update llama.cpp to e782c9e735f93ab4767ffc37462c523b73a17ddc

This commit is contained in:
Michael Yang 2023-07-19 16:47:05 -07:00
parent 5156e48c2a
commit a83eaa7a9f
12 changed files with 1724 additions and 666 deletions

File diff suppressed because it is too large Load diff

View file

@ -1,5 +1,5 @@
/** /**
* llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066 * llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
* *
* MIT License * MIT License
* *

View file

@ -1,5 +1,5 @@
/** /**
* llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066 * llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
* *
* MIT License * MIT License
* *

View file

@ -1,7 +1,7 @@
// +build darwin // +build darwin
/** /**
* llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066 * llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
* *
* MIT License * MIT License
* *
@ -722,8 +722,8 @@ void ggml_metal_graph_compute(
GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne02 == 1);
GGML_ASSERT(ne12 == 1); GGML_ASSERT(ne12 == 1);
nth0 = 4; nth0 = 2;
nth1 = 16; nth1 = 32;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_K_f32]; [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_K_f32];
} break; } break;
case GGML_TYPE_Q5_K: case GGML_TYPE_Q5_K:
@ -731,8 +731,8 @@ void ggml_metal_graph_compute(
GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne02 == 1);
GGML_ASSERT(ne12 == 1); GGML_ASSERT(ne12 == 1);
nth0 = 4; nth0 = 2;
nth1 = 16; nth1 = 32;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q5_K_f32]; [encoder setComputePipelineState:ctx->pipeline_mul_mat_q5_K_f32];
} break; } break;
case GGML_TYPE_Q6_K: case GGML_TYPE_Q6_K:
@ -740,8 +740,8 @@ void ggml_metal_graph_compute(
GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne02 == 1);
GGML_ASSERT(ne12 == 1); GGML_ASSERT(ne12 == 1);
nth0 = 4; nth0 = 2;
nth1 = 16; nth1 = 32;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_K_f32]; [encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_K_f32];
} break; } break;
default: default:
@ -767,15 +767,18 @@ void ggml_metal_graph_compute(
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13]; [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14];
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1) { if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0]; src0t == GGML_TYPE_Q4_K) {
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7) / 8, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q5_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3) / 4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q6_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} }
else if (src0t == GGML_TYPE_Q2_K || else if (src0t == GGML_TYPE_Q2_K ||
src0t == GGML_TYPE_Q3_K || src0t == GGML_TYPE_Q3_K) {
src0t == GGML_TYPE_Q4_K ||
src0t == GGML_TYPE_Q5_K ||
src0t == GGML_TYPE_Q6_K) {
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0]; [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} else { } else {
@ -821,7 +824,7 @@ void ggml_metal_graph_compute(
const float eps = 1e-6f; const float eps = 1e-6f;
const int nth = 256; const int nth = 512;
[encoder setComputePipelineState:ctx->pipeline_rms_norm]; [encoder setComputePipelineState:ctx->pipeline_rms_norm];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
@ -829,7 +832,7 @@ void ggml_metal_graph_compute(
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
[encoder setBytes:&eps length:sizeof( float) atIndex:4]; [encoder setBytes:&eps length:sizeof( float) atIndex:4];
[encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0]; [encoder setThreadgroupMemoryLength:nth/32*sizeof(float) atIndex:0];
const int64_t nrows = ggml_nrows(src0); const int64_t nrows = ggml_nrows(src0);
@ -910,6 +913,11 @@ void ggml_metal_graph_compute(
const int n_past = ((int32_t *)(src1->data))[0]; const int n_past = ((int32_t *)(src1->data))[0];
float freq_base;
float freq_scale;
memcpy(&freq_base, (int32_t *) src1->data + 4, sizeof(float));
memcpy(&freq_scale, (int32_t *) src1->data + 5, sizeof(float));
[encoder setComputePipelineState:ctx->pipeline_rope]; [encoder setComputePipelineState:ctx->pipeline_rope];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
@ -932,6 +940,8 @@ void ggml_metal_graph_compute(
[encoder setBytes:&n_past length:sizeof( int) atIndex:18]; [encoder setBytes:&n_past length:sizeof( int) atIndex:18];
[encoder setBytes:&n_dims length:sizeof( int) atIndex:19]; [encoder setBytes:&n_dims length:sizeof( int) atIndex:19];
[encoder setBytes:&mode length:sizeof( int) atIndex:20]; [encoder setBytes:&mode length:sizeof( int) atIndex:20];
[encoder setBytes:&freq_base length:sizeof(float) atIndex:21];
[encoder setBytes:&freq_scale length:sizeof(float) atIndex:22];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;

