runner.go: Better abstract vision model integration
-Update mllama to take the cross attention state as embeddings in a batch, more similar to how Llava handles it. This improves integration with the input cache. -Pass locations in a prompt for embeddings using tags similar to Llava. -Abstract interface to vision models so the main runner accesses Clip and Mllama similarly Co-authored-by: Michael Yang <mxyng@pm.me>
This commit is contained in:
parent
712e99d477
commit
c826e57475
13 changed files with 534 additions and 454 deletions
93
llama/llama.cpp
vendored
93
llama/llama.cpp
vendored
|
@ -2699,7 +2699,7 @@ struct llama_hparams {
|
|||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
bool cross_attention_layer(uint32_t il) const {
|
||||
bool cross_attention_layers(uint32_t il) const {
|
||||
return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
|
||||
}
|
||||
};
|
||||
|
@ -2731,6 +2731,9 @@ struct llama_cparams {
|
|||
bool offload_kqv;
|
||||
bool flash_attn;
|
||||
bool no_perf;
|
||||
// TODO (jmorganca): this should most likely be passed in as part of a batch
|
||||
// and not set on the context for all batches.
|
||||
bool cross_attn = false;
|
||||
|
||||
enum llama_pooling_type pooling_type;
|
||||
|
||||
|
@ -3542,10 +3545,6 @@ struct llama_context {
|
|||
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
|
||||
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
|
||||
|
||||
// TODO (jmorganca): this should most likely be passed in as part of a batch
|
||||
// and not set on the context for all batches.
|
||||
float * cross_attn_state = nullptr;
|
||||
bool cross_attn_state_first_pass = true;
|
||||
struct ggml_tensor * inp_cross_attn_state; // F32 [4, n_embd, 1061]
|
||||
};
|
||||
|
||||
|
@ -3782,7 +3781,7 @@ static bool llama_kv_cache_init(
|
|||
|
||||
for (int i = 0; i < (int) n_layer; i++) {
|
||||
// for cross attention layers
|
||||
if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layer(i)) {
|
||||
if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layers(i)) {
|
||||
struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
|
||||
ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_k, 6404, hparams.n_head_kv(i));
|
||||
ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_v, 6404, hparams.n_head_kv(i));
|
||||
|
@ -7389,7 +7388,7 @@ static bool llm_load_tensors(
|
|||
|
||||
auto & layer = model.layers[i];
|
||||
|
||||
if (hparams.cross_attention_layer(i)) {
|
||||
if (hparams.cross_attention_layers(i)) {
|
||||
layer.cross_attn_k_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_K_NORM, "weight", i), {128});
|
||||
layer.cross_attn_k_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_K_PROJ, "weight", i), {n_embd, 1024});
|
||||
layer.cross_attn_o_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_O_PROJ, "weight", i), {n_embd, n_embd});
|
||||
|
@ -9368,11 +9367,10 @@ static struct ggml_tensor * llm_build_inp_cross_attn_state(
|
|||
const llm_build_cb & cb) {
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
|
||||
struct ggml_tensor * inpCAS;
|
||||
lctx.inp_cross_attn_state = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd, 1601, 4);
|
||||
cb(lctx.inp_cross_attn_state, "inp_cross_attn_state", -1);
|
||||
ggml_set_input(lctx.inp_cross_attn_state);
|
||||
inpCAS = lctx.inp_cross_attn_state;
|
||||
struct ggml_tensor * inpCAS = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd, 1601, 4);
|
||||
cb(inpCAS, "inp_cross_attn_state", -1);
|
||||
ggml_set_input(inpCAS);
|
||||
lctx.inp_cross_attn_state = inpCAS;
|
||||
|
||||
return inpCAS;
|
||||
}
|
||||
|
@ -10979,8 +10977,8 @@ struct llm_build_context {
|
|||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
if (hparams.cross_attention_layer(il)) {
|
||||
if (!lctx.cross_attn_state) {
|
||||
if (hparams.cross_attention_layers(il)) {
|
||||
if (!batch.embd && !cparams.cross_attn) {
|
||||
continue;
|
||||
}
|
||||
|
||||
|
@ -10991,42 +10989,28 @@ struct llm_build_context {
|
|||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Qcur = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
// TODO: is this required?
|
||||
Qcur = ggml_cont(ctx0, Qcur);
|
||||
Qcur = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 0, 2, 1, 3));
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].cross_attn_q_norm, NULL, LLM_NORM_RMS, cb, il);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
struct ggml_tensor * Kcur;
|
||||
if (lctx.cross_attn_state_first_pass) {
|
||||
struct ggml_tensor * Kcur, * Vcur;
|
||||
if (batch.embd) {
|
||||
Kcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_k_proj, inpCAS);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, 6404);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
Kcur = ggml_permute(ctx0, Kcur, 0, 2, 1, 3);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
// TODO: is this required?
|
||||
Kcur = ggml_cont(ctx0, Kcur);
|
||||
Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].cross_attn_k_norm, NULL, LLM_NORM_RMS, cb, il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, kv_self.k_l[il]));
|
||||
} else {
|
||||
Kcur = ggml_view_tensor(ctx0, kv_self.k_l[il]);
|
||||
cb(Kcur, "Kcur (view)", il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * Vcur;
|
||||
if (lctx.cross_attn_state_first_pass) {
|
||||
Vcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_v_proj, inpCAS);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
|
@ -11038,6 +11022,9 @@ struct llm_build_context {
|
|||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, kv_self.v_l[il]));
|
||||
} else {
|
||||
Kcur = ggml_view_tensor(ctx0, kv_self.k_l[il]);
|
||||
cb(Kcur, "Kcur (view)", il);
|
||||
|
||||
Vcur = ggml_view_tensor(ctx0, kv_self.v_l[il]);
|
||||
cb(Vcur, "Vcur (view)", il);
|
||||
}
|
||||
|
@ -11045,11 +11032,8 @@ struct llm_build_context {
|
|||
struct ggml_tensor * kq = ggml_mul_mat(ctx0, Kcur, Qcur);
|
||||
cb(kq, "kq", il);
|
||||
|
||||
kq = ggml_scale_inplace(ctx0, kq, 1.0f/sqrtf(float(n_embd_head)));
|
||||
cb(kq, "kq_scaled", il);
|
||||
|
||||
// TODO: apply causal masks
|
||||
struct ggml_tensor * kq_soft_max = ggml_soft_max_inplace(ctx0, kq);
|
||||
struct ggml_tensor * kq_soft_max = ggml_soft_max_ext(ctx0, kq, nullptr, 1.f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
|
||||
cb(kq_soft_max, "kq_soft_max", il);
|
||||
|
||||
Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, Vcur));
|
||||
|
@ -17197,11 +17181,20 @@ static void llama_set_inputs(llama_context & lctx, const llama_ubatch & batch) {
|
|||
}
|
||||
|
||||
if (batch.embd) {
|
||||
if (lctx.inp_cross_attn_state && lctx.inp_cross_attn_state->buffer) {
|
||||
ggml_backend_tensor_set(lctx.inp_cross_attn_state, batch.embd, 0, ggml_nbytes(lctx.inp_cross_attn_state));
|
||||
// zero out inp_embd since it's not used
|
||||
float * inp_embd_data = (float *)lctx.inp_embd->data;
|
||||
for (int i = 0; i < ggml_nelements(lctx.inp_embd); ++i) {
