Merge pull request #5859 from dhiltgen/homogeneous_gpus
Prevent partial loading on mixed GPU brands
This commit is contained in:
commit
cef2c6054d
2 changed files with 66 additions and 4 deletions
|
@ -212,9 +212,12 @@ func (s *Scheduler) processPending(ctx context.Context) {
|
|||
} else if loadedCount == 0 {
|
||||
// No models loaded. Load the model but prefer the best fit.
|
||||
slog.Debug("loading first model", "model", pending.model.ModelPath)
|
||||
g := pickBestFitGPUs(pending, ggml, gpus, &numParallel)
|
||||
g := pickBestFullFitByLibrary(pending, ggml, gpus, &numParallel)
|
||||
if g != nil {
|
||||
gpus = g
|
||||
} else {
|
||||
// Only allow partial loads when this is the first model
|
||||
gpus = pickBestPartialFitByLibrary(pending, ggml, gpus, &numParallel)
|
||||
}
|
||||
s.loadFn(pending, ggml, gpus, numParallel)
|
||||
break
|
||||
|
@ -231,7 +234,7 @@ func (s *Scheduler) processPending(ctx context.Context) {
|
|||
|
||||
// Update free memory from currently loaded models
|
||||
s.updateFreeSpace(availGpus)
|
||||
fitGpus := pickBestFitGPUs(pending, ggml, availGpus, &numParallel)
|
||||
fitGpus := pickBestFullFitByLibrary(pending, ggml, availGpus, &numParallel)
|
||||
if fitGpus != nil {
|
||||
slog.Debug("new model fits with existing models, loading")
|
||||
s.loadFn(pending, ggml, fitGpus, numParallel)
|
||||
|
@ -668,11 +671,12 @@ func (a ByDuration) Less(i, j int) bool {
|
|||
// func (a BySize) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
|
||||
// func (a BySize) Less(i, j int) bool { return a[i].estimatedVRAM < a[j].estimatedVRAM }
|
||||
|
||||
// pickBestFitGPUs will try to find the optimal placement of the model in the available GPUs where the model fully fits
|
||||
// pickBestFullFitByLibrary will try to find the optimal placement of the model in the available GPUs where the model fully fits
|
||||
// The list of GPUs returned will always be the same brand (library)
|
||||
// If the model can not be fit fully within the available GPU(s) nil is returned
|
||||
// If numParallel is <= 0, this will attempt try to optimize parallism based on available VRAM, and adjust
|
||||
// opts.NumCtx accordingly
|
||||
func pickBestFitGPUs(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList {
|
||||
func pickBestFullFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList {
|
||||
var estimatedVRAM uint64
|
||||
|
||||
var numParallelToTry []int
|
||||
|
@ -723,6 +727,25 @@ func pickBestFitGPUs(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numP
|
|||
return nil
|
||||
}
|
||||
|
||||
// If multiple Libraries are detected, pick the Library which loads the most layers for the model
|
||||
func pickBestPartialFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList {
|
||||
*numParallel = 1
|
||||
byLibrary := gpus.ByLibrary()
|
||||
if len(byLibrary) <= 1 {
|
||||
return gpus
|
||||
}
|
||||
var bestEstimate uint64
|
||||
var bestFit int
|
||||
for i, gl := range byLibrary {
|
||||
_, estimatedVRAM := llm.PredictServerFit(gl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts)
|
||||
if estimatedVRAM > bestEstimate {
|
||||
bestEstimate = estimatedVRAM
|
||||
bestFit = i
|
||||
}
|
||||
}
|
||||
return byLibrary[bestFit]
|
||||
}
|
||||
|
||||
// findRunnerToUnload finds a runner to unload to make room for a new model
|
||||
func (s *Scheduler) findRunnerToUnload() *runnerRef {
|
||||
s.loadedMu.Lock()
|
||||
|
|
|
@ -666,6 +666,45 @@ func TestAlreadyCanceled(t *testing.T) {
|
|||
require.Empty(t, scenario1a.req.successCh)
|
||||
}
|
||||
|
||||
func TestHomogeneousGPUs(t *testing.T) {
|
||||
ctx, done := context.WithTimeout(context.Background(), 100*time.Millisecond)
|
||||
defer done()
|
||||
s := InitScheduler(ctx)
|
||||
|
||||
s.getGpuFn = func() gpu.GpuInfoList {
|
||||
// Set memory values to require the model to be spread
|
||||
gpus := []gpu.GpuInfo{
|
||||
{Library: "cuda"},
|
||||
{Library: "rocm"},
|
||||
}
|
||||
gpus[0].TotalMemory = 1 * format.GibiByte
|
||||
gpus[0].FreeMemory = 256 * format.MebiByte
|
||||
gpus[1].TotalMemory = 1 * format.GibiByte
|
||||
gpus[1].FreeMemory = 256 * format.MebiByte
|
||||
return gpus
|
||||
}
|
||||
s.getCpuFn = getCpuFn
|
||||
a := newScenarioRequest(t, ctx, "ollama-model-1", 10, &api.Duration{Duration: 5 * time.Millisecond})
|
||||
s.newServerFn = func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
|
||||
require.Len(t, gpus, 1)
|
||||
return a.newServer(gpus, model, ggml, adapters, projectors, opts, numParallel)
|
||||
}
|
||||
slog.Info("a")
|
||||
s.pendingReqCh <- a.req
|
||||
require.Len(t, s.pendingReqCh, 1)
|
||||
s.Run(ctx)
|
||||
select {
|
||||
case resp := <-a.req.successCh:
|
||||
require.Equal(t, resp.llama, a.srv)
|
||||
require.Empty(t, s.pendingReqCh)
|
||||
require.Empty(t, a.req.errCh)
|
||||
case err := <-a.req.errCh:
|
||||
t.Fatal(err.Error())
|
||||
case <-ctx.Done():
|
||||
t.Fatal("timeout")
|
||||
}
|
||||
}
|
||||
|
||||
type mockLlm struct {
|
||||
pingResp error
|
||||
waitResp error
|
||||
|
|
Loading…
Add table
Reference in a new issue