Merge pull request #1074 from jmorganca/mattw/loganalysisexample
Log Analysis Example
This commit is contained in:
commit
ab6639bc47
5 changed files with 131 additions and 0 deletions
8
examples/python-loganalysis/Modelfile
Normal file
8
examples/python-loganalysis/Modelfile
Normal file
|
@ -0,0 +1,8 @@
|
||||||
|
FROM codebooga:latest
|
||||||
|
|
||||||
|
SYSTEM """
|
||||||
|
You are a log file analyzer. You will receive a set of lines from a log file for some software application, find the errors and other interesting aspects of the logs, and explain them so a new user can understand what they mean. If there are any steps they can do to resolve them, list the steps in your answer.
|
||||||
|
"""
|
||||||
|
|
||||||
|
PARAMETER TEMPERATURE 0.3
|
||||||
|
|
42
examples/python-loganalysis/loganalysis.py
Normal file
42
examples/python-loganalysis/loganalysis.py
Normal file
|
@ -0,0 +1,42 @@
|
||||||
|
import sys
|
||||||
|
import re
|
||||||
|
import requests
|
||||||
|
import json
|
||||||
|
|
||||||
|
# prelines and postlines represent the number of lines of context to include in the output around the error
|
||||||
|
prelines = 10
|
||||||
|
postlines = 10
|
||||||
|
|
||||||
|
def find_errors_in_log_file():
|
||||||
|
if len(sys.argv) < 2:
|
||||||
|
print("Usage: python loganalysis.py <filename>")
|
||||||
|
return
|
||||||
|
|
||||||
|
log_file_path = sys.argv[1]
|
||||||
|
with open(log_file_path, 'r') as log_file:
|
||||||
|
log_lines = log_file.readlines()
|
||||||
|
|
||||||
|
error_logs = []
|
||||||
|
for i, line in enumerate(log_lines):
|
||||||
|
if "error" in line.lower():
|
||||||
|
start_index = max(0, i - prelines)
|
||||||
|
end_index = min(len(log_lines), i + postlines + 1)
|
||||||
|
error_logs.extend(log_lines[start_index:end_index])
|
||||||
|
|
||||||
|
return error_logs
|
||||||
|
|
||||||
|
error_logs = find_errors_in_log_file()
|
||||||
|
|
||||||
|
data = {
|
||||||
|
"prompt": "\n".join(error_logs),
|
||||||
|
"model": "mattw/loganalyzer"
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
response = requests.post("http://localhost:11434/api/generate", json=data, stream=True)
|
||||||
|
for line in response.iter_lines():
|
||||||
|
if line:
|
||||||
|
json_data = json.loads(line)
|
||||||
|
if json_data['done'] == False:
|
||||||
|
print(json_data['response'], end='', flush=True)
|
||||||
|
|
32
examples/python-loganalysis/logtest.logfile
Normal file
32
examples/python-loganalysis/logtest.logfile
Normal file
|
@ -0,0 +1,32 @@
|
||||||
|
2023-11-10 07:17:40 /docker-entrypoint.sh: /docker-entrypoint.d/ is not empty, will attempt to perform configuration
|
||||||
|
2023-11-10 07:17:40 /docker-entrypoint.sh: Looking for shell scripts in /docker-entrypoint.d/
|
||||||
|
2023-11-10 07:17:40 /docker-entrypoint.sh: Launching /docker-entrypoint.d/10-listen-on-ipv6-by-default.sh
|
||||||
|
2023-11-10 07:17:40 10-listen-on-ipv6-by-default.sh: info: Getting the checksum of /etc/nginx/conf.d/default.conf
|
||||||
|
2023-11-10 07:17:40 10-listen-on-ipv6-by-default.sh: info: Enabled listen on IPv6 in /etc/nginx/conf.d/default.conf
|
||||||
|
2023-11-10 07:17:40 /docker-entrypoint.sh: Sourcing /docker-entrypoint.d/15-local-resolvers.envsh
|
||||||
|
2023-11-10 07:17:40 /docker-entrypoint.sh: Launching /docker-entrypoint.d/20-envsubst-on-templates.sh
|
||||||
|
2023-11-10 07:17:40 /docker-entrypoint.sh: Launching /docker-entrypoint.d/30-tune-worker-processes.sh
|
||||||
|
2023-11-10 07:17:40 /docker-entrypoint.sh: Configuration complete; ready for start up
|
||||||
|
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: using the "epoll" event method
|
||||||
|
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: nginx/1.25.3
|
||||||
|
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: built by gcc 12.2.0 (Debian 12.2.0-14)
|
||||||
|
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: OS: Linux 6.4.16-linuxkit
|
||||||
|
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: getrlimit(RLIMIT_NOFILE): 1048576:1048576
|
||||||
|
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker processes
|
||||||
|
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 29
|
||||||
|
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 30
|
||||||
|
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 31
|
||||||
|
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 32
|
||||||
|
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 33
|
||||||
|
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 34
|
||||||
|
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 35
|
||||||
|
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 36
|
||||||
|
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 37