|
||||
inp_embd_data[i] = 0.0f;
|
||||
}
|
||||
} else {
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
const int64_t n_tokens = batch.n_tokens;
|
||||
|
||||
ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
|
||||
}
|
||||
}
|
||||
|
||||
if (batch.pos && lctx.inp_pos) {
|
||||
const int64_t n_tokens = batch.n_tokens;
|
||||
|
@ -17209,14 +17202,6 @@ static void llama_set_inputs(llama_context & lctx, const llama_ubatch & batch) {
|
|||
ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
|
||||
}
|
||||
|
||||
// TODO (jmorganca): this might copy a lot of data on every request of a
|
||||
// single generation even though it doesn't change, so we should
|
||||
// find a way to not set this more than one time per image
|
||||
if (lctx.inp_cross_attn_state &&
|
||||
lctx.inp_cross_attn_state->buffer) {
|
||||
ggml_backend_tensor_set(lctx.inp_cross_attn_state, lctx.cross_attn_state, 0, hparams.n_embd * 1601 * 4 * ggml_element_size(lctx.inp_cross_attn_state));
|
||||
}
|
||||
|
||||
if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
|
||||
GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
|
||||
const int64_t n_tokens = batch.n_tokens;
|
||||
|
@ -17789,7 +17774,7 @@ static int llama_decode_internal(
|
|||
n_outputs = 1;
|
||||
}
|
||||
|
||||
lctx.sbatch.from_batch(batch_all, n_embd,
|
||||
lctx.sbatch.from_batch(batch_all, batch_all.n_embd,
|
||||
/* simple_split */ !kv_self.recurrent,
|
||||
/* logits_all */ n_outputs == n_tokens_all);
|
||||
|
||||
|
@ -17899,10 +17884,6 @@ static int llama_decode_internal(
|
|||
|
||||
llama_set_inputs(lctx, ubatch);
|
||||
|
||||
// TODO: replace with something better to find out if its
|
||||
// our first actual pass
|
||||
lctx.cross_attn_state_first_pass = false;
|
||||
|
||||
llama_graph_compute(lctx, gf, n_threads, threadpool);
|
||||
|
||||
// update the kv ring buffer
|
||||
|
@ -18086,7 +18067,7 @@ static int llama_encode_internal(
|
|||
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
|
||||
lctx.sbatch.from_batch(batch, n_embd, /* simple_split */ true, /* logits_all */ true);
|
||||
lctx.sbatch.from_batch(batch, batch.n_embd, /* simple_split */ true, /* logits_all */ true);
|
||||
|
||||
const llama_ubatch ubatch = lctx.sbatch.split_simple(n_tokens);
|
||||
|
||||
|
@ -20194,11 +20175,6 @@ struct llama_context * llama_new_context_with_model(
|
|||
return ctx;
|
||||
}
|
||||
|
||||
void llama_set_cross_attn_state(struct llama_context * ctx, float * cross_attn_state) {
|
||||
ctx->cross_attn_state_first_pass = true;
|
||||
ctx->cross_attn_state = cross_attn_state;
|
||||
}
|
||||
|
||||
void llama_free(struct llama_context * ctx) {
|
||||
delete ctx;
|
||||
}
|
||||
|
@ -21686,6 +21662,10 @@ void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
|
|||
ctx->cparams.causal_attn = causal_attn;
|
||||
}
|
||||
|
||||
void llama_set_cross_attention(struct llama_context * ctx, bool cross_attention) {
|
||||
ctx->cparams.cross_attn = cross_attention;
|
||||
}
|
||||
|
||||
struct llama_batch llama_batch_get_one(
|
||||
llama_token * tokens,
|
||||
int32_t n_tokens,
|
||||
|
@ -21695,6 +21675,7 @@ struct llama_batch llama_batch_get_one(
|
|||
/*n_tokens =*/ n_tokens,
|
||||
/*tokens =*/ tokens,
|
||||
/*embd =*/ nullptr,
|
||||
/*n_embd =*/ 0,
|
||||
/*pos =*/ nullptr,
|
||||
/*n_seq_id =*/ nullptr,
|
||||
/*seq_id =*/ nullptr,
|
||||
|
@ -21710,6 +21691,7 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
|
|||
/*n_tokens =*/ 0,
|
||||
/*tokens =*/ nullptr,
|
||||
/*embd =*/ nullptr,
|
||||
/*n_embd =*/ 0,
|
||||
/*pos =*/ nullptr,
|
||||
/*n_seq_id =*/ nullptr,
|
||||
/*seq_id =*/ nullptr,
|
||||
|
@ -21721,6 +21703,7 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
|
|||
|
||||
if (embd) {
|
||||
batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
|
||||
batch.n_embd = embd;
|
||||
} else {
|
||||
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
|
||||
}
|
||||
|
|
145
llama/llama.go
145
llama/llama.go
|
@ -111,6 +111,28 @@ func PrintSystemInfo() string {
|
|||
return C.GoString(C.llama_print_system_info()) + compiler
|
||||
}
|
||||
|
||||
func GetModelArch(modelPath string) (string, error) {
|
||||
mp := C.CString(modelPath)
|
||||
defer C.free(unsafe.Pointer(mp))
|
||||
|
||||
gguf_ctx := C.gguf_init_from_file(mp, C.struct_gguf_init_params{no_alloc: true, ctx: (**C.struct_ggml_context)(C.NULL)})
|
||||
if gguf_ctx == nil {
|
||||
return "", errors.New("unable to load model file")
|
||||
}
|
||||
defer C.gguf_free(gguf_ctx)
|
||||
|
||||
key := C.CString("general.architecture")
|
||||
defer C.free(unsafe.Pointer(key))
|
||||
arch_index := C.gguf_find_key(gguf_ctx, key)
|
||||
if int(arch_index) < 0 {
|
||||
return "", errors.New("unknown model architecture")
|
||||
}
|
||||
|
||||
arch := C.gguf_get_val_str(gguf_ctx, arch_index)
|
||||
|
||||
return C.GoString(arch), nil
|
||||
}
|
||||
|
||||
type ContextParams struct {
|
||||
c C.struct_llama_context_params
|
||||
}
|
||||
|
@ -443,71 +465,36 @@ func Quantize(infile, outfile string, ftype uint32) error {
|
|||
return nil
|
||||
}
|
||||
|
||||
// llava
|
||||
// vision processing
|
||||
type ClipContext struct {
|
||||
c *C.struct_clip_ctx
|
||||
m *C.struct_mllama_ctx
|
||||
IsMllama bool
|
||||
embedPin runtime.Pinner
|
||||
pinned bool
|
||||
}
|
||||
|
||||
func getVisionArch(mp *C.char) (string, error) {
|
||||
gguf_ctx := C.gguf_init_from_file(mp, C.struct_gguf_init_params{no_alloc: true, ctx: (**C.struct_ggml_context)(C.NULL)})
|
||||
if gguf_ctx == nil {
|
||||
return "", errors.New("unable to load vision projector")
|
||||
}
|
||||
defer C.gguf_free(gguf_ctx)
|
||||
|
||||
arch_index := C.gguf_find_key(gguf_ctx, C.CString("general.architecture"))
|
||||
if int(arch_index) < 0 {
|
||||
return "", errors.New("unknown vision model architecture")
|
||||
}
|
||||
|
||||
arch := C.gguf_get_val_str(gguf_ctx, arch_index)
|
||||
|
||||
return C.GoString(arch), nil
|
||||
}
|
||||
|
||||
func NewClipContext(modelPath string) (*ClipContext, error) {
|
||||
func NewClipContext(llamaContext *Context, modelPath string) (*ClipContext, error) {
|
||||
mp := C.CString(modelPath)
|
||||
defer C.free(unsafe.Pointer(mp))
|
||||
c := C.clip_model_load(mp, 1)
|
||||
|
||||
arch, err := getVisionArch(mp)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
projEmbedSize := int(C.clip_n_mmproj_embd(c))
|
||||
modelEmbedSize := llamaContext.Model().NEmbd()
|
||||
if projEmbedSize != modelEmbedSize {
|
||||
return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
|
||||
}
|
||||
|
||||
var cc ClipContext
|
||||
if arch == "clip" {
|
||||
cc.c = C.clip_model_load(mp, 1)
|
||||
} else if arch == "mllama" {
|
||||
cc.m = C.mllama_model_load(mp, 1)
|
||||
cc.IsMllama = true
|
||||
} else {
|
||||
return nil, fmt.Errorf("unknown vision model architecture: %s", arch)
|
||||
}
|
||||
|
||||
// XXX: check embedding size?
