update import.md
This commit is contained in:
parent
cddc63381c
commit
b9ce7bf75e
1 changed files with 78 additions and 149 deletions
227
docs/import.md
227
docs/import.md
|
@ -1,170 +1,99 @@
|
|||
# Import a model
|
||||
# Import
|
||||
|
||||
This guide walks through importing a GGUF, PyTorch or Safetensors model.
|
||||
GGUF models and select Safetensors models can be imported directly into Ollama.
|
||||
|
||||
## Importing (GGUF)
|
||||
## Import GGUF
|
||||
|
||||
### Step 1: Write a `Modelfile`
|
||||
A binary GGUF file can be imported directly into Ollama through a Modelfile.
|
||||
|
||||
Start by creating a `Modelfile`. This file is the blueprint for your model, specifying weights, parameters, prompt templates and more.
|
||||
|
||||
```
|
||||
FROM ./mistral-7b-v0.1.Q4_0.gguf
|
||||
```dockerfile
|
||||
FROM /path/to/file.gguf
|
||||
```
|
||||
|
||||
(Optional) many chat models require a prompt template in order to answer correctly. A default prompt template can be specified with the `TEMPLATE` instruction in the `Modelfile`:
|
||||
## Import Safetensors
|
||||
|
||||
```
|
||||
FROM ./mistral-7b-v0.1.Q4_0.gguf
|
||||
TEMPLATE "[INST] {{ .Prompt }} [/INST]"
|
||||
If the model being imported is one of these architectures, it can be imported directly into Ollama through a Modelfile:
|
||||
|
||||
- LlamaForCausalLM
|
||||
- MistralForCausalLM
|
||||
- GemmaForCausalLM
|
||||
|
||||
```dockerfile
|
||||
FROM /path/to/safetensors/directory
|
||||
```
|
||||
|
||||
### Step 2: Create the Ollama model
|
||||
For architectures not directly convertable by Ollama, see llama.cpp's [guide](https://github.com/ggerganov/llama.cpp/blob/master/README.md#prepare-and-quantize) on conversion. After conversion, see [Import GGUF](#import-gguf).
|
||||
|
||||
Finally, create a model from your `Modelfile`:
|
||||
## Automatic Quantization
|
||||
|
||||
> [!NOTE]
|
||||
> Automatic quantization requires v0.1.35 or higher.
|
||||
|
||||
Ollama is capable of quantizing FP16 or FP32 models to any of the supported quantizations with the `-q/--quantize` flag in `ollama create`.
|
||||
|
||||
```dockerfile
|
||||
FROM /path/to/my/gemma/f16/model
|
||||
```
|
||||
ollama create example -f Modelfile
|
||||
```
|
||||
|
||||
### Step 3: Run your model
|
||||
|
||||
Next, test the model with `ollama run`:
|
||||
|
||||
```
|
||||
ollama run example "What is your favourite condiment?"
|
||||
```
|
||||
|
||||
## Importing (PyTorch & Safetensors)
|
||||
|
||||
> Importing from PyTorch and Safetensors is a longer process than importing from GGUF. Improvements that make it easier are a work in progress.
|
||||
|
||||
### Setup
|
||||
|
||||
First, clone the `ollama/ollama` repo:
|
||||
|
||||
```
|
||||
git clone git@github.com:ollama/ollama.git ollama
|
||||
cd ollama
|
||||
```
|
||||
|
||||
and then fetch its `llama.cpp` submodule:
|
||||
|
||||
```shell
|
||||
git submodule init
|
||||
git submodule update llm/llama.cpp
|
||||
$ ollama create -q Q4_K_M mymodel
|
||||
transferring model data
|
||||
quantizing F16 model to Q4_K_M
|
||||
creating new layer sha256:735e246cc1abfd06e9cdcf95504d6789a6cd1ad7577108a70d9902fef503c1bd
|
||||
creating new layer sha256:0853f0ad24e5865173bbf9ffcc7b0f5d56b66fd690ab1009867e45e7d2c4db0f
|
||||
writing manifest
|
||||
success
|
||||
```
|
||||
|
||||
Next, install the Python dependencies:
|
||||
### Supported Quantizations
|
||||
|
||||
```
|
||||
python3 -m venv llm/llama.cpp/.venv
|
||||
source llm/llama.cpp/.venv/bin/activate
|
||||
pip install -r llm/llama.cpp/requirements.txt
|
||||
<details>
|
||||
<summary>Legacy Quantization</summary>
|
||||
|
||||
- `Q4_0`
|
||||
- `Q4_1`
|
||||
- `Q5_0`
|
||||
- `Q5_1`
|
||||
- `Q8_0`
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>K-means Quantization</summary>`
|
||||
|
||||
- `Q3_K_S`
|
||||
- `Q3_K_M`
|
||||
- `Q3_K_L`
|
||||
- `Q4_K_S`
|
||||
- `Q4_K_M`
|
||||
- `Q5_K_S`
|
||||
- `Q5_K_M`
|
||||
- `Q6_K`
|
||||
|
||||
</details>
|
||||
|
||||
> [!NOTE]
|
||||
> Activation-aware Weight Quantization (i.e. IQ) are not currently supported for automatic quantization however you can still import the quantized model into Ollama, see [Import GGUF](#import-gguf).