View file

@ -1,5 +1,5 @@
/** /**
* llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066 * llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
* *
* MIT License * MIT License
* *
@ -357,26 +357,33 @@ kernel void kernel_rms_norm(
threadgroup float * sum [[threadgroup(0)]], threadgroup float * sum [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]], uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]], uint tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint ntg[[threads_per_threadgroup]]) { uint ntg[[threads_per_threadgroup]]) {
device const float * x = (device const float *) ((device const char *) src0 + tgpig*nb01); device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01);
device const float * x_scalar = (device const float *) x;
float4 sumf=0;
float all_sum=0;
// parallel sum // parallel sum
sum[tpitg] = 0.0f; for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
for (int i00 = tpitg; i00 < ne00; i00 += ntg) { sumf += x[i00] * x[i00];
sum[tpitg] += x[i00] * x[i00]; }
all_sum = sumf[0] + sumf[1] + sumf[2] + sumf[3];
all_sum = simd_sum(all_sum);
if (tiisg == 0) {
sum[sgitg] = all_sum;
} }
// reduce
threadgroup_barrier(mem_flags::mem_threadgroup); threadgroup_barrier(mem_flags::mem_threadgroup);
for (uint i = ntg/2; i > 0; i /= 2) { // broadcast, simd group number is ntg / 32
for (int i = ntg / 32 / 2; i > 0; i /= 2) {
if (tpitg < i) { if (tpitg < i) {
sum[tpitg] += sum[tpitg + i]; sum[tpitg] += sum[tpitg + i];
} }
threadgroup_barrier(mem_flags::mem_threadgroup);
} }
// broadcast
if (tpitg == 0) { if (tpitg == 0) {
for (int i = 4 * (ne00 / 4); i < ne00; i++) {sum[0] += x_scalar[i];}
sum[0] /= ne00; sum[0] /= ne00;
} }
@ -385,10 +392,99 @@ kernel void kernel_rms_norm(
const float mean = sum[0]; const float mean = sum[0];
const float scale = 1.0f/sqrt(mean + eps); const float scale = 1.0f/sqrt(mean + eps);
device float * y = dst + tgpig*ne00; device float4 * y = (device float4 *) (dst + tgpig*ne00);
for (int i00 = tpitg; i00 < ne00; i00 += ntg) { device float * y_scalar = (device float *) y;
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
y[i00] = x[i00] * scale; y[i00] = x[i00] * scale;
} }
if (tpitg == 0) {
for (int i00 = 4 * (ne00 / 4); i00 < ne00; i00++) {y_scalar[i00] = x_scalar[i00] * scale;}
}
}
// function for calculate inner product between a q4_0 block and 32 floats (yl), sumy is SUM(yl[i])
float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl) {
float d = qb_curr->d;
float4 acc = 0.f;
device uint16_t * qs = ((device uint16_t *)qb_curr + 1);
for (int i = 0; i < 16; i+=2) {
acc[0] += yl[i] * (qs[i / 2] & 0x000F);
acc[1] += yl[i + 16] * (qs[i / 2] & 0x00F0);
acc[2] += yl[i + 1] * (qs[i / 2] & 0x0F00);
acc[3] += yl[i + 17] * (qs[i / 2] & 0xF000);
}
return d * (sumy * -8.f + acc[0] + acc[1]/16.f + acc[2]/256.f + acc[3]/4096.f);
}
// function for calculate inner product between a q4_1 block and 32 floats (yl), sumy is SUM(yl[i])
float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl) {
float d = qb_curr->d;
float m = qb_curr->m;
float4 acc = 0.f;
device uint16_t * qs = ((device uint16_t *)qb_curr + 2);
for (int i = 0; i < 16; i+=2) {
acc[0] += yl[i] * (qs[i / 2] & 0x000F);
acc[1] += yl[i + 16] * (qs[i / 2] & 0x00F0);
acc[2] += yl[i + 1] * (qs[i / 2] & 0x0F00);
acc[3] += yl[i + 17] * (qs[i / 2] & 0xF000);
}
return d * (acc[0] + acc[1]/16.f + acc[2]/256.f + acc[3]/4096.f) + sumy * m;
}
// putting them in the kernel cause a significant performance penalty
#define N_DST 4 // each SIMD group works on 4 rows
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
template<typename block_q_type>
void mul_vec_q_n_f32(device const void * src0, device const float * src1, device float * dst,
int64_t ne00, int64_t ne10, int64_t ne0, int64_t ne01,
uint2 tgpig, uint tiisg, uint sgitg) {
const int nb = ne00/QK4_0;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
device const block_q_type * x = (device const block_q_type *) src0 + (r0 * N_SIMDGROUP + sgitg) * N_DST * nb;
device const float * y = (device const float *) src1 + r1*ne10;
float4 y_curr[8]; // src1 vector cache
float sumf[N_DST]={0.f}, all_sum;
thread float * yl=(thread float *)y_curr;
// each thread in a SIMD group deals with 1 block.
for (int column = 0; column < nb / N_SIMDWIDTH; column++) {
float sumy = 0;
for (int i = 0; i < QK4_0 / 4; i++) {
y_curr[i] = *((device float4 *)(y + N_SIMDWIDTH * (tiisg + column * QK4_0)) + i);
sumy += y_curr[i][0] + y_curr[i][1] + y_curr[i][2] + y_curr[i][3];
}
for (int row = 0; row < N_DST; row++) {
sumf[row] += block_q_n_dot_y(x+(tiisg + row * nb + column * N_SIMDWIDTH), sumy, yl);
}
}
// from now loads two rows every time and 16 blocks per row
int ir = tiisg / (N_SIMDWIDTH / 2);
int ib = tiisg % (N_SIMDWIDTH / 2);
for (int ind = 0; ind < (nb % N_SIMDWIDTH + N_SIMDWIDTH / 2 - 1)/(N_SIMDWIDTH / 2); ind++) {
int nb_start = (nb / N_SIMDWIDTH) * N_SIMDWIDTH + ind * (N_SIMDWIDTH / 2); //where the left blocks start
float sumy = 0;
for (int i = 0; i < QK4_0 / 4; i++) {
y_curr[i] = *((device float4 *)(y + (nb_start + ib) * QK4_0) + i);
