add fixes for llama

This commit is contained in:
Patrick Devine 2024-05-08 16:07:46 -07:00 committed by Michael Yang
parent c8cf0d94ed
commit d355d2020f
5 changed files with 55 additions and 24 deletions

View file

@ -208,7 +208,7 @@ func tempZipFiles(path string) (string, error) {
// pytorch files might also be unresolved git lfs references; skip if they are // pytorch files might also be unresolved git lfs references; skip if they are
// covers pytorch_model-x-of-y.bin, pytorch_model.fp32-x-of-y.bin, pytorch_model.bin // covers pytorch_model-x-of-y.bin, pytorch_model.fp32-x-of-y.bin, pytorch_model.bin
files = append(files, pt...) files = append(files, pt...)
} else if pt, _ := glob(filepath.Join(path, "consolidated*.pth"), "application/octet-stream"); len(pt) > 0 { } else if pt, _ := glob(filepath.Join(path, "consolidated*.pth"), "application/zip"); len(pt) > 0 {
// pytorch files might also be unresolved git lfs references; skip if they are // pytorch files might also be unresolved git lfs references; skip if they are
// covers consolidated.x.pth, consolidated.pth // covers consolidated.x.pth, consolidated.pth
files = append(files, pt...) files = append(files, pt...)

View file

@ -74,11 +74,9 @@ func GetModelFormat(dirname string) (ModelFormat, error) {
} }
for _, fn := range files { for _, fn := range files {
slog.Debug(fmt.Sprintf("file = %s", fn))
if strings.HasSuffix(fn, ".safetensors") { if strings.HasSuffix(fn, ".safetensors") {
return &SafetensorFormat{}, nil return &SafetensorFormat{}, nil
//} else if strings.HasSuffix(fn, ".bin") { } else if strings.HasSuffix(fn, ".bin") || strings.HasSuffix(fn, ".pth") {
} else if strings.HasSuffix(fn, ".pth") {
slog.Debug("model is torch") slog.Debug("model is torch")
return &TorchFormat{}, nil return &TorchFormat{}, nil
} }

View file

@ -23,13 +23,25 @@ type LlamaModel struct {
} }
func llamaTorchLayerHandler(w io.Writer, r torchWriterTo) error { func llamaTorchLayerHandler(w io.Writer, r torchWriterTo) error {
slog.Debug(fmt.Sprintf("repacking layer '%s'", r.t.Name))
var tData []uint16
switch r.storage.(type) {
case *pytorch.HalfStorage:
data := r.storage.(*pytorch.HalfStorage).Data data := r.storage.(*pytorch.HalfStorage).Data
tData := make([]uint16, len(data)) tData = make([]uint16, len(data))
for cnt, v := range data { for cnt, v := range data {
tData[cnt] = uint16(float16.Fromfloat32(v)) tData[cnt] = uint16(float16.Fromfloat32(v))
} }
case *pytorch.BFloat16Storage:
data := r.storage.(*pytorch.BFloat16Storage).Data
tData = make([]uint16, len(data))
for cnt, v := range data {
tData[cnt] = uint16(float16.Fromfloat32(v))
}
default:
return fmt.Errorf("unknown storage type for torch")
}
var err error var err error
var heads uint32 var heads uint32
@ -44,8 +56,6 @@ func llamaTorchLayerHandler(w io.Writer, r torchWriterTo) error {
return fmt.Errorf("unknown layer type") return fmt.Errorf("unknown layer type")
} }
slog.Debug(fmt.Sprintf("heads = %d", heads))
tData, err = llamaRepack(tData, int(heads), r.t.Shape) tData, err = llamaRepack(tData, int(heads), r.t.Shape)
if err != nil { if err != nil {
return err return err
@ -106,7 +116,6 @@ func (m *LlamaModel) GetTensors() error {
for _, l := range t { for _, l := range t {
matches := re.FindAllStringSubmatch(l.Name, -1) matches := re.FindAllStringSubmatch(l.Name, -1)
if len(matches) > 0 { if len(matches) > 0 {
slog.Debug(fmt.Sprintf("setting handler for: %s", l.Name))
switch m.Format.(type) { switch m.Format.(type) {
case *TorchFormat: case *TorchFormat:
wt := l.WriterTo.(torchWriterTo) wt := l.WriterTo.(torchWriterTo)
@ -182,9 +191,7 @@ func (m *LlamaModel) WriteGGUF(ws io.WriteSeeker) error {
"llama.attention.head_count": uint32(m.Params.AttentionHeads), "llama.attention.head_count": uint32(m.Params.AttentionHeads),
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads), "llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS), "llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
//"general.file_type": uint32(1),
"general.file_type": uint32(2), "general.file_type": uint32(2),
//"tokenizer.ggml.model": "llama",
"tokenizer.ggml.model": "gpt2", "tokenizer.ggml.model": "gpt2",
"tokenizer.ggml.tokens": m.Vocab.Tokens, "tokenizer.ggml.tokens": m.Vocab.Tokens,
@ -193,8 +200,6 @@ func (m *LlamaModel) WriteGGUF(ws io.WriteSeeker) error {
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID), "tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID), "tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
"tokenizer.ggml.unknown_token_id": uint32(0), "tokenizer.ggml.unknown_token_id": uint32(0),
//"tokenizer.ggml.add_bos_token": true,
//"tokenizer.ggml.add_eos_token": false,
} }
if len(m.Vocab.Merges) > 0 { if len(m.Vocab.Merges) > 0 {

