revisit memory allocation to account for full kv cache on main gpu

This commit is contained in:
Jeffrey Morgan 2024-01-11 01:45:31 -05:00
parent b24e8d17b2
commit ab6be852c7

View file

@ -2,7 +2,6 @@ package llm
import (
"context"
"fmt"
"log"
"os"
"runtime"
@ -41,94 +40,76 @@ func New(workDir, model string, adapters, projectors []string, opts api.Options)
opts.NumCtx = 4
}
fmt.Println("size", ggml.Size)
fmt.Println("filetype", ggml.FileType())
fmt.Println("architecture", ggml.ModelFamily())
fmt.Println("type", ggml.ModelType())
fmt.Println("name", ggml.Name())
fmt.Println("embd", ggml.NumEmbed())
fmt.Println("head", ggml.NumHead())
fmt.Println("head_kv", ggml.NumHeadKv())
fmt.Println("gqa", ggml.NumGQA())
available, _ := gpu.CheckVRAM()
// For now assume filesize = model size
// TODO: use actual model size
requiredModel := ggml.Size
vram, _ := gpu.CheckVRAM()
size := ggml.Size
// fp16 k,v matrices require = n_ctx * n_layer * n_embd / n_head * n_head_kv * 2 bytes each * 2 key and value
requiredKv := 2 * 2 * int64(opts.NumCtx) * int64(ggml.NumLayers()) * int64(ggml.NumEmbed()) * int64(ggml.NumHeadKv()) / int64(ggml.NumHead())
kv := 2 * 2 * int64(opts.NumCtx) * int64(ggml.NumLayers()) * int64(ggml.NumEmbed()) * int64(ggml.NumHeadKv()) / int64(ggml.NumHead())
// this amount is the overhead + tensors in memory
// TODO: get this from the llama.cpp's graph calcluations instead of
// estimating it's 1/6 * kv_cache_size * num_gqa
requiredAlloc := int64(ggml.NumGQA()) * requiredKv / 6
requiredTotal := requiredModel + requiredKv + requiredAlloc
log.Println("system memory bytes:", available)
log.Println("required model bytes:", requiredModel)
log.Println("required kv bytes:", requiredKv)
log.Println("required alloc bytes:", requiredAlloc)
log.Println("required total bytes:", requiredTotal)
graph := int64(ggml.NumGQA()) * kv / 6
info := gpu.GetGPUInfo()
library := info.Library
if opts.NumGPU == -1 {
// default to offloading all layers
opts.NumGPU = int(ggml.NumLayers()) + 1
}
// decide how many layers to put on the GPU
if opts.NumGPU > 0 {
switch runtime.GOOS {
case "darwin":
if requiredTotal > available {
log.Println("not enough vram available, falling back to CPU only")
opts.NumGPU = 0
if opts.NumGPU == 0 {
break
}
default:
if library == "cpu" || library == "default" {
if size+kv+graph > vram {
log.Println("not enough vram available, falling back to CPU only")
opts.NumGPU = 0
break
}
// alloc buffer and kv cache is allocated as a fixed amount on the main gpu
// TODO: find the largest GPU and only reserve memory there
avgAvailable := available / int64(info.DeviceCount)
if requiredAlloc > avgAvailable {
opts.NumGPU = 1
default:
if library == "cpu" || library == "default" {
log.Println("GPU not available, falling back to CPU")
opts.NumGPU = 0
break
}
// don't use GPU at all if no layers are loaded
if opts.NumGPU == 0 {
library = "cpu"
break
}
// user-defined GPU count
if opts.NumGPU != -1 {
break
}
// the "main" GPU needs the most memory and determines the limit
// of how many layers can be loaded. It needs to fit:
// 1. the full compute graph allocation for all devices (graph)
// 2. the proportional kv cache for all devices (kv * % layers)
// 3. the proportional model (size * % layers / # devices)
// This estimates the number of layers
maxlayers := int64(ggml.NumLayers()) + 1
devices := int64(info.DeviceCount)
avg := vram / devices
layers := maxlayers * (avg - graph) / (kv + size/devices)
if layers > maxlayers {
layers = maxlayers
}
// 1 + 2 must fit on the main gpu
min := graph + kv*layers/maxlayers
if layers <= 0 || min > avg {
log.Printf("not enough vram available, falling back to CPU only")
library = "cpu"
opts.NumGPU = 0
break
}
// we don't know which GPU will be used, so estimate
// the scratch buffer space on all of them
// TODO: allocate less layers to the GPU with the scratch buffer
// and more to the others (based on their available memory)
available -= requiredAlloc * int64(info.DeviceCount)
// no offloading required
if requiredModel+requiredKv <= available {
break
}
// fill remaining vram with layers
log.Println("splitting", available, "of available memory bytes into layers")
bytesPerLayer := int64((requiredModel + requiredKv) / int64(ggml.NumLayers()))
log.Println("bytes per layer:", bytesPerLayer)
layers := available / bytesPerLayer
log.Println("total required with split:", requiredAlloc+(layers*bytesPerLayer))
if layers < int64(opts.NumGPU) {
opts.NumGPU = int(layers)
}
}
}
opts.NumGQA = 0
opts.RopeFrequencyBase = 0.0
opts.RopeFrequencyScale = 0.0
return newLlmServer(library, model, adapters, projectors, opts)