|
||||
return &cc, nil
|
||||
return &ClipContext{c: c}, nil
|
||||
}
|
||||
|
||||
func (c *ClipContext) Free() {
|
||||
if c.c != nil {
|
||||
C.clip_free(c.c)
|
||||
}
|
||||
if c.m != nil {
|
||||
C.mllama_free(c.m)
|
||||
}
|
||||
}
|
||||
|
||||
func NewLlavaImageEmbed(llamaContext *Context, clipContext *ClipContext, data []byte) [][]float32 {
|
||||
c := C.llava_image_embed_make_with_bytes(clipContext.c, C.int(llamaContext.numThreads), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))
|
||||
func (c *ClipContext) NewEmbed(llamaContext *Context, data []byte) [][]float32 {
|
||||
l := C.llava_image_embed_make_with_bytes(c.c, C.int(llamaContext.numThreads), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))
|
||||
|
||||
numTokens := int(c.n_image_pos)
|
||||
numTokens := int(l.n_image_pos)
|
||||
numEmbed := llamaContext.Model().NEmbd()
|
||||
|
||||
s := unsafe.Slice((*float32)(c.embed), numEmbed*numTokens)
|
||||
s := unsafe.Slice((*float32)(l.embed), numEmbed*numTokens)
|
||||
|
||||
embed := make([][]float32, numTokens)
|
||||
rows := make([]float32, len(s))
|
||||
|
@ -517,51 +504,57 @@ func NewLlavaImageEmbed(llamaContext *Context, clipContext *ClipContext, data []
|
|||
embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
|
||||
}
|
||||
|
||||
C.llava_image_embed_free(c)
|
||||
C.llava_image_embed_free(l)
|
||||
|
||||
return embed
|
||||
}
|
||||
|
||||
func NewMllamaImageEmbed(llamaContext *Context, clipContext *ClipContext, data []byte, aspectRatioId int) [][]float32 {
|
||||
type MllamaContext struct {
|
||||
c *C.struct_mllama_ctx
|
||||
}
|
||||
|
||||
func NewMllamaContext(llamaContext *Context, modelPath string) (*MllamaContext, error) {
|
||||
mp := C.CString(modelPath)
|
||||
defer C.free(unsafe.Pointer(mp))
|
||||
c := C.mllama_model_load(mp, 1)
|
||||
|
||||
projEmbedSize := int(C.mllama_n_embd(c))
|
||||
modelEmbedSize := llamaContext.Model().NEmbd()
|
||||
if projEmbedSize != modelEmbedSize {
|
||||
return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
|
||||
}
|
||||
|
||||
return &MllamaContext{c: c}, nil
|
||||
}
|
||||
|
||||
func (m *MllamaContext) Free() {
|
||||
C.mllama_free(m.c)
|
||||
}
|
||||
|
||||
func (m *MllamaContext) NewEmbed(llamaContext *Context, data []byte, aspectRatioId int) [][]float32 {
|
||||
img := C.mllama_image_init()
|
||||
defer C.mllama_image_free(img)
|
||||
|
||||
C.mllama_image_load_from_data(unsafe.Pointer(&data[0]), C.int(len(data)), 560, 560, 3, 4, C.int(aspectRatioId), img)
|
||||
|
||||
numTokens := int(C.mllama_n_positions(clipContext.m) * C.mllama_n_tiles(clipContext.m))
|
||||
numEmbed := llamaContext.Model().NEmbd()
|
||||
rows := make([]float32, m.EmbedSize(llamaContext))
|
||||
C.mllama_image_encode(m.c, C.int(llamaContext.numThreads), img, (*C.float)(unsafe.Pointer(&rows[0])))
|
||||
|
||||
rows := make([]float32, numEmbed*numTokens)
|
||||
C.mllama_image_encode(clipContext.m, C.int(llamaContext.numThreads), img, (*C.float)(unsafe.Pointer(&rows[0])))
|
||||
|
||||
embed := make([][]float32, numTokens)
|
||||
for i := range embed {
|
||||
embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
|
||||
}
|
||||
embed := make([][]float32, 1)
|
||||
embed[0] = rows
|
||||
|
||||
return embed
|
||||
}
|
||||
|
||||
// This really needs to be set on a batch instead
|
||||
func MllamaSetCrossAttn(llamaContext *Context, clipContext *ClipContext, embed [][]float32) {
|
||||
if embed != nil {
|
||||
if clipContext.pinned {
|
||||
panic("Cross attention state already pinned")
|
||||
}
|
||||
func (m *MllamaContext) EmbedSize(llamaContext *Context) int {
|
||||
numTokens := int(C.mllama_n_positions(m.c) * C.mllama_n_tiles(m.c))
|
||||
numEmbed := llamaContext.Model().NEmbd()
|
||||
|
||||
embedData := &embed[0][0]
|
||||
clipContext.embedPin.Pin(embedData)
|
||||
clipContext.pinned = true
|
||||
return numTokens * numEmbed
|
||||
}
|
||||
|
||||
C.llama_set_cross_attn_state(llamaContext.c, (*C.float)(unsafe.Pointer(embedData)))
|
||||
} else {
|
||||
C.llama_set_cross_attn_state(llamaContext.c, (*C.float)(C.NULL))
|
||||
|
||||
if clipContext.pinned {
|
||||
clipContext.embedPin.Unpin()
|
||||
clipContext.pinned = false
|
||||
}
|
||||
}
|
||||
func (c *Context) SetCrossAttention(state bool) {
|
||||
C.llama_set_cross_attention(c.c, C.bool(state))
|
||||
}
|
||||
|
||||
// sampling
|
||||
|
|
3
llama/llama.h
vendored
3
llama/llama.h
vendored
|
@ -266,6 +266,7 @@ extern "C" {
|
|||
|
||||
llama_token * token;
|
||||
float * embd;
|
||||
int32_t n_embd;
|
||||
llama_pos * pos;
|
||||
int32_t * n_seq_id;
|
||||
llama_seq_id ** seq_id;
|
||||
|
@ -451,7 +452,7 @@ extern "C" {
|
|||
|
||||
// TODO (jmorganca): this should most likely be passed in as part of a batch
|
||||
// and not set on the context for all batches.
|
||||
LLAMA_API void llama_set_cross_attn_state(struct llama_context * ctx, float * cross_attn_state);
|
||||
LLAMA_API void llama_set_cross_attention(struct llama_context * ctx, bool cross_attn_state);
|
||||
|
||||
// Frees all allocated memory
|
||||
LLAMA_API void llama_free(struct llama_context * ctx);
|
||||
|
|
2
llama/llava.cpp
vendored
2
llama/llava.cpp
vendored
|
@ -435,7 +435,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
|
|||
if (n_eval > n_batch) {
|
||||
n_eval = n_batch;
|
||||
}
|
||||
llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
||||
llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), n_embd, nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
||||
if (llama_decode(ctx_llama, batch)) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
|
|
|
@ -12,27 +12,49 @@ kv cache once per run
|
|||
|
||||
remaining is to implement the cross attention mask
|
||||
---
|
||||
include/llama.h | 4 +
|
||||
src/llama.cpp | 456 ++++++++++++++++++++++++++++++++++++++++++++++--
|
||||
2 files changed, 447 insertions(+), 13 deletions(-)
|
||||
examples/llava/llava.cpp | 2 +-
|
||||
include/llama.h | 5 +
|
||||
src/llama.cpp | 447 +++++++++++++++++++++++++++++++++++++--
|
||||
3 files changed, 436 insertions(+), 18 deletions(-)
|
||||
|
||||
diff --git a/examples/llava/llava.cpp b/examples/llava/llava.cpp
|
||||
index 8558c6bd..37b2f2e2 100644
|
||||
--- a/examples/llava/llava.cpp
|
||||
+++ b/examples/llava/llava.cpp
|
||||
@@ -409,7 +409,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
|
||||
if (n_eval > n_batch) {
|
||||
n_eval = n_batch;
|
||||
}
|
||||
- llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
||||
+ llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), n_embd, nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
||||
if (llama_decode(ctx_llama, batch)) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
diff --git a/include/llama.h b/include/llama.h
|
||||
index 7cae1bbe..122e3cf1 100644
|
||||
index 7cae1bbe..aca09310 100644
|
||||
--- a/include/llama.h
|
||||
+++ b/include/llama.h
|
||||
@@ -423,6 +423,10 @@ extern "C" {
|
||||
@@ -240,6 +240,7 @@ extern "C" {
|
||||
|
||||
llama_token * token;
|
||||
float * embd;
|
||||
+ int32_t n_embd;
|
||||
llama_pos * pos;
|
||||
int32_t * n_seq_id;
|
||||
llama_seq_id ** seq_id;
|
||||
@@ -423,6 +424,10 @@ extern "C" {
|
||||
struct llama_model * model,
|
||||
struct llama_context_params params);
|
||||
|
||||
+ // TODO (jmorganca): this should most likely be passed in as part of a batch
|
||||
+ // and not set on the context for all batches.
|
||||
+ LLAMA_API void llama_set_cross_attn_state(struct llama_context * ctx, float * cross_attn_state);
|
||||
+ LLAMA_API void llama_set_cross_attention(struct llama_context * ctx, bool cross_attn_state);
|
||||
+
|
||||
// Frees all allocated memory
|
||||
LLAMA_API void llama_free(struct llama_context * ctx);
|
||||
|
||||
diff --git a/src/llama.cpp b/src/llama.cpp
|
||||
index 83b80b59..b189a19a 100644
|
||||
index 83b80b59..35748488 100644
|
||||
--- a/src/llama.cpp
|
||||
+++ b/src/llama.cpp
|
||||
@@ -169,6 +169,7 @@ static std::string format(const char * fmt, ...) {
|
||||
|
@ -160,13 +182,23 @@ index 83b80b59..b189a19a 100644
|
|||
GGML_ABORT("fatal error");
|
||||
}
|
||||
+
|
||||
+ bool cross_attention_layer(uint32_t il) const {
|
||||
+ bool cross_attention_layers(uint32_t il) const {
|
||||
+ return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
|
||||
+ }
|
||||
};
|
||||
|
||||
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|
||||
@@ -2806,6 +2859,16 @@ struct llama_layer {
|
||||
@@ -2652,6 +2705,9 @@ struct llama_cparams {
|
||||
bool offload_kqv;
|
||||
bool flash_attn;
|
||||
bool no_perf;
|
||||
+ // TODO (jmorganca): this should most likely be passed in as part of a batch
|
||||
+ // and not set on the context for all batches.