sumy += y_curr[i][0] + y_curr[i][1] + y_curr[i][2] + y_curr[i][3];
}
for (int row = 0; row < N_DST; row+=2) {
if (nb_start + ib < nb) {
sumf[row + ir] += block_q_n_dot_y(x + (nb_start + ib + (row + ir) * nb), sumy, yl);
}
}
}
for (int row = 0; row < N_DST; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0 && ((r0 * N_SIMDGROUP + sgitg) * N_DST + row) < ne01) {
dst[r1*ne0 + (r0 * N_SIMDGROUP + sgitg) * N_DST + row] = all_sum;
}
}
} }
kernel void kernel_mul_mat_q4_0_f32( kernel void kernel_mul_mat_q4_0_f32(
@ -398,65 +494,11 @@ kernel void kernel_mul_mat_q4_0_f32(
constant int64_t & ne00, constant int64_t & ne00,
constant int64_t & ne10, constant int64_t & ne10,
constant int64_t & ne0, constant int64_t & ne0,
threadgroup float * sum [[threadgroup(0)]], constant int64_t & ne01[[buffer(4)]],
uint2 tgpig[[threadgroup_position_in_grid]], uint2 tgpig[[threadgroup_position_in_grid]],
uint2 tpitg[[thread_position_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]],
uint2 tptg[[threads_per_threadgroup]]) { uint sgitg[[simdgroup_index_in_threadgroup]]) {
const int nb = ne00/QK4_0; mul_vec_q_n_f32<block_q4_0>(src0,src1,dst,ne00,ne10,ne0,ne01,tgpig,tiisg,sgitg);
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
device const block_q4_0 * x = (device const block_q4_0 *) src0 + r0*nb;
device const float * y = (device const float *) src1 + r1*ne10;
const int nth = tptg.x*tptg.y;
const int ith = tptg.y*tpitg.x + tpitg.y;
const int ix = tpitg.y/4; // 0 or 1
const int iy = tpitg.y - 4*ix; // 0...3
const int first = 4 * iy;
float sumf = 0;
for (int i = 2*tpitg.x + ix; i < nb; i += 2*tptg.x) {
const float d = (float)x[i].d;
device const uint8_t * xl = x[i].qs + first;
device const float * yl = y + i * QK4_0 + first;
float2 acc = {0.0f, 0.0f};
for (int j = 0; j < 4; ++j) {
acc[0] += yl[j] * (xl[j] & 0xF) + yl[j+16] * (xl[j] >> 4);
acc[1] += yl[j] + yl[j+16];
}
sumf += d * (acc[0] - 8.f*acc[1]);
}
sum[ith] = sumf;
//
// Accumulate the sum from all threads in the threadgroup
//
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%4 == 0) {
sum[ith] += sum[ith+1] + sum[ith+2] + sum[ith+3];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%16 == 0) {
sum[ith] += sum[ith+4] + sum[ith+8] + sum[ith+12];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith == 0) {
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
dst[r1*ne0 + r0] = sum[0];
}
} }
kernel void kernel_mul_mat_q4_1_f32( kernel void kernel_mul_mat_q4_1_f32(
@ -466,66 +508,11 @@ kernel void kernel_mul_mat_q4_1_f32(
constant int64_t & ne00, constant int64_t & ne00,
constant int64_t & ne10, constant int64_t & ne10,
constant int64_t & ne0, constant int64_t & ne0,
threadgroup float * sum [[threadgroup(0)]], constant int64_t & ne01[[buffer(4)]],
uint2 tgpig[[threadgroup_position_in_grid]], uint2 tgpig[[threadgroup_position_in_grid]],
uint2 tpitg[[thread_position_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]],
uint2 tptg[[threads_per_threadgroup]]) { uint sgitg[[simdgroup_index_in_threadgroup]]) {
const int nb = ne00/QK4_1; mul_vec_q_n_f32<block_q4_1>(src0,src1,dst,ne00,ne10,ne0,ne01,tgpig,tiisg,sgitg);
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
device const block_q4_1 * x = (device const block_q4_1 *) src0 + r0*nb;
device const float * y = (device const float *) src1 + r1*ne10;
const uint nth = tptg.x*tptg.y;
const uint ith = tptg.y*tpitg.x + tpitg.y;
const int ix = tpitg.y/4; // 0 or 1
const int iy = tpitg.y - 4*ix; // 0...3
const int first = 4 * iy;
float sumf = 0;
for (int i = 2*tpitg.x + ix; i < nb; i += 2*tptg.x) {
const float d = (float)x[i].d;
const float m = (float)x[i].m;
device const uint8_t * xl = x[i].qs + first;
device const float * yl = y + i * QK4_1 + first;
float2 acc = {0.0f, 0.0f};
for (int j = 0; j < 4; ++j) {
acc[0] += yl[j+ 0] * (d * (xl[j] & 0xF) + m);
acc[1] += yl[j+16] * (d * (xl[j] >> 4) + m);
}
sumf += acc[0] + acc[1];
}
sum[ith] = sumf;
//
// Accumulate the sum from all threads in the threadgroup
//
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%4 == 0) {
sum[ith] += sum[ith+1] + sum[ith+2] + sum[ith+3];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%16 == 0) {
sum[ith] += sum[ith+4] + sum[ith+8] + sum[ith+12];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith == 0) {
for (uint i = 16; i < nth; i += 16) sum[0] += sum[i];
dst[r1*ne0 + r0] = sum[0];
}
} }
kernel void kernel_mul_mat_f16_f32( kernel void kernel_mul_mat_f16_f32(
@ -641,17 +628,19 @@ kernel void kernel_rope(
constant int & n_past, constant int & n_past,
constant int & n_dims, constant int & n_dims,
constant int & mode, constant int & mode,
constant float & freq_base,
constant float & freq_scale,
uint3 tpig[[thread_position_in_grid]]) { uint3 tpig[[thread_position_in_grid]]) {
const int64_t i3 = tpig[2]; const int64_t i3 = tpig[2];
const int64_t i2 = tpig[1]; const int64_t i2 = tpig[1];
const int64_t i1 = tpig[0]; const int64_t i1 = tpig[0];
const bool is_neox = mode & 2; const bool is_neox = mode & 2;
const float theta_scale = pow(10000.0, -2.0f/n_dims); const float theta_scale = pow(freq_base, -2.0f/n_dims);
