||
def models(models_home='.', *args, **kwargs):
|
||||
for root, _, files in walk(models_home):
|
||||
for file in files:
|
||||
base, ext = path.splitext(file)
|
||||
if ext == '.bin':
|
||||
yield base, path.join(root, file)
|
Loading…
Reference in a new issue