|
||||
+ bool cross_attn = false;
|
||||
|
||||
enum llama_pooling_type pooling_type;
|
||||
|
||||
@@ -2806,6 +2862,16 @@ struct llama_layer {
|
||||
struct ggml_tensor * ffn_down_scale;
|
||||
|
||||
struct ggml_tensor * bskcn_tv;
|
||||
|
@ -183,25 +215,21 @@ index 83b80b59..b189a19a 100644
|
|||
};
|
||||
|
||||
// very similar to llama_batch,
|
||||
@@ -3452,6 +3515,12 @@ struct llama_context {
|
||||
@@ -3452,6 +3518,8 @@ struct llama_context {
|
||||
struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
|
||||
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
|
||||
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
|
||||
+
|
||||
+ // TODO (jmorganca): this should most likely be passed in as part of a batch
|
||||
+ // and not set on the context for all batches.
|
||||
+ float * cross_attn_state = nullptr;
|
||||
+ bool cross_attn_state_first_pass = true;
|
||||
+ struct ggml_tensor * inp_cross_attn_state; // F32 [4, n_embd, 1061]
|
||||
};
|
||||
|
||||
struct llama_lora_weight {
|
||||
@@ -3686,6 +3755,18 @@ static bool llama_kv_cache_init(
|
||||
@@ -3686,6 +3754,18 @@ static bool llama_kv_cache_init(
|
||||
cache.v_l.reserve(n_layer);
|
||||
|
||||
for (int i = 0; i < (int) n_layer; i++) {
|
||||
+ // for cross attention layers
|
||||
+ if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layer(i)) {
|
||||
+ if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layers(i)) {
|
||||
+ struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
|
||||
+ ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_k, 6404, hparams.n_head_kv(i));
|
||||
+ ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_v, 6404, hparams.n_head_kv(i));
|
||||
|
@ -215,7 +243,7 @@ index 83b80b59..b189a19a 100644
|
|||
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
|
||||
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
|
||||
|
||||
@@ -5460,12 +5541,14 @@ static void llm_load_hparams(
|
||||
@@ -5460,12 +5540,14 @@ static void llm_load_hparams(
|
||||
}
|
||||
|
||||
// zero-out the per-layer hparams
|
||||
|
@ -235,7 +263,7 @@ index 83b80b59..b189a19a 100644
|
|||
|
||||
// n_head_kv is optional, default to n_head
|
||||
hparams.n_head_kv_arr = hparams.n_head_arr;
|
||||
@@ -5514,7 +5597,7 @@ static void llm_load_hparams(
|
||||
@@ -5514,7 +5596,7 @@ static void llm_load_hparams(
|
||||
|
||||
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
|
||||
|
||||
|
@ -244,7 +272,7 @@ index 83b80b59..b189a19a 100644
|
|||
if (hparams.n_rot != hparams.n_embd_head_k) {
|
||||
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
|
||||
}
|
||||
@@ -5554,6 +5637,16 @@ static void llm_load_hparams(
|
||||
@@ -5554,6 +5636,16 @@ static void llm_load_hparams(
|
||||
}
|
||||
}
|
||||
} break;
|
||||
|
@ -261,7 +289,7 @@ index 83b80b59..b189a19a 100644
|
|||
case LLM_ARCH_MINICPM:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
@@ -7249,6 +7342,55 @@ static bool llm_load_tensors(
|
||||
@@ -7249,6 +7341,55 @@ static bool llm_load_tensors(
|
||||
layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head_qk_rope/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||
}
|
||||
} break;
|
||||
|
@ -286,7 +314,7 @@ index 83b80b59..b189a19a 100644
|
|||
+
|
||||
+ auto & layer = model.layers[i];
|
||||
+
|
||||
+ if (hparams.cross_attention_layer(i)) {
|
||||
+ if (hparams.cross_attention_layers(i)) {
|
||||
+ layer.cross_attn_k_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_K_NORM, "weight", i), {128});
|
||||
+ layer.cross_attn_k_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_K_PROJ, "weight", i), {n_embd, 1024});
|
||||
+ layer.cross_attn_o_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_O_PROJ, "weight", i), {n_embd, n_embd});
|
||||
|
@ -317,7 +345,7 @@ index 83b80b59..b189a19a 100644
|
|||
case LLM_ARCH_GROK:
|
||||
{
|
||||
if (n_expert == 0) {
|
||||
@@ -9093,7 +9235,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
|
||||
@@ -9093,7 +9234,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
|
||||
|
||||
if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
|
||||
model.hparams.n_vocab != model.vocab.id_to_token.size()) {
|
||||
|
@ -326,16 +354,7 @@ index 83b80b59..b189a19a 100644
|
|||
}
|
||||
|
||||
if (params.vocab_only) {
|
||||
@@ -9178,7 +9320,7 @@ static struct ggml_tensor * llm_build_inp_embd(
|
||||
|
||||
inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
|
||||
} else {
|
||||
- lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
|
||||
+ lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
|
||||
inpL = lctx.inp_embd;
|
||||
ggml_set_input(lctx.inp_embd);
|
||||
}
|
||||
@@ -9193,6 +9335,22 @@ static struct ggml_tensor * llm_build_inp_embd(
|
||||
@@ -9193,6 +9334,21 @@ static struct ggml_tensor * llm_build_inp_embd(
|
||||
return inpL;
|
||||
}
|
||||
|
||||
|
@ -346,11 +365,10 @@ index 83b80b59..b189a19a 100644
|
|||
+ const llm_build_cb & cb) {
|
||||
+ const int64_t n_embd = hparams.n_embd;
|
||||
+
|
||||
+ struct ggml_tensor * inpCAS;
|
||||
+ lctx.inp_cross_attn_state = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd, 1601, 4);
|
||||
+ cb(lctx.inp_cross_attn_state, "inp_cross_attn_state", -1);
|
||||
+ ggml_set_input(lctx.inp_cross_attn_state);
|
||||
+ inpCAS = lctx.inp_cross_attn_state;
|
||||
+ struct ggml_tensor * inpCAS = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd, 1601, 4);
|
||||
+ cb(inpCAS, "inp_cross_attn_state", -1);
|
||||
+ ggml_set_input(inpCAS);
|
||||
+ lctx.inp_cross_attn_state = inpCAS;
|
||||
+
|
||||
+ return inpCAS;
|
||||
+}
|
||||
|
@ -358,7 +376,7 @@ index 83b80b59..b189a19a 100644
|
|||
static void llm_build_kv_store(
|
||||
struct ggml_context * ctx,
|
||||
const llama_hparams & hparams,
|
||||
@@ -10167,6 +10325,7 @@ struct llm_build_context {
|
||||
@@ -10167,6 +10323,7 @@ struct llm_build_context {
|
||||
lctx.inp_pos_bucket = nullptr;
|
||||
lctx.inp_embd_enc = nullptr;
|
||||
lctx.inp_KQ_mask_cross = nullptr;
|
||||
|
@ -366,7 +384,7 @@ index 83b80b59..b189a19a 100644
|
|||
}
|
||||
|
||||
void free() {
|
||||
@@ -10754,6 +10913,253 @@ struct llm_build_context {
|
||||
@@ -10754,6 +10911,239 @@ struct llm_build_context {
|
||||
LLM_NORM_RMS, cb, -1);
|
||||
cb(cur, "result_norm", -1);
|
||||
|
||||
|
@ -410,8 +428,8 @@ index 83b80b59..b189a19a 100644
|
|||
+ LLM_NORM_RMS, cb, il);
|
||||
+ cb(cur, "attn_norm", il);
|
||||
+
|
||||
+ if (hparams.cross_attention_layer(il)) {
|
||||
+ if (!lctx.cross_attn_state) {
|
||||
+ if (hparams.cross_attention_layers(il)) {
|
||||
+ if (!batch.embd && !cparams.cross_attn) {
|
||||
+ continue;
|
||||
+ }
|
||||
+
|
||||
|
@ -422,42 +440,28 @@ index 83b80b59..b189a19a 100644
|
|||
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+
|
||||
+ Qcur = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+
|
||||
+ // TODO: is this required?