const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2); const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
float theta = (float)p; float theta = freq_scale * (float)p;
if (!is_neox) { if (!is_neox) {
for (int64_t i0 = 0; i0 < ne0; i0 += 2) { for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
@ -1489,6 +1478,7 @@ kernel void kernel_mul_mat_q3_K_f32(
} }
#if QK_K == 256
kernel void kernel_mul_mat_q4_K_f32( kernel void kernel_mul_mat_q4_K_f32(
device const void * src0, device const void * src0,
device const float * src1, device const float * src1,
@ -1496,132 +1486,181 @@ kernel void kernel_mul_mat_q4_K_f32(
constant int64_t & ne00, constant int64_t & ne00,
constant int64_t & ne10, constant int64_t & ne10,
constant int64_t & ne0, constant int64_t & ne0,
threadgroup float * sum [[threadgroup(0)]], constant int64_t & ne01[[buffer(4)]],
uint2 tgpig[[threadgroup_position_in_grid]], uint2 tgpig[[threadgroup_position_in_grid]],
uint2 tpitg[[thread_position_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]],
uint2 tptg[[threads_per_threadgroup]]) { uint sgitg[[simdgroup_index_in_threadgroup]]) {
const int nb = ne00/QK_K;
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
const int nth = tptg.x*tptg.y;
const int ith = tptg.y*tpitg.x + tpitg.y;
device const block_q4_K * x = (device const block_q4_K *) src0 + r0*nb;
device const float * yy = (device const float *) src1 + r1*ne10;
float sumf = 0;
#if QK_K == 256
const uint16_t kmask1 = 0x3f3f; const uint16_t kmask1 = 0x3f3f;
const uint16_t kmask2 = 0x0f0f; const uint16_t kmask2 = 0x0f0f;
const uint16_t kmask3 = 0xc0c0; const uint16_t kmask3 = 0xc0c0;
const int tid = tpitg.y; // 0...16 const int ix = tiisg/8; // 0...3
const int il = tid/4; // 0...3 const int it = tiisg%8; // 0...7
const int ir = tid - 4*il;// 0...3 const int im = it/4; // 0 or 1
const int n = 4; const int ir = it%4; // 0...3
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 const int nb = ne00/QK_K;
const int in = il%2; const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
const int ib_row = first_row * nb;
device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row;
device const float * y = (device const float *) src1 + r1*ne10;
float yl[16];
float yh[16];
float sumf[N_DST]={0.f}, all_sum;
const int l0 = n*(2*ir + in); const int step = sizeof(block_q4_K) * nb / 2;
const int q_offset = 32*im + l0;
const int y_offset = 64*im + l0;
uchar2 sc1, sc2, sc3, sc4; device const float * y4 = y + ix * QK_K + 64 * im + 8 * ir;
for (int i = tpitg.x; i < nb; i += tptg.x) { uint16_t sc16[4];
thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
device const uint8_t * q1 = (x + i)->qs + q_offset; for (int ib = ix; ib < nb; ib += 4) {
device const uint8_t * q2 = q1 + 64;
device const float * y1 = yy + i*QK_K + y_offset;
device const float * y2 = y1 + 128;
const float dall = (float)((x + i)->d);
const float dmin = (float)((x + i)->dmin);
device const uint16_t * a = (device const uint16_t *)(x + i)->scales;
sc1 = as_type<uchar2>((uint16_t)(a[im+0] & kmask1));
sc2 = as_type<uchar2>((uint16_t)(a[im+2] & kmask1));
sc3 = as_type<uchar2>((uint16_t)(((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2)));
sc4 = as_type<uchar2>((uint16_t)(((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2)));
float4 s = {0.f, 0.f, 0.f, 0.f};
float smin = 0;
for (int l = 0; l < n; ++l) {
s[0] += y1[l] * (q1[l] & 0xF); s[1] += y1[l+32] * (q1[l] >> 4);
s[2] += y2[l] * (q2[l] & 0xF); s[3] += y2[l+32] * (q2[l] >> 4);
smin += y1[l] * sc2[0] + y1[l+32] * sc2[1] + y2[l] * sc4[0] + y2[l+32] * sc4[1];
float4 sumy = {0.f, 0.f, 0.f, 0.f};
for (int i = 0; i < 8; ++i) {
yl[i+0] = y4[i+ 0]; sumy[0] += yl[i+0];
yl[i+8] = y4[i+ 32]; sumy[1] += yl[i+8];
yh[i+0] = y4[i+128]; sumy[2] += yh[i+0];
yh[i+8] = y4[i+160]; sumy[3] += yh[i+8];
} }
sumf += dall * (s[0] * sc1[0] + s[1] * sc1[1] + s[2] * sc3[0] + s[3] * sc3[1]) - dmin * smin;
device const uint16_t * sc = (device const uint16_t *)x[ib].scales + im;
device const uint16_t * q1 = (device const uint16_t *)x[ib].qs + 16 * im + 4 * ir;
device const half * dh = &x[ib].d;
for (int row = 0; row < N_DST; row++) {
sc16[0] = sc[0] & kmask1;
sc16[1] = sc[2] & kmask1;
sc16[2] = ((sc[4] >> 0) & kmask2) | ((sc[0] & kmask3) >> 2);
sc16[3] = ((sc[4] >> 4) & kmask2) | ((sc[2] & kmask3) >> 2);
device const uint16_t * q2 = q1 + 32;
float4 acc1 = {0.f, 0.f, 0.f, 0.f};
float4 acc2 = {0.f, 0.f, 0.f, 0.f};
for (int i = 0; i < 8; i += 2) {
acc1[0] += yl[i+0] * (q1[i/2] & 0x000F);
acc1[1] += yl[i+1] * (q1[i/2] & 0x0F00);
acc1[2] += yl[i+8] * (q1[i/2] & 0x00F0);
acc1[3] += yl[i+9] * (q1[i/2] & 0xF000);
acc2[0] += yh[i+0] * (q2[i/2] & 0x000F);
acc2[1] += yh[i+1] * (q2[i/2] & 0x0F00);
acc2[2] += yh[i+8] * (q2[i/2] & 0x00F0);
acc2[3] += yh[i+9] * (q2[i/2] & 0xF000);
}
float dall = dh[0];
float dmin = dh[1];
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc8[0] +
(acc1[2] + 1.f/256.f * acc1[3]) * sc8[1] * 1.f/16.f +
(acc2[0] + 1.f/256.f * acc2[1]) * sc8[4] +
(acc2[2] + 1.f/256.f * acc2[3]) * sc8[5] * 1.f/16.f) -
dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
q1 += step;
sc += step;