View file

@ -131,6 +131,8 @@ func (m *SafetensorFormat) readTensors(fn string, offset uint64, params *Params)
shape[i] = uint64(data.Shape[i]) shape[i] = uint64(data.Shape[i])
} }
slog.Debug(fmt.Sprintf("'%45s': '%30s' %10d [%#v]", k, ggufName, size, data.Shape))
t := llm.Tensor{ t := llm.Tensor{
Name: ggufName, Name: ggufName,
Kind: kind, Kind: kind,

View file

@ -33,12 +33,16 @@ type TorchFormat struct{}
func (tf *TorchFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor, error) { func (tf *TorchFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor, error) {
slog.Debug("getting torch tensors") slog.Debug("getting torch tensors")
//files, err := filepath.Glob(filepath.Join(dirpath, "pytorch_model-*.bin")) var files []string
files, err := filepath.Glob(filepath.Join(dirpath, "consolidatedr.*.pth")) var err error
files, err = filepath.Glob(filepath.Join(dirpath, "consolidated.*.pth"))
if err != nil {
files, err = filepath.Glob(filepath.Join(dirpath, "pytorch_model-*.bin"))
if err != nil { if err != nil {
slog.Error("didn't find any torch files") slog.Error("didn't find any torch files")
return nil, err return nil, err
} }
}
var offset uint64 var offset uint64
@ -78,7 +82,7 @@ func (tf *TorchFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor,
slog.Error(err.Error()) slog.Error(err.Error())
return nil, err return nil, err
} }
slog.Debug(fmt.Sprintf("finding name for '%s' -> '%s'", k.(string), ggufName)) slog.Debug(fmt.Sprintf("'%35s': '%30s' %10d [%#v]", k.(string), ggufName, size, tshape))
shape := []uint64{0, 0, 0, 0} shape := []uint64{0, 0, 0, 0}
for i := range tshape { for i := range tshape {
@ -236,7 +240,7 @@ func (r torchWriterTo) WriteTo(w io.Writer) (n int64, err error) {
return 0, r.handler(w, r) return 0, r.handler(w, r)
} }
switch r.storage.(type) { switch storage := r.storage.(type) {
case *pytorch.FloatStorage: case *pytorch.FloatStorage:
slog.Warn(fmt.Sprintf("unexpected storage found for layer '%s'; skipping", r.t.Name)) slog.Warn(fmt.Sprintf("unexpected storage found for layer '%s'; skipping", r.t.Name))
return 0, nil return 0, nil
@ -259,6 +263,28 @@ func (r torchWriterTo) WriteTo(w io.Writer) (n int64, err error) {
return 0, err return 0, err
} }
} }
case *pytorch.BFloat16Storage:
data := r.storage.(*pytorch.BFloat16Storage).Data
switch r.t.Kind {
case 0:
if err = binary.Write(w, r.bo, data); err != nil {
return 0, err
}
case 1:
tData := make([]uint16, len(data))
for cnt, v := range data {
tData[cnt] = uint16(float16.Fromfloat32(v))
}
if err = binary.Write(w, r.bo, tData); err != nil {
return 0, err
}
default:
return 0, fmt.Errorf("unknown storage kind: %d", r.t.Kind)
}
default:
return 0, fmt.Errorf("unknown storage type: %T", storage)
} }
return 0, nil return 0, nil