|
||||
|
||||
## Template Detection
|
||||
|
||||
> [!NOTE]
|
||||
> Template detection requires v0.1.42 or higher.
|
||||
|
||||
Ollama uses model metadata, specifically `tokenizer.chat_template`, to automatically create a template appropriate for the model you're importing.
|
||||
|
||||
```dockerfile
|
||||
FROM /path/to/my/gemma/model
|
||||
```
|
||||
|
||||
Then build the `quantize` tool:
|
||||
|
||||
```
|
||||
make -C llm/llama.cpp quantize
|
||||
```shell
|
||||
$ ollama create mymodel
|
||||
transferring model data
|
||||
using autodetected template gemma-instruct
|
||||
creating new layer sha256:baa2a0edc27d19cc6b7537578a9a7ba1a4e3214dc185ed5ae43692b319af7b84
|
||||
creating new layer sha256:ba66c3309914dbef07e5149a648fd1877f030d337a4f240d444ea335008943cb
|
||||
writing manifest
|
||||
success
|
||||
```
|
||||
|
||||
### Clone the HuggingFace repository (optional)
|
||||
|
||||
If the model is currently hosted in a HuggingFace repository, first clone that repository to download the raw model.
|
||||
|
||||
Install [Git LFS](https://docs.github.com/en/repositories/working-with-files/managing-large-files/installing-git-large-file-storage), verify it's installed, and then clone the model's repository:
|
||||
|
||||
```
|
||||
git lfs install
|
||||
git clone https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1 model
|
||||
```
|
||||
|
||||
### Convert the model
|
||||
|
||||
> Note: some model architectures require using specific convert scripts. For example, Qwen models require running `convert-hf-to-gguf.py` instead of `convert.py`
|
||||
|
||||
```
|
||||
python llm/llama.cpp/convert.py ./model --outtype f16 --outfile converted.bin
|
||||
```
|
||||
|
||||
### Quantize the model
|
||||
|
||||
```
|
||||
llm/llama.cpp/quantize converted.bin quantized.bin q4_0
|
||||
```
|
||||
|
||||
### Step 3: Write a `Modelfile`
|
||||
|
||||
Next, create a `Modelfile` for your model:
|
||||
|
||||
```
|
||||
FROM quantized.bin
|
||||
TEMPLATE "[INST] {{ .Prompt }} [/INST]"
|
||||
```
|
||||
|
||||
### Step 4: Create the Ollama model
|
||||
|
||||
Finally, create a model from your `Modelfile`:
|
||||
|
||||
```
|
||||
ollama create example -f Modelfile
|
||||
```
|
||||
|
||||
### Step 5: Run your model
|
||||
|
||||
Next, test the model with `ollama run`:
|
||||
|
||||
```
|
||||
ollama run example "What is your favourite condiment?"
|
||||
```
|
||||
|
||||
## Publishing your model (optional – early alpha)
|
||||
|
||||
Publishing models is in early alpha. If you'd like to publish your model to share with others, follow these steps:
|
||||
|
||||
1. Create [an account](https://ollama.com/signup)
|
||||
2. Copy your Ollama public key:
|
||||
- macOS: `cat ~/.ollama/id_ed25519.pub | pbcopy`
|
||||
- Windows: `type %USERPROFILE%\.ollama\id_ed25519.pub`
|
||||
- Linux: `cat /usr/share/ollama/.ollama/id_ed25519.pub`
|
||||
3. Add your public key to your [Ollama account](https://ollama.com/settings/keys)
|
||||
|
||||
Next, copy your model to your username's namespace:
|
||||
|
||||
```
|
||||
ollama cp example <your username>/example
|
||||
```
|
||||
|
||||
> Note: model names may only contain lowercase letters, digits, and the characters `.`, `-`, and `_`.
|
||||
|
||||
Then push the model:
|
||||
|
||||
```
|
||||
ollama push <your username>/example
|
||||
```
|
||||
|
||||
After publishing, your model will be available at `https://ollama.com/<your username>/example`.
|
||||
|
||||
## Quantization reference
|
||||
|
||||
The quantization options are as follow (from highest highest to lowest levels of quantization). Note: some architectures such as Falcon do not support K quants.
|
||||
|
||||
- `q2_K`
|
||||
- `q3_K`
|
||||
- `q3_K_S`
|
||||
- `q3_K_M`
|
||||
- `q3_K_L`
|
||||
- `q4_0` (recommended)
|
||||
- `q4_1`
|
||||
- `q4_K`
|
||||
- `q4_K_S`
|
||||
- `q4_K_M`
|
||||
- `q5_0`
|
||||
- `q5_1`
|
||||
- `q5_K`
|
||||
- `q5_K_S`
|
||||
- `q5_K_M`
|
||||
- `q6_K`
|
||||
- `q8_0`
|
||||
- `f16`
|
||||
Defining a template in the Modelfile will disable this feature which may be useful if you want to use a different template than the autodetected one.
|
||||
|
|
Loading…
Reference in a new issue