|
||||
+ Qcur = ggml_cont(ctx0, Qcur);
|
||||
+ Qcur = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 0, 2, 1, 3));
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+
|
||||
+ Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].cross_attn_q_norm, NULL, LLM_NORM_RMS, cb, il);
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+
|
||||
+ struct ggml_tensor * Kcur;
|
||||
+ if (lctx.cross_attn_state_first_pass) {
|
||||
+ struct ggml_tensor * Kcur, * Vcur;
|
||||
+ if (batch.embd) {
|
||||
+ Kcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_k_proj, inpCAS);
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+
|
||||
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, 6404);
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+
|
||||
+ Kcur = ggml_permute(ctx0, Kcur, 0, 2, 1, 3);
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+
|
||||
+ // TODO: is this required?
|
||||
+ Kcur = ggml_cont(ctx0, Kcur);
|
||||
+ Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+
|
||||
+ Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].cross_attn_k_norm, NULL, LLM_NORM_RMS, cb, il);
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+
|
||||
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, kv_self.k_l[il]));
|
||||
+ } else {
|
||||
+ Kcur = ggml_view_tensor(ctx0, kv_self.k_l[il]);
|
||||
+ cb(Kcur, "Kcur (view)", il);
|
||||
+ }
|
||||
+
|
||||
+ struct ggml_tensor * Vcur;
|
||||
+ if (lctx.cross_attn_state_first_pass) {
|
||||
+ Vcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_v_proj, inpCAS);
|
||||
+ cb(Vcur, "Vcur", il);
|
||||
+
|
||||
|
@ -469,6 +473,9 @@ index 83b80b59..b189a19a 100644
|
|||
+
|
||||
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, kv_self.v_l[il]));
|
||||
+ } else {
|
||||
+ Kcur = ggml_view_tensor(ctx0, kv_self.k_l[il]);
|
||||
+ cb(Kcur, "Kcur (view)", il);
|
||||
+
|
||||
+ Vcur = ggml_view_tensor(ctx0, kv_self.v_l[il]);
|
||||
+ cb(Vcur, "Vcur (view)", il);
|
||||
+ }
|
||||
|
@ -476,11 +483,8 @@ index 83b80b59..b189a19a 100644
|
|||
+ struct ggml_tensor * kq = ggml_mul_mat(ctx0, Kcur, Qcur);
|
||||
+ cb(kq, "kq", il);
|
||||
+
|
||||
+ kq = ggml_scale_inplace(ctx0, kq, 1.0f/sqrtf(float(n_embd_head)));
|
||||
+ cb(kq, "kq_scaled", il);
|
||||
+
|
||||
+ // TODO: apply causal masks
|
||||
+ struct ggml_tensor * kq_soft_max = ggml_soft_max_inplace(ctx0, kq);
|
||||
+ struct ggml_tensor * kq_soft_max = ggml_soft_max_ext(ctx0, kq, nullptr, 1.f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
|
||||
+ cb(kq_soft_max, "kq_soft_max", il);
|
||||
+
|
||||
+ Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, Vcur));
|
||||
|
@ -620,7 +624,7 @@ index 83b80b59..b189a19a 100644
|
|||
// lm_head
|
||||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||||
cb(cur, "result_output", -1);
|
||||
@@ -16501,6 +16907,10 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
@@ -16501,6 +16891,10 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
{
|
||||
result = llm.build_llama();
|
||||
} break;
|
||||
|
@ -631,33 +635,48 @@ index 83b80b59..b189a19a 100644
|
|||
case LLM_ARCH_BAICHUAN:
|
||||
{
|
||||
result = llm.build_baichuan();
|
||||
@@ -16773,6 +17183,14 @@ static void llama_set_inputs(llama_context & lctx, const llama_ubatch & batch) {
|
||||
ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
|
||||
@@ -16761,10 +17155,19 @@ static void llama_set_inputs(llama_context & lctx, const llama_ubatch & batch) {
|
||||
}
|
||||
|
||||
+ // TODO (jmorganca): this might copy a lot of data on every request of a
|
||||
+ // single generation even though it doesn't change, so we should
|
||||
+ // find a way to not set this more than one time per image
|
||||
+ if (lctx.inp_cross_attn_state &&
|
||||
+ lctx.inp_cross_attn_state->buffer) {
|
||||
+ ggml_backend_tensor_set(lctx.inp_cross_attn_state, lctx.cross_attn_state, 0, hparams.n_embd * 1601 * 4 * ggml_element_size(lctx.inp_cross_attn_state));
|
||||
if (batch.embd) {
|
||||
- const int64_t n_embd = hparams.n_embd;
|
||||
- const int64_t n_tokens = batch.n_tokens;
|
||||
+ if (lctx.inp_cross_attn_state && lctx.inp_cross_attn_state->buffer) {
|
||||
+ ggml_backend_tensor_set(lctx.inp_cross_attn_state, batch.embd, 0, ggml_nbytes(lctx.inp_cross_attn_state));
|
||||
+ // zero out inp_embd since it's not used
|
||||
+ float * inp_embd_data = (float *)lctx.inp_embd->data;
|
||||
+ for (int i = 0; i < ggml_nelements(lctx.inp_embd); ++i) {
|
||||
+ inp_embd_data[i] = 0.0f;
|
||||
+ }
|
||||
+
|
||||
if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
|
||||
GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
|
||||
const int64_t n_tokens = batch.n_tokens;
|
||||
@@ -17455,6 +17873,10 @@ static int llama_decode_internal(
|
||||
+ } else {
|
||||
+ const int64_t n_embd = hparams.n_embd;
|
||||
+ const int64_t n_tokens = batch.n_tokens;
|
||||
|
||||
llama_set_inputs(lctx, ubatch);
|
||||
- ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
|
||||
+ ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
|
||||
+ }
|
||||
}
|
||||
|
||||
+ // TODO: replace with something better to find out if its
|
||||
+ // our first actual pass
|
||||
+ lctx.cross_attn_state_first_pass = false;
|
||||
+
|
||||
llama_graph_compute(lctx, gf, n_threads, threadpool);
|
||||
if (batch.pos && lctx.inp_pos) {
|
||||
@@ -17345,7 +17748,7 @@ static int llama_decode_internal(
|
||||
n_outputs = 1;
|
||||
}
|
||||
|
||||
// update the kv ring buffer
|
||||
@@ -18648,7 +19070,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
- lctx.sbatch.from_batch(batch_all, n_embd,
|
||||
+ lctx.sbatch.from_batch(batch_all, batch_all.n_embd,
|
||||
/* simple_split */ !kv_self.recurrent,
|
||||
/* logits_all */ n_outputs == n_tokens_all);
|
||||
|
||||
@@ -17638,7 +18041,7 @@ static int llama_encode_internal(
|
||||
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
|
||||
- lctx.sbatch.from_batch(batch, n_embd, /* simple_split */ true, /* logits_all */ true);
|
||||
+ lctx.sbatch.from_batch(batch, batch.n_embd, /* simple_split */ true, /* logits_all */ true);
|
||||
|
||||
const llama_ubatch ubatch = lctx.sbatch.split_simple(n_tokens);
|
||||
|
||||
@@ -18648,7 +19051,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
if (llama_model_has_encoder(&model)) {
|
||||
n_attn_layer *= 3;
|
||||
}
|
||||
|
@ -668,19 +687,7 @@ index 83b80b59..b189a19a 100644
|
|||
}
|
||||
|
||||
size_t total_size_org = 0;
|
||||
@@ -19744,6 +20168,11 @@ struct llama_context * llama_new_context_with_model(
|
||||
return ctx;
|
||||
}
|
||||
|
||||
+void llama_set_cross_attn_state(struct llama_context * ctx, float * cross_attn_state) {
|
||||
+ ctx->cross_attn_state_first_pass = true;
|
||||
+ ctx->cross_attn_state = cross_attn_state;
|
||||
+}
|
||||
+
|
||||
void llama_free(struct llama_context * ctx) {
|
||||
delete ctx;
|
||||
}
|
||||
@@ -19814,6 +20243,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
||||
@@ -19814,6 +20219,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
||||
|
||||
// use what we call a normal RoPE, operating on pairs of consecutive head values
|
||||
case LLM_ARCH_LLAMA:
|
||||
|
@ -688,3 +695,38 @@ index 83b80b59..b189a19a 100644