|
||||||
|
2023-11-10 07:17:40 2023/11/10 13:17:40 [notice] 1#1: start worker process 38
|
||||||
|
2023-11-10 07:17:44 192.168.65.1 - - [10/Nov/2023:13:17:43 +0000] "GET / HTTP/1.1" 200 615 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36" "-"
|
||||||
|
2023-11-10 07:17:44 2023/11/10 13:17:44 [error] 29#29: *1 open() "/usr/share/nginx/html/favicon.ico" failed (2: No such file or directory), client: 192.168.65.1, server: localhost, request: "GET /favicon.ico HTTP/1.1", host: "localhost:8080", referrer: "http://localhost:8080/"
|
||||||
|
2023-11-10 07:17:44 192.168.65.1 - - [10/Nov/2023:13:17:44 +0000] "GET /favicon.ico HTTP/1.1" 404 555 "http://localhost:8080/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36" "-"
|
||||||
|
2023-11-10 07:17:50 2023/11/10 13:17:50 [error] 29#29: *1 open() "/usr/share/nginx/html/ahstat" failed (2: No such file or directory), client: 192.168.65.1, server: localhost, request: "GET /ahstat HTTP/1.1", host: "localhost:8080"
|
||||||
|
2023-11-10 07:17:50 192.168.65.1 - - [10/Nov/2023:13:17:50 +0000] "GET /ahstat HTTP/1.1" 404 555 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36" "-"
|
||||||
|
2023-11-10 07:18:53 2023/11/10 13:18:53 [error] 29#29: *1 open() "/usr/share/nginx/html/ahstat" failed (2: No such file or directory), client: 192.168.65.1, server: localhost, request: "GET /ahstat HTTP/1.1", host: "localhost:8080"
|
||||||
|
2023-11-10 07:18:53 192.168.65.1 - - [10/Nov/2023:13:18:53 +0000] "GET /ahstat HTTP/1.1" 404 555 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36" "-"
|
48
examples/python-loganalysis/readme.md
Normal file
48
examples/python-loganalysis/readme.md
Normal file
|
@ -0,0 +1,48 @@
|
||||||
|
# Log Analysis example
|
||||||
|
|
||||||
|
![loganalyzer 2023-11-10 08_53_29](https://github.com/jmorganca/ollama/assets/633681/ad30f1fc-321f-4953-8914-e30e24db9921)
|
||||||
|
|
||||||
|
This example shows one possible way to create a log file analyzer. To use it, run:
|
||||||
|
|
||||||
|
`python loganalysis.py <logfile>`
|
||||||
|
|
||||||
|
You can try this with the `logtest.logfile` file included in this directory.
|
||||||
|
|
||||||
|
## Review the code
|
||||||
|
|
||||||
|
The first part of this example is a Modelfile that takes `codebooga` and applies a new System Prompt:
|
||||||
|
|
||||||
|
```plaintext
|
||||||
|
SYSTEM """
|
||||||
|
You are a log file analyzer. You will receive a set of lines from a log file for some software application, find the errors and other interesting aspects of the logs, and explain them so a new user can understand what they mean. If there are any steps they can do to resolve them, list the steps in your answer.
|
||||||
|
"""
|
||||||
|
```
|
||||||
|
|
||||||
|
This model is available at https://ollama.ai/mattw/loganalyzer. You can customize it and add to your own namespace using the command `ollama create <namespace/modelname> -f <path-to-modelfile>` then `ollama push <namespace/modelname>`.
|
||||||
|
|
||||||
|
Then loganalysis.py scans all the lines in the given log file and searches for the word 'error'. When the word is found, the 10 lines before and after are set as the prompt for a call to the Generate API.
|
||||||
|
|
||||||
|
```python
|
||||||
|
data = {
|
||||||
|
"prompt": "\n".join(error_logs),
|
||||||
|
"model": "mattw/loganalyzer"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
Finally, the streamed output is parsed and the response field in the output is printed to the line.
|
||||||
|
|
||||||
|
```python
|
||||||
|
response = requests.post("http://localhost:11434/api/generate", json=data, stream=True)
|
||||||
|
for line in response.iter_lines():
|
||||||
|
if line:
|
||||||
|
json_data = json.loads(line)
|
||||||
|
if json_data['done'] == False:
|
||||||
|
print(json_data['response'], end='')
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
## Next Steps
|
||||||
|
|
||||||
|
There is a lot more that can be done here. This is a simple way to detect errors, looking for the word error. Perhaps it would be interesting to find anomalous activity in the logs. It could be interesting to create embeddings for each line and compare them, looking for similar lines. Or look into applying Levenshtein Distance algorithms to find similar lines to help identify the anomalous lines.
|
||||||
|
|
||||||
|
Also try different models and different prompts to analyze the data. You could consider adding retrieval augmented generation (RAG) to this to help understand newer log formats.
|
1
examples/python-loganalysis/requirements.txt
Normal file
1
examples/python-loganalysis/requirements.txt
Normal file
|
@ -0,0 +1 @@
|
||||||
|
Requests==2.31.0
|
Loading…
Reference in a new issue