update faq
This commit is contained in:
parent
0c819e167b
commit
bb362caf88
1 changed files with 5 additions and 2 deletions
|
@ -111,7 +111,10 @@ On Windows, Ollama inherits your user and system environment variables.
|
||||||
|
|
||||||
## How do I use Ollama behind a proxy?
|
## How do I use Ollama behind a proxy?
|
||||||
|
|
||||||
Ollama is compatible with proxy servers if `HTTP_PROXY` or `HTTPS_PROXY` are configured. When using either variables, ensure it is set where `ollama serve` can access the values. When using `HTTPS_PROXY`, ensure the proxy certificate is installed as a system certificate. Refer to the section above for how to use environment variables on your platform.
|
Ollama pulls models from the Internet and may require a proxy server to access the models. Use `HTTPS_PROXY` to redirect outbound requests through the proxy. Ensure the proxy certificate is installed as a system certificate. Refer to the section above for how to use environment variables on your platform.
|
||||||
|
|
||||||
|
> [!NOTE]
|
||||||
|
> Avoid setting `HTTP_PROXY`. Ollama does not use HTTP for model pulls, only HTTPS. Setting `HTTP_PROXY` may interrupt client connections to the server.
|
||||||
|
|
||||||
### How do I use Ollama behind a proxy in Docker?
|
### How do I use Ollama behind a proxy in Docker?
|
||||||
|
|
||||||
|
@ -276,4 +279,4 @@ Note: Windows with Radeon GPUs currently default to 1 model maximum due to limit
|
||||||
|
|
||||||
## How does Ollama load models on multiple GPUs?
|
## How does Ollama load models on multiple GPUs?
|
||||||
|
|
||||||
Installing multiple GPUs of the same brand can be a great way to increase your available VRAM to load larger models. When you load a new model, Ollama evaluates the required VRAM for the model against what is currently available. If the model will entirely fit on any single GPU, Ollama will load the model on that GPU. This typically provides the best performance as it reduces the amount of data transfering across the PCI bus during inference. If the model does not fit entirely on one GPU, then it will be spread across all the available GPUs.
|
Installing multiple GPUs of the same brand can be a great way to increase your available VRAM to load larger models. When you load a new model, Ollama evaluates the required VRAM for the model against what is currently available. If the model will entirely fit on any single GPU, Ollama will load the model on that GPU. This typically provides the best performance as it reduces the amount of data transfering across the PCI bus during inference. If the model does not fit entirely on one GPU, then it will be spread across all the available GPUs.
|
||||||
|
|
Loading…
Reference in a new issue