|
|||
case LLM_ARCH_BAICHUAN:
|
||||
case LLM_ARCH_STARCODER:
|
||||
case LLM_ARCH_PLAMO:
|
||||
@@ -21230,6 +21636,10 @@ void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
|
||||
ctx->cparams.causal_attn = causal_attn;
|
||||
}
|
||||
|
||||
+void llama_set_cross_attention(struct llama_context * ctx, bool cross_attention) {
|
||||
+ ctx->cparams.cross_attn = cross_attention;
|
||||
+}
|
||||
+
|
||||
struct llama_batch llama_batch_get_one(
|
||||
llama_token * tokens,
|
||||
int32_t n_tokens,
|
||||
@@ -21239,6 +21649,7 @@ struct llama_batch llama_batch_get_one(
|
||||
/*n_tokens =*/ n_tokens,
|
||||
/*tokens =*/ tokens,
|
||||
/*embd =*/ nullptr,
|
||||
+ /*n_embd =*/ 0,
|
||||
/*pos =*/ nullptr,
|
||||
/*n_seq_id =*/ nullptr,
|
||||
/*seq_id =*/ nullptr,
|
||||
@@ -21254,6 +21665,7 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
|
||||
/*n_tokens =*/ 0,
|
||||
/*tokens =*/ nullptr,
|
||||
/*embd =*/ nullptr,
|
||||
+ /*n_embd =*/ 0,
|
||||
/*pos =*/ nullptr,
|
||||
/*n_seq_id =*/ nullptr,
|
||||
/*seq_id =*/ nullptr,
|
||||
@@ -21265,6 +21677,7 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
|
||||
|
||||
if (embd) {
|
||||
batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
|
||||
+ batch.n_embd = embd;
|
||||
} else {
|
||||
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
|
||||
}
|
||||
|
|
|
@ -2,7 +2,6 @@ package main
|
|||
|
||||
import (
|
||||
"errors"
|
||||
"hash/maphash"
|
||||
"log/slog"
|
||||
"reflect"
|
||||
"time"
|
||||
|
@ -20,10 +19,6 @@ type InputCache struct {
|
|||
// optimize cache eviction for multiple users
|
||||
multiUserCache bool
|
||||
|
||||
// cache of images to embeddings
|
||||
images []imageCache
|
||||
imageHash maphash.Hash
|
||||
|
||||
lc *llama.Context
|
||||
}
|
||||
|
||||
|
@ -41,7 +36,6 @@ func NewInputCache(lc *llama.Context, kvSize int, numSlots int, multiUserCache b
|
|||
numCtx: kvSize / numSlots,
|
||||
slots: slots,
|
||||
multiUserCache: multiUserCache,
|
||||
images: make([]imageCache, numSlots),
|
||||
lc: lc,
|
||||
}
|
||||
}
|
||||
|
@ -211,55 +205,3 @@ func (c *InputCache) ShiftCacheSlot(slot *InputCacheSlot, numKeep int, numDiscar
|
|||
}
|
||||
slot.Inputs = slot.Inputs[:len(slot.Inputs)-numDiscard]
|
||||
}
|
||||
|
||||
// Locking: Lookup and store operations on imageCache require a lock
|
||||
// to be held that serializes these with each other. Hash does not
|
||||
// require a lock nor they need to be serialized with InputCacheSlot.
|
||||
|
||||
type imageCache struct {
|
||||
key uint64
|
||||
val [][]float32
|
||||
lastUsed time.Time
|
||||
}
|
||||
|
||||
func (c *InputCache) HashImage(image []byte) uint64 {
|
||||
c.imageHash.Reset()
|
||||
_, _ = c.imageHash.Write(image)
|
||||
return c.imageHash.Sum64()
|
||||
}
|
||||
|
||||
var ErrImageNotFound = errors.New("image not found in cache")
|
||||
|
||||
func (c *InputCache) FindImage(hash uint64) ([][]float32, error) {
|
||||
for i := range c.images {
|
||||
if c.images[i].key == hash {
|
||||
slog.Debug("loading image embeddings from cache", "entry", i)
|
||||
c.images[i].lastUsed = time.Now()
|
||||
return c.images[i].val, nil
|
||||
}
|
||||
}
|
||||
|
||||
return nil, ErrImageNotFound
|
||||
}
|
||||
|
||||
func (c *InputCache) AddImage(hash uint64, embed [][]float32) {
|
||||
best := time.Now()
|
||||
var bestImage int
|
||||
|
||||
for i := range c.images {
|
||||
if c.images[i].key == hash {
|
||||
bestImage = i
|
||||
break
|
||||
}
|
||||
|
||||
if c.images[i].lastUsed.Compare(best) < 0 {
|
||||
best = c.images[i].lastUsed
|
||||
bestImage = i
|
||||
}
|
||||
}
|
||||
|
||||
slog.Debug("storing image embeddings in cache", "entry", bestImage, "used", c.images[bestImage].lastUsed)
|
||||
c.images[bestImage].key = hash
|
||||
c.images[bestImage].val = embed
|
||||
c.images[bestImage].lastUsed = time.Now()
|
||||
}
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
package main
|
||||
|
||||
import (
|
||||
"reflect"
|
||||
"testing"
|
||||
"time"
|
||||
)
|
||||
|
@ -228,77 +227,3 @@ func TestFindCacheSlot(t *testing.T) {
|
|||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestImageCache(t *testing.T) {
|
||||
cache := NewInputCache(nil, 2048, 4, false)
|
||||
|
||||
valA := [][]float32{{0.1, 0.2}, {0.3}}
|
||||
valB := [][]float32{{0.4}, {0.5}, {0.6}}
|
||||
valC := [][]float32{{0.7}}
|
||||
valD := [][]float32{{0.8}}
|
||||
valE := [][]float32{{0.9}}
|
||||
|
||||
// Empty cache
|
||||
result, err := cache.FindImage(0x5adb61d31933a946)
|
||||
if err != ErrImageNotFound {
|
||||
t.Errorf("found result in empty cache: result %v, err %v", result, err)
|
||||
}
|
||||
|
||||
// Insert A
|
||||
cache.AddImage(0x5adb61d31933a946, valA)
|
||||
|
||||
result, err = cache.FindImage(0x5adb61d31933a946)
|
||||
if !reflect.DeepEqual(result, valA) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
|
||||
// Insert B
|
||||
cache.AddImage(0x011551369a34a901, valB)
|
||||
|
||||
result, err = cache.FindImage(0x5adb61d31933a946)
|
||||
if !reflect.DeepEqual(result, valA) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
result, err = cache.FindImage(0x011551369a34a901)
|
||||
if !reflect.DeepEqual(result, valB) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
|
||||
// Replace B with C
|
||||
cache.AddImage(0x011551369a34a901, valC)
|
||||
|
||||
result, err = cache.FindImage(0x5adb61d31933a946)
|
||||
if !reflect.DeepEqual(result, valA) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
result, err = cache.FindImage(0x011551369a34a901)
|
||||
if !reflect.DeepEqual(result, valC) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
|
||||
// Evict A
|
||||
cache.AddImage(0x756b218a517e7353, valB)
|
||||
cache.AddImage(0x75e5e8d35d7e3967, valD)
|
||||
cache.AddImage(0xd96f7f268ca0646e, valE)
|
||||
|
||||
result, err = cache.FindImage(0x5adb61d31933a946)
|
||||
if reflect.DeepEqual(result, valA) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
result, err = cache.FindImage(0x756b218a517e7353)
|
||||
if !reflect.DeepEqual(result, valB) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
result, err = cache.FindImage(0x011551369a34a901)
|
||||
if !reflect.DeepEqual(result, valC) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
result, err = cache.FindImage(0x75e5e8d35d7e3967)
|
||||
if !reflect.DeepEqual(result, valD) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
result, err = cache.FindImage(0xd96f7f268ca0646e)
|
||||
if !reflect.DeepEqual(result, valE) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
}
|
||||
|
|
145
llama/runner/image.go
Normal file
145
llama/runner/image.go
Normal file
|
@ -0,0 +1,145 @@
|
|||
package main
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"hash/maphash"
|
||||
"log/slog"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/llama"
|
||||
)
|
||||
|
||||
const imageCacheSize = 4
|
||||
|
||||
type ImageContext struct {
|
||||
// mu is required to be held when generating embeddings or accessing the cache
|
||||
mu sync.Mutex
|
||||
|
||||
clip *llama.ClipContext
|
||||
mllama *llama.MllamaContext
|
||||
|
||||
// cache of images to embeddings
|
||||
images []imageCache
|
||||
imageHash maphash.Hash