dh += step;
}
y4 += 4 * QK_K;
}
for (int row = 0; row < N_DST; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst[r1*ne0 + first_row + row] = all_sum;
}
}
} }
#else #else
uint16_t aux16[2]; kernel void kernel_mul_mat_q4_K_f32(
thread const uint8_t * scales = (thread const uint8_t *)aux16; device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne10,
constant int64_t & ne0,
constant int64_t & ne01[[buffer(4)]],
uint2 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
const int il = 4*tpitg.x; const int ix = tiisg/4; // 0...7
const int it = tiisg%4; // 0...3
for (int i = tpitg.y; i < nb; i += tptg.y) { const int nb = ne00/QK_K;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
const int ib_row = first_row * nb;
device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row;
device const float * y = (device const float *) src1 + r1*ne10;
float yl[8];
float yh[8];
float sumf[N_DST]={0.f}, all_sum;
device const uint8_t * q = x[i].qs + il; const int step = sizeof(block_q4_K) * nb / 2;
device const float * y = yy + i * QK_K + il;
const float d = (float)x[i].d[0]; device const float * y4 = y + ix * QK_K + 8 * it;
const float m = (float)x[i].d[1];
device const uint16_t * a = (device const uint16_t *)x[i].scales; uint16_t sc16[4];
aux16[0] = a[0] & 0x0f0f;
aux16[1] = (a[0] >> 4) & 0x0f0f;
for (int l = 0; l < 4; ++l) { for (int ib = ix; ib < nb; ib += 8) {
sumf += d * scales[0] * (y[l+ 0] * (q[l] & 0xF) + y[l+16] * (q[l+16] & 0xF)) - m * scales[2] * (y[l+ 0] + y[l+16])
+ d * scales[1] * (y[l+32] * (q[l] >> 4) + y[l+48] * (q[l+16] >> 4)) - m * scales[3] * (y[l+32] + y[l+48]); float2 sumy = {0.f, 0.f};
for (int i = 0; i < 8; ++i) {
yl[i] = y4[i+ 0]; sumy[0] += yl[i];
yh[i] = y4[i+32]; sumy[1] += yh[i];
}
device const uint16_t * sc = (device const uint16_t *)x[ib].scales;
device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
device const half * dh = x[ib].d;
for (int row = 0; row < N_DST; row++) {
sc16[0] = sc[0] & 0x000f;
sc16[1] = sc[0] & 0x0f00;
sc16[2] = sc[0] & 0x00f0;
sc16[3] = sc[0] & 0xf000;
float2 acc1 = {0.f, 0.f};
float2 acc2 = {0.f, 0.f};
for (int i = 0; i < 8; i += 2) {
acc1[0] += yl[i+0] * (qs[i/2] & 0x000F);
acc1[1] += yl[i+1] * (qs[i/2] & 0x0F00);
acc2[0] += yh[i+0] * (qs[i/2] & 0x00F0);
acc2[1] += yh[i+1] * (qs[i/2] & 0xF000);
}
float dall = dh[0];
float dmin = dh[1];
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc16[0] +
(acc2[0] + 1.f/256.f * acc2[1]) * sc16[1] * 1.f/4096.f) -
dmin * 1.f/16.f * (sumy[0] * sc16[2] + sumy[1] * sc16[3] * 1.f/256.f);
qs += step;
sc += step;
dh += step;
}
y4 += 8 * QK_K;
}
for (int row = 0; row < N_DST; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst[r1*ne0 + first_row + row] = all_sum;
}
} }
} }
#endif #endif
sum[ith] = sumf;
//
// Accumulate the sum from all threads in the threadgroup
// This version is slightly faster than the commented out one below,
// which I copy-pasted from ggerganov's q4_0 dot product for metal.
//
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%4 == 0) {
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%16 == 0) {
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith == 0) {
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
dst[r1*ne0 + r0] = sum[0];
}
//// accumulate the sum from all threads in the threadgroup
//threadgroup_barrier(mem_flags::mem_threadgroup);
//for (uint i = nth/2; i > 0; i /= 2) {
// if (ith < i) {
// sum[ith] += sum[ith + i];
// }
// threadgroup_barrier(mem_flags::mem_threadgroup);
//}
//if (ith == 0) {
// dst[r1*ne0 + r0] = sum[0];
//}
}
kernel void kernel_mul_mat_q5_K_f32( kernel void kernel_mul_mat_q5_K_f32(
device const void * src0, device const void * src0,
device const float * src1, device const float * src1,
@ -1629,39 +1668,39 @@ kernel void kernel_mul_mat_q5_K_f32(
constant int64_t & ne00, constant int64_t & ne00,
constant int64_t & ne10, constant int64_t & ne10,
constant int64_t & ne0, constant int64_t & ne0,
threadgroup float * sum [[threadgroup(0)]],
uint2 tgpig[[threadgroup_position_in_grid]], uint2 tgpig[[threadgroup_position_in_grid]],
uint2 tpitg[[thread_position_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]],
uint2 tptg[[threads_per_threadgroup]]) { uint sgitg[[simdgroup_index_in_threadgroup]]) {
const int nb = ne00/QK_K; const int nb = ne00/QK_K;
const int64_t r0 = tgpig.x; const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y; const int64_t r1 = tgpig.y;
device const block_q5_K * x = (device const block_q5_K *) src0 + r0*nb; const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
device const block_q5_K * x = (device const block_q5_K *) src0 + first_row*nb;
device const float * yy = (device const float *) src1 + r1*ne10; device const float * yy = (device const float *) src1 + r1*ne10;
const int nth = tptg.x*tptg.y; float sumf[2]={0.f};
const int ith = tptg.y*tpitg.x + tpitg.y;
float sumf = 0; const int step = sizeof(block_q5_K) * nb;
#if QK_K == 256 #if QK_K == 256
#
float yl[16], yh[16];
const uint16_t kmask1 = 0x3f3f; const uint16_t kmask1 = 0x3f3f;
const uint16_t kmask2 = 0x0f0f; const uint16_t kmask2 = 0x0f0f;
const uint16_t kmask3 = 0xc0c0; const uint16_t kmask3 = 0xc0c0;
const int tid = tpitg.y; // 0...16 const int tid = tiisg/4;
const int il = tid/4; // 0...3 const int ix = tiisg%4;
const int ir = tid - 4*il;// 0...3 const int im = tid/4;
const int n = 4; const int ir = tid%4;
const int n = 8;
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 const int l0 = n*ir;
const int in = il%2;
const int l0 = n*(2*ir + in);
const int q_offset = 32*im + l0; const int q_offset = 32*im + l0;
const int y_offset = 64*im + l0; const int y_offset = 64*im + l0;
@ -1670,78 +1709,114 @@ kernel void kernel_mul_mat_q5_K_f32(
const uint8_t hm3 = hm1 << 4; const uint8_t hm3 = hm1 << 4;
const uint8_t hm4 = hm2 << 4; const uint8_t hm4 = hm2 << 4;
uchar2 sc1, sc2, sc3, sc4; uint16_t sc16[4];
thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
for (int i = tpitg.x; i < nb; i += tptg.x) { device const float * y1 = yy + ix*QK_K + y_offset;
for (int i = ix; i < nb; i += 4) {
device const uint8_t * q1 = x[i].qs + q_offset;
device const uint8_t * qh = x[i].qh + l0;
device const half * dh = &x[i].d;
device const uint16_t * a = (device const uint16_t *)x[i].scales + im;
device const uint8_t * q1 = (x + i)->qs + q_offset;
device const uint8_t * q2 = q1 + 64;
device const uint8_t * qh = (x + i)->qh + l0;
device const float * y1 = yy + i*QK_K + y_offset;
device const float * y2 = y1 + 128; device const float * y2 = y1 + 128;
float4 sumy = {0.f, 0.f, 0.f, 0.f};
for (int l = 0; l < 8; ++l) {
yl[l+0] = y1[l+ 0]; sumy[0] += yl[l+0];
yl[l+8] = y1[l+32]; sumy[1] += yl[l+8];
yh[l+0] = y2[l+ 0]; sumy[2] += yh[l+0];
yh[l+8] = y2[l+32]; sumy[3] += yh[l+8];
}
const float dall = (float)((x + i)->d); for (int row = 0; row < 2; ++row) {
const float dmin = (float)((x + i)->dmin);
device const uint16_t * a = (device const uint16_t *)(x + i)->scales; device const uint8_t * q2 = q1 + 64;
sc1 = as_type<uchar2>((uint16_t)(a[im+0] & kmask1));
sc2 = as_type<uchar2>((uint16_t)(a[im+2] & kmask1));
sc3 = as_type<uchar2>((uint16_t)(((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2)));
sc4 = as_type<uchar2>((uint16_t)(((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2)));
float4 s = {0.f, 0.f, 0.f, 0.f}; sc16[0] = a[0] & kmask1;
float smin = 0; sc16[1] = a[2] & kmask1;
sc16[2] = ((a[4] >> 0) & kmask2) | ((a[0] & kmask3) >> 2);
sc16[3] = ((a[4] >> 4) & kmask2) | ((a[2] & kmask3) >> 2);
float4 acc = {0.f, 0.f, 0.f, 0.f};
for (int l = 0; l < n; ++l) { for (int l = 0; l < n; ++l) {
uint8_t h = qh[l];
acc[0] += yl[l+0] * ((uint16_t)(q1[l] & 0x0F) + (h & hm1 ? 16 : 0));
acc[1] += yl[l+8] * ((uint16_t)(q1[l] & 0xF0) + (h & hm2 ? 256 : 0));
acc[2] += yh[l+0] * ((uint16_t)(q2[l] & 0x0F) + (h & hm3 ? 16 : 0));
acc[3] += yh[l+8] * ((uint16_t)(q2[l] & 0xF0) + (h & hm4 ? 256 : 0));
}
const float dall = dh[0];
const float dmin = dh[1];
sumf[row] += dall * (acc[0] * sc8[0] + acc[1] * sc8[1] * 1.f/16.f + acc[2] * sc8[4] + acc[3] * sc8[5] * 1.f/16.f) -
dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
s[0] += y1[l+ 0] * ((q1[l] & 0xF) + (qh[l] & hm1 ? 16 : 0)); q1 += step;
s[1] += y1[l+32] * ((q1[l] >> 4) + (qh[l] & hm2 ? 16 : 0)); qh += step;
s[2] += y2[l+ 0] * ((q2[l] & 0xF) + (qh[l] & hm3 ? 16 : 0)); dh += step/2;
s[3] += y2[l+32] * ((q2[l] >> 4) + (qh[l] & hm4 ? 16 : 0)); a += step/2;
smin += y1[l] * sc2[0] + y1[l+32] * sc2[1] + y2[l] * sc4[0] + y2[l+32] * sc4[1];
} }
sumf += dall * (s[0] * sc1[0] + s[1] * sc1[1] + s[2] * sc3[0] + s[3] * sc3[1]) - dmin * smin;
y1 += 4 * QK_K;
} }
#else #else
const int il = 4 * tpitg.x; // 0, 4, 8, 12 float yl[8], yh[8];
const int il = 4 * (tiisg/8); // 0, 4, 8, 12
const int ix = tiisg%8;
const int im = il/8; // 0, 0, 1, 1 const int im = il/8; // 0, 0, 1, 1
const int in = il%8; // 0, 4, 0, 4 const int in = il%8; // 0, 4, 0, 4
for (int i = tpitg.y; i < nb; i += tptg.y) { device const float * y = yy + ix*QK_K + il;
const float d = (float)x[i].d; for (int i = ix; i < nb; i += 8) {
float4 sumy = {0.f, 0.f, 0.f, 0.f};
for (int l = 0; l < 4; ++l) {
yl[l+0] = y[l+ 0];
yl[l+4] = y[l+16];
yh[l+0] = y[l+32];
yh[l+4] = y[l+48];
}
device const half * dh = &x[i].d;
device const uint8_t * q = x[i].qs + il; device const uint8_t * q = x[i].qs + il;
device const uint8_t * h = x[i].qh + in; device const uint8_t * h = x[i].qh + in;
device const int8_t * s = x[i].scales; device const int8_t * s = x[i].scales;
device const float * y = yy + i*QK_K + il;
for (int row = 0; row < 2; ++row) {
const float d = dh[0];
float2 acc = {0.f, 0.f};
for (int l = 0; l < 4; ++l) { for (int l = 0; l < 4; ++l) {
const uint8_t hl = h[l] >> im; const uint8_t hl = h[l] >> im;
sumf += y[l+ 0] * d * s[0] * ((q[l+ 0] & 0xF) - (hl & 0x01 ? 0 : 16)) acc[0] += yl[l+0] * s[0] * ((int16_t)(q[l+ 0] & 0x0F) - (hl & 0x01 ? 0 : 16))
+ y[l+16] * d * s[1] * ((q[l+16] & 0xF) - (hl & 0x04 ? 0 : 16)) + yl[l+4] * s[1] * ((int16_t)(q[l+16] & 0x0F) - (hl & 0x04 ? 0 : 16));
+ y[l+32] * d * s[2] * ((q[l+ 0] >> 4) - (hl & 0x10 ? 0 : 16)) acc[1] += yh[l+0] * s[2] * ((int16_t)(q[l+ 0] & 0xF0) - (hl & 0x10 ? 0 : 256))
+ y[l+48] * d * s[3] * ((q[l+16] >> 4) - (hl & 0x40 ? 0 : 16)); + yh[l+4] * s[3] * ((int16_t)(q[l+16] & 0xF0) - (hl & 0x40 ? 0 : 256));
} }
sumf[row] += d * (acc[0] + 1.f/16.f * acc[1]);
q += step;
h += step;
s += step;
dh += step/2;
}
y += 8 * QK_K;
} }
#endif #endif
sum[ith] = sumf;
// for (int row = 0; row < 2; ++row) {
// Accumulate the sum from all threads in the threadgroup const float tot = simd_sum(sumf[row]);
// if (tiisg == 0) {
threadgroup_barrier(mem_flags::mem_threadgroup); dst[r1*ne0 + first_row + row] = tot;
if (ith%4 == 0) {
sum[ith] += sum[ith+1] + sum[ith+2] + sum[ith+3];
} }
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%16 == 0) {
sum[ith] += sum[ith+4] + sum[ith+8] + sum[ith+12];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith == 0) {
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
dst[r1*ne0 + r0] = sum[0];
} }
} }
@ -1753,10 +1828,9 @@ kernel void kernel_mul_mat_q6_K_f32(
constant int64_t & ne00, constant int64_t & ne00,
constant int64_t & ne10, constant int64_t & ne10,
constant int64_t & ne0, constant int64_t & ne0,
threadgroup float * sum [[threadgroup(0)]],
uint2 tgpig[[threadgroup_position_in_grid]], uint2 tgpig[[threadgroup_position_in_grid]],
uint2 tpitg[[thread_position_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]],
uint2 tptg[[threads_per_threadgroup]]) { uint sgitg[[simdgroup_index_in_threadgroup]]) {
const uint8_t kmask1 = 0x03; const uint8_t kmask1 = 0x03;
const uint8_t kmask2 = 0x0C; const uint8_t kmask2 = 0x0C;
@ -1768,19 +1842,18 @@ kernel void kernel_mul_mat_q6_K_f32(
const int64_t r0 = tgpig.x; const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y; const int64_t r1 = tgpig.y;
device const block_q6_K * x = (device const block_q6_K *) src0 + r0*nb; const int row = 2 * r0 + sgitg;
device const float * yy = (device const float *) src1 + r1*ne10;
const int nth = tptg.x*tptg.y; device const block_q6_K * x = (device const block_q6_K *) src0 + row * nb; //r0*nb;
const int ith = tptg.y*tpitg.x + tpitg.y; device const float * yy = (device const float *) src1 + r1*ne10;
float sumf = 0; float sumf = 0;
#if QK_K == 256 #if QK_K == 256
// Note: we absolutely assume that tptg.y = 16 and QK_K = 256! const int tid = tiisg/2;
const int iqs = 16 * tpitg.y; const int ix = tiisg%2;
const int ip = iqs / 128; // 0 or 1 const int ip = tid/8; // 0 or 1
const int il = (iqs - 128*ip)/16; // 0...7 const int il = tid%8;
const int n = 4; const int n = 4;
const int l0 = n*il; const int l0 = n*il;
const int is = 8*ip + l0/16; const int is = 8*ip + l0/16;
@ -1789,9 +1862,10 @@ kernel void kernel_mul_mat_q6_K_f32(
const int q_offset_l = 64*ip + l0; const int q_offset_l = 64*ip + l0;
const int q_offset_h = 32*ip + l0; const int q_offset_h = 32*ip + l0;
for (int i = tpitg.x; i < nb; i += tptg.x) { for (int i = ix; i < nb; i += 2) {
device const uint8_t * ql = x[i].ql + q_offset_l; device const uint8_t * q1 = x[i].ql + q_offset_l;
device const uint8_t * q2 = q1 + 32;
device const uint8_t * qh = x[i].qh + q_offset_h; device const uint8_t * qh = x[i].qh + q_offset_h;
device const int8_t * sc = x[i].scales + is; device const int8_t * sc = x[i].scales + is;
@ -1801,19 +1875,21 @@ kernel void kernel_mul_mat_q6_K_f32(
float4 sums = {0.f, 0.f, 0.f, 0.f}; float4 sums = {0.f, 0.f, 0.f, 0.f};
for (int l = 0; l < n; ++l) { for (int l = 0; l < n; ++l) {
sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32); sums[0] += y[l+ 0] * ((int8_t)((q1[l] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
sums[1] += y[l+32] * ((int8_t)((ql[l+32] & 0xF) | ((qh[l] & kmask2) << 2)) - 32); sums[1] += y[l+32] * ((int8_t)((q2[l] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
sums[2] += y[l+64] * ((int8_t)((ql[l+ 0] >> 4) | ((qh[l] & kmask3) << 0)) - 32); sums[2] += y[l+64] * ((int8_t)((q1[l] >> 4) | ((qh[l] & kmask3) << 0)) - 32);
sums[3] += y[l+96] * ((int8_t)((ql[l+32] >> 4) | ((qh[l] & kmask4) >> 2)) - 32); sums[3] += y[l+96] * ((int8_t)((q2[l] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
} }
sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]); sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]);
} }
#else
const int il = 4*tpitg.x; // 0, 4, 8, 12
for (int i = tpitg.y; i < nb; i += tptg.y) { #else
const int ix = tiisg/4;
const int il = 4*(tiisg%4);
for (int i = ix; i < nb; i += 8) {
device const float * y = yy + i * QK_K + il; device const float * y = yy + i * QK_K + il;
device const uint8_t * ql = x[i].ql + il; device const uint8_t * ql = x[i].ql + il;
device const uint8_t * qh = x[i].qh + il; device const uint8_t * qh = x[i].qh + il;
@ -1833,23 +1909,8 @@ kernel void kernel_mul_mat_q6_K_f32(
#endif #endif
sum[ith] = sumf; const float tot = simd_sum(sumf);
if (tiisg == 0) {
// dst[r1*ne0 + row] = tot;
// Accumulate the sum from all threads in the threadgroup
//
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%4 == 0) {
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
} }
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%16 == 0) {
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith == 0) {
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
dst[r1*ne0 + r0] = sum[0];
}
} }

File diff suppressed because it is too large Load diff

View file

@ -1,5 +1,5 @@
/** /**
* llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066 * llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
* *
* MIT License * MIT License
* *
@ -227,8 +227,13 @@
#define GGML_MAX_NAME 48 #define GGML_MAX_NAME 48
#define GGML_DEFAULT_N_THREADS 4 #define GGML_DEFAULT_N_THREADS 4
#define GGML_EXIT_SUCCESS 0
#define GGML_EXIT_ABORTED 1
#define GGML_UNUSED(x) (void)(x) #define GGML_UNUSED(x) (void)(x)
#define GGML_ASSERT(x) \ #define GGML_ASSERT(x) \
do { \ do { \
if (!(x)) { \ if (!(x)) { \
@ -389,6 +394,8 @@ extern "C" {
GGML_OP_CLAMP, GGML_OP_CLAMP,
GGML_OP_CONV_1D, GGML_OP_CONV_1D,
GGML_OP_CONV_2D, GGML_OP_CONV_2D,
GGML_OP_POOL_1D,
GGML_OP_POOL_2D,
GGML_OP_FLASH_ATTN, GGML_OP_FLASH_ATTN,
GGML_OP_FLASH_FF, GGML_OP_FLASH_FF,
@ -468,6 +475,10 @@ extern "C" {
// the `n_tasks` of nodes, 1:1 mapping to cgraph nodes // the `n_tasks` of nodes, 1:1 mapping to cgraph nodes
int n_tasks[GGML_MAX_NODES]; int n_tasks[GGML_MAX_NODES];
// abort ggml_graph_compute when true
bool (*abort_callback)(void * data);
void * abort_callback_data;
}; };
// computation graph // computation graph
@ -1136,6 +1147,17 @@ extern "C" {
int mode, int mode,
int n_ctx); int n_ctx);
// custom RoPE, in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
int n_dims,
int mode,
float freq_base,
float freq_scale,
int n_ctx);
// rotary position embedding backward, i.e compute dx from dy // rotary position embedding backward, i.e compute dx from dy
// a - dy // a - dy
GGML_API struct ggml_tensor * ggml_rope_back( GGML_API struct ggml_tensor * ggml_rope_back(
@ -1190,6 +1212,31 @@ extern "C" {
int s, int s,
int d); int d);
enum ggml_op_pool {
GGML_OP_POOL_MAX,
GGML_OP_POOL_AVG,
GGML_OP_POOL_COUNT,
};
GGML_API struct ggml_tensor* ggml_pool_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_op_pool op,
int k0, // kernel size
int s0, // stride
int p0); // padding
GGML_API struct ggml_tensor* ggml_pool_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_op_pool op,
int k0,
int k1,
int s0,
int s1,
int p0,
int p1);
GGML_API struct ggml_tensor * ggml_flash_attn( GGML_API struct ggml_tensor * ggml_flash_attn(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * q, struct ggml_tensor * q,
@ -1329,7 +1376,7 @@ extern "C" {
// ggml_graph_plan() has to be called before ggml_graph_compute() // ggml_graph_plan() has to be called before ggml_graph_compute()
// when plan.work_size > 0, caller must allocate memory for plan.work_data // when plan.work_size > 0, caller must allocate memory for plan.work_data
GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/); GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
GGML_API void ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan); GGML_API int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
// same as ggml_graph_compute() but the work data is allocated as a part of the context // same as ggml_graph_compute() but the work data is allocated as a part of the context

View file

@ -1,5 +1,5 @@
/** /**
* llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066 * llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
* *
* MIT License * MIT License
* *

View file

@ -1,5 +1,5 @@
/** /**
* llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066 * llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
* *
* MIT License * MIT License
* *
@ -41,6 +41,14 @@
#define K_SCALE_SIZE 12 #define K_SCALE_SIZE 12
#endif #endif
#ifndef static_assert
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
#define static_assert(cond, msg) _Static_assert(cond, msg)
#else
#define static_assert(cond, msg) struct global_scope_noop_trick
#endif
#endif
// //
// Super-block quantization structures // Super-block quantization structures
// //

View file

@ -1,5 +1,5 @@
/** /**
* llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066 * llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
* *
* MIT License * MIT License
* *
@ -201,13 +201,13 @@ struct llama_mmap {
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) { llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
size = file->size; size = file->size;
int fd = fileno(file->fp); int fd = fileno(file->fp);
int flags = MAP_PRIVATE; int flags = MAP_SHARED;
// prefetch/readahead impairs performance on NUMA systems // prefetch/readahead impairs performance on NUMA systems
if (numa) { prefetch = 0; } if (numa) { prefetch = 0; }
#ifdef __linux__ #ifdef __linux__
if (prefetch) { flags |= MAP_POPULATE; } if (prefetch) { flags |= MAP_POPULATE; }
#endif #endif
addr = mmap(NULL, file->size, PROT_READ | PROT_WRITE, flags, fd, 0); addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
if (addr == MAP_FAILED) { if (addr == MAP_FAILED) {
throw std::runtime_error(format("mmap failed: %s", strerror(errno))); throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
} }
@ -249,7 +249,7 @@ struct llama_mmap {
throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str())); throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
} }
addr = MapViewOfFile(hMapping, FILE_MAP_COPY, 0, 0, 0); addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
error = GetLastError(); error = GetLastError();
CloseHandle(hMapping); CloseHandle(hMapping);

View file

@ -1,5 +1,5 @@
/** /**
* llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066 * llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
* *
* MIT License * MIT License
* *
@ -127,14 +127,15 @@ static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph *
// memory sizes // memory sizes
// //
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0() static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0(int n_ctx)
{ {
static std::map<e_model, size_t> k_sizes = { static std::map<e_model, size_t> k_sizes = {
{ MODEL_3B, 256ull * MB }, /* empirical scaling, still a guess */
{ MODEL_7B, 512ull * MB }, { MODEL_3B, ((size_t) n_ctx / 16ull + 128ull) * MB },
{ MODEL_13B, 512ull * MB }, { MODEL_7B, ((size_t) n_ctx / 16ull + 256ull) * MB },
{ MODEL_30B, 512ull * MB }, { MODEL_13B, ((size_t) n_ctx / 12ull + 256ull) * MB },
{ MODEL_65B, 1024ull * MB }, { MODEL_30B, ((size_t) n_ctx / 10ull + 256ull) * MB },
{ MODEL_65B, ((size_t) n_ctx / 8ull + 512ull) * MB },
}; };
return k_sizes; return k_sizes;
} }
@ -166,14 +167,14 @@ static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
// this is mostly needed for temporary mul_mat buffers to dequantize the data // this is mostly needed for temporary mul_mat buffers to dequantize the data
// not actually needed if BLAS is disabled // not actually needed if BLAS is disabled
static const std::map<e_model, size_t> & MEM_REQ_EVAL() static const std::map<e_model, size_t> & MEM_REQ_EVAL(int n_ctx)
{ {
static std::map<e_model, size_t> k_sizes = { static std::map<e_model, size_t> k_sizes = {
{ MODEL_3B, 512ull * MB }, { MODEL_3B, ((size_t) n_ctx / 256