|
||||
}
|
||||
|
||||
func NewImageContext(llamaContext *llama.Context, modelPath string) (*ImageContext, error) {
|
||||
arch, err := llama.GetModelArch(modelPath)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("unable to determine vision architecture: %w (%s)", err, modelPath)
|
||||
}
|
||||
|
||||
var c ImageContext
|
||||
if arch == "clip" {
|
||||
c.clip, err = llama.NewClipContext(llamaContext, modelPath)
|
||||
} else if arch == "mllama" {
|
||||
c.mllama, err = llama.NewMllamaContext(llamaContext, modelPath)
|
||||
} else {
|
||||
return nil, fmt.Errorf("unknown vision model architecture: %s", arch)
|
||||
}
|
||||
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
c.images = make([]imageCache, imageCacheSize)
|
||||
|
||||
return &c, nil
|
||||
}
|
||||
|
||||
func (c *ImageContext) Free(modelPath string) {
|
||||
if c == nil {
|
||||
return
|
||||
}
|
||||
|
||||
if c.clip != nil {
|
||||
c.clip.Free()
|
||||
}
|
||||
if c.mllama != nil {
|
||||
c.mllama.Free()
|
||||
}
|
||||
}
|
||||
|
||||
func (c *ImageContext) NewEmbed(llamaContext *llama.Context, data []byte, aspectRatioId int) [][]float32 {
|
||||
if c == nil {
|
||||
return nil
|
||||
}
|
||||
|
||||
hash := c.hashImage(data)
|
||||
|
||||
c.mu.Lock()
|
||||
defer c.mu.Unlock()
|
||||
|
||||
embed, err := c.findImage(hash)
|
||||
if err != nil {
|
||||
if c.mllama != nil {
|
||||
embed = c.mllama.NewEmbed(llamaContext, data, aspectRatioId)
|
||||
} else if c.clip != nil {
|
||||
embed = c.clip.NewEmbed(llamaContext, data)
|
||||
} else {
|
||||
return nil
|
||||
}
|
||||
|
||||
c.addImage(hash, embed)
|
||||
}
|
||||
|
||||
return embed
|
||||
}
|
||||
|
||||
func (c *ImageContext) EmbedSize(llamaContext *llama.Context) int {
|
||||
if c != nil && c.mllama != nil {
|
||||
return c.mllama.EmbedSize(llamaContext)
|
||||
} else {
|
||||
return llamaContext.Model().NEmbd()
|
||||
}
|
||||
}
|
||||
|
||||
type imageCache struct {
|
||||
key uint64
|
||||
val [][]float32
|
||||
lastUsed time.Time
|
||||
}
|
||||
|
||||
func (c *ImageContext) hashImage(image []byte) uint64 {
|
||||
c.imageHash.Reset()
|
||||
_, _ = c.imageHash.Write(image)
|
||||
return c.imageHash.Sum64()
|
||||
}
|
||||
|
||||
var errImageNotFound = errors.New("image not found in cache")
|
||||
|
||||
func (c *ImageContext) findImage(hash uint64) ([][]float32, error) {
|
||||
for i := range c.images {
|
||||
if c.images[i].key == hash {
|
||||
slog.Debug("loading image embeddings from cache", "entry", i)
|
||||
c.images[i].lastUsed = time.Now()
|
||||
return c.images[i].val, nil
|
||||
}
|
||||
}
|
||||
|
||||
return nil, errImageNotFound
|
||||
}
|
||||
|
||||
func (c *ImageContext) addImage(hash uint64, embed [][]float32) {
|
||||
best := time.Now()
|
||||
var bestImage int
|
||||
|
||||
for i := range c.images {
|
||||
if c.images[i].key == hash {
|
||||
bestImage = i
|
||||
break
|
||||
}
|
||||
|
||||
if c.images[i].lastUsed.Compare(best) < 0 {
|
||||
best = c.images[i].lastUsed
|
||||
bestImage = i
|
||||
}
|
||||
}
|
||||
|
||||
slog.Debug("storing image embeddings in cache", "entry", bestImage, "used", c.images[bestImage].lastUsed)
|
||||
c.images[bestImage].key = hash
|
||||
c.images[bestImage].val = embed
|
||||
c.images[bestImage].lastUsed = time.Now()
|
||||
}
|
80
llama/runner/image_test.go
Normal file
80
llama/runner/image_test.go
Normal file
|
@ -0,0 +1,80 @@
|
|||
package main
|
||||
|
||||
import (
|
||||
"reflect"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestImageCache(t *testing.T) {
|
||||
cache := ImageContext{images: make([]imageCache, 4)}
|
||||
|
||||
valA := [][]float32{{0.1, 0.2}, {0.3}}
|
||||
valB := [][]float32{{0.4}, {0.5}, {0.6}}
|
||||
valC := [][]float32{{0.7}}
|
||||
valD := [][]float32{{0.8}}
|
||||
valE := [][]float32{{0.9}}
|
||||
|
||||
// Empty cache
|
||||
result, err := cache.findImage(0x5adb61d31933a946)
|
||||
if err != errImageNotFound {
|
||||
t.Errorf("found result in empty cache: result %v, err %v", result, err)
|
||||
}
|
||||
|
||||
// Insert A
|
||||
cache.addImage(0x5adb61d31933a946, valA)
|
||||
|
||||
result, err = cache.findImage(0x5adb61d31933a946)
|
||||
if !reflect.DeepEqual(result, valA) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
|
||||
// Insert B
|
||||
cache.addImage(0x011551369a34a901, valB)
|
||||
|
||||
result, err = cache.findImage(0x5adb61d31933a946)
|
||||
if !reflect.DeepEqual(result, valA) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
result, err = cache.findImage(0x011551369a34a901)
|
||||
if !reflect.DeepEqual(result, valB) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
|
||||
// Replace B with C
|
||||
cache.addImage(0x011551369a34a901, valC)
|
||||
|
||||
result, err = cache.findImage(0x5adb61d31933a946)
|
||||
if !reflect.DeepEqual(result, valA) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
result, err = cache.findImage(0x011551369a34a901)
|
||||
if !reflect.DeepEqual(result, valC) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
|
||||
// Evict A
|
||||
cache.addImage(0x756b218a517e7353, valB)
|
||||
cache.addImage(0x75e5e8d35d7e3967, valD)
|
||||
cache.addImage(0xd96f7f268ca0646e, valE)
|
||||
|
||||
result, err = cache.findImage(0x5adb61d31933a946)
|
||||
if reflect.DeepEqual(result, valA) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
result, err = cache.findImage(0x756b218a517e7353)
|
||||
if !reflect.DeepEqual(result, valB) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
result, err = cache.findImage(0x011551369a34a901)
|
||||
if !reflect.DeepEqual(result, valC) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
result, err = cache.findImage(0x75e5e8d35d7e3967)
|
||||
if !reflect.DeepEqual(result, valD) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
result, err = cache.findImage(0xd96f7f268ca0646e)
|
||||
if !reflect.DeepEqual(result, valE) {
|
||||
t.Errorf("failed to find expected value: result %v, err %v", result, err)
|
||||
}
|
||||
}
|
|
@ -190,57 +190,22 @@ func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
|
|||
return nil, fmt.Errorf("invalid image index: %d", n)
|
||||
}
|
||||
|
||||
hash := s.cache.HashImage(images[imageIndex].Data)
|
||||
|
||||
// Vision models cannot be accessed concurrently
|
||||
s.clip.mu.Lock()
|
||||
embed, err := s.cache.FindImage(hash)
|
||||
if err != nil {
|
||||
embed = llama.NewLlavaImageEmbed(s.lc, s.clip.cc, images[imageIndex].Data)
|
||||
s.cache.AddImage(hash, embed)
|
||||
}
|
||||
s.clip.mu.Unlock()
|
||||
|
||||
embed := s.image.NewEmbed(s.lc, images[imageIndex].Data, images[imageIndex].AspectRatioID)
|
||||
for _, e := range embed {
|
||||
inputs = append(inputs, input{embed: e})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if s.clip.cc != nil {
|
||||
var embed [][]float32
|
||||
|
||||
if s.clip.cc.IsMllama && len(images) >= 1 {
|
||||
hash := s.cache.HashImage(images[0].Data)
|
||||
|
||||
s.clip.mu.Lock()
|
||||
var err error
|
||||
embed, err = s.cache.FindImage(hash)
|
||||
if err != nil {
|
||||
embed = llama.NewMllamaImageEmbed(s.lc, s.clip.cc, images[0].Data, images[0].AspectRatioID)
|
||||
s.cache.AddImage(hash, embed)
|
||||
}
|
||||
s.clip.mu.Unlock()
|
||||
}
|
||||
s.mu.Lock()
|
||||
llama.MllamaSetCrossAttn(s.lc, s.clip.cc, embed)
|
||||
s.mu.Unlock()
|
||||
}
|
||||
|
||||
return inputs, nil
|
||||
}
|
||||
|
||||
type clip struct {
|
||||
cc *llama.ClipContext
|
||||
mu sync.Mutex
|
||||
}
|
||||
|
||||
type Server struct {
|
||||
model *llama.Model
|
||||
lc *llama.Context
|
||||
|
||||
// required for image embeddings
|
||||
clip clip
|
||||
image *ImageContext
|
||||
|
||||
batchSize int
|
||||
|
||||
|
@ -322,14 +287,12 @@ func flushPending(seq *Sequence) bool {
|
|||
func (s *Server) removeSequence(seqIndex int, reason string) {
|
||||
seq := s.seqs[seqIndex]
|
||||
|
||||
s.lc.SetCrossAttention(false)
|
||||
flushPending(seq)
|
||||
seq.doneReason = reason
|
||||
close(seq.responses)
|
||||
close(seq.embedding)
|
||||
seq.cache.InUse = false
|
||||
if s.clip.cc != nil {
|
||||
llama.MllamaSetCrossAttn(s.lc, s.clip.cc, nil)
|
||||
}
|
||||
s.seqs[seqIndex] = nil
|
||||
}
|
||||
|
||||
|
@ -341,7 +304,7 @@ func (s *Server) run(ctx context.Context) {
|
|||
tokenBatch := llama.NewBatch(s.batchSize*len(s.seqs), 0, len(s.seqs))
|
||||
defer tokenBatch.Free()
|
||||
|
||||
embedBatch := llama.NewBatch(s.batchSize*len(s.seqs), s.lc.Model().NEmbd(), len(s.seqs))
|
||||
embedBatch := llama.NewBatch(s.batchSize*len(s.seqs), s.image.EmbedSize(s.lc), len(s.seqs))
|
||||
defer embedBatch.Free()
|
||||
|
||||
for {
|
||||
|
@ -642,12 +605,20 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
|
|||
s.mu.Lock()
|
||||
for i, sq := range s.seqs {
|
||||
if sq == nil {
|
||||
for _, input := range seq.inputs {
|
||||
if input.embed != nil {
|
||||
s.lc.SetCrossAttention(true)
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
seq.cache, seq.inputs, seq.numPast, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
|
||||
if err != nil {
|
||||
s.mu.Unlock()
|
||||
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
|
||||
return
|
||||
}
|
||||
|
||||
s.seqs[i] = seq
|
||||
s.cond.Signal()
|
||||
break
|
||||
|
@ -815,7 +786,7 @@ func (s *Server) loadModel(
|
|||
|
||||
if ppath != "" {
|
||||
var err error
|
||||
s.clip.cc, err = llama.NewClipContext(ppath)
|
||||
s.image, err = NewImageContext(s.lc, ppath)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
|
|
@ -75,11 +75,16 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
|
|||
|
||||
currMsgIdx := n
|
||||
|
||||
for cnt, msg := range msgs[currMsgIdx:] {
|
||||
prefix := ""
|
||||
imgPrompt := ""
|
||||
prompt := msg.Content
|
||||
|
||||
for _, i := range msg.Images {
|
||||
var imgData llm.ImageData
|
||||
|
||||
if isMllama {
|
||||
lastMsgIdx := len(msgs) - 1
|
||||
for i := lastMsgIdx; i >= currMsgIdx; i-- {
|
||||
if len(msgs[i].Images) > 0 {
|
||||
data, aspectRatioID, err := imageproc.Preprocess(msgs[i].Images[0])
|
||||
data, aspectRatioID, err := imageproc.Preprocess(i)
|
||||
if err != nil {
|
||||
return "", nil, err
|
||||
}
|
||||
|
@ -90,25 +95,19 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
|
|||
return "", nil, err
|
||||
}
|
||||
|
||||
imgData := llm.ImageData{
|
||||
imgData = llm.ImageData{
|
||||
ID: len(images),
|
||||
Data: buf.Bytes(),
|
||||
AspectRatioID: aspectRatioID,
|
||||
}
|
||||
|
||||
msgs[i].Content = strings.TrimSpace("<|image|>" + msgs[i].Content)
|
||||
images = append(images, imgData)
|
||||
break
|
||||
}
|
||||
}
|
||||
imgPrompt = "<|image|>"
|
||||
} else {
|
||||
for cnt, msg := range msgs[currMsgIdx:] {
|
||||
prefix := ""
|
||||
prompt := msg.Content
|
||||
for _, i := range msg.Images {
|
||||
imgData := llm.ImageData{
|
||||
imgData = llm.ImageData{
|
||||
ID: len(images),
|
||||
Data: i,
|
||||
}
|
||||
imgPrompt = " "
|
||||
}
|
||||
|
||||
imgTag := fmt.Sprintf("[img-%d]", imgData.ID)
|
||||
if !strings.Contains(prompt, "[img]") {
|
||||
|
@ -119,8 +118,7 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
|
|||
|
||||
images = append(images, imgData)
|
||||
}
|
||||
msgs[currMsgIdx+cnt].Content = strings.TrimSpace(prefix + " " + prompt)
|
||||
}
|
||||
msgs[currMsgIdx+cnt].Content = strings.TrimSpace(prefix + imgPrompt + prompt)
|
||||
}
|
||||
|
||||
// truncate any messages that do not fit into the context window
|
||||
|
|
|
@ -249,7 +249,7 @@ func TestChatPrompt(t *testing.T) {
|
|||
{Role: "user", Content: "How many hotdogs are in this image?", Images: []api.ImageData{imgBuf}},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "<|image|>How many hotdogs are in this image? ",
|
||||
prompt: "[img-0]<|image|>How many hotdogs are in this image? ",
|
||||
images: [][]byte{imgBuf},
|
||||
aspectRatioID: 1,
|
||||
},
|
||||
|
@ -264,7 +264,7 @@ func TestChatPrompt(t *testing.T) {
|
|||
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager.", Images: []api.ImageData{imgBuf}},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "You're a test, Harry! I-I'm a what? <|image|>A test. And a thumping good one at that, I'd wager. ",
|
||||
prompt: "You're a test, Harry! I-I'm a what? [img-0]<|image|>A test. And a thumping good one at that, I'd wager. ",
|
||||
images: [][]byte{imgBuf},
|
||||
aspectRatioID: 1,
|
||||
},
|
||||
|
@ -279,8 +279,8 @@ func TestChatPrompt(t *testing.T) {
|
|||
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager.", Images: []api.ImageData{imgBuf2}},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "You're a test, Harry! I-I'm a what? <|image|>A test. And a thumping good one at that, I'd wager. ",
|
||||
images: [][]byte{imgBuf2},
|
||||
prompt: "[img-0]<|image|>You're a test, Harry! I-I'm a what? [img-1]<|image|>A test. And a thumping good one at that, I'd wager. ",
|
||||
images: [][]byte{imgBuf, imgBuf2},
|
||||
aspectRatioID: 1,
|
||||
},
|
||||
},
|
||||
|
@ -294,7 +294,7 @@ func TestChatPrompt(t *testing.T) {
|
|||
{Role: "user", Content: "Which ones have mustard?"},
|
||||
},
|
||||
expect: expect{
|
||||
prompt: "<|image|>How many hotdogs are in this image? There are four hotdogs. Which ones have mustard? ",
|
||||
prompt: "[img-0]<|image|>How many hotdogs are in this image? There are four hotdogs. Which ones have mustard? ",
|
||||
images: [][]byte{imgBuf},
|
||||
aspectRatioID: 1,
|
||||
},
|
||||
|
|
|
@ -205,7 +205,7 @@ func (s *Server) GenerateHandler(c *gin.Context) {
|
|||
return
|
||||
}
|
||||
|
||||
images[i] = llm.ImageData{Data: buf.Bytes(), AspectRatioID: aspectRatioID}
|
||||
images[i] = llm.ImageData{ID: i, Data: buf.Bytes(), AspectRatioID: aspectRatioID}
|
||||
} else {
|
||||
images[i] = llm.ImageData{ID: i, Data: req.Images[i]}
|
||||
}
|
||||
|
@ -239,11 +239,11 @@ func (s *Server) GenerateHandler(c *gin.Context) {
|
|||
}
|
||||
|
||||
for _, i := range images {
|
||||
imgPrompt := ""
|
||||
if isMllama {
|
||||
msgs = append(msgs, api.Message{Role: "user", Content: "<|image|>"})
|
||||
} else {
|
||||
msgs = append(msgs, api.Message{Role: "user", Content: fmt.Sprintf("[img-%d]", i.ID)})
|
||||
imgPrompt = "<|image|>"
|
||||
}
|
||||
msgs = append(msgs, api.Message{Role: "user", Content: fmt.Sprintf("[img-%d]"+imgPrompt, i.ID)})
|
||||
}
|
||||
|
||||
values.Messages = append(msgs, api.Message{Role: "user", Content: req.Prompt})
|
||||
|
|
Loading…
Reference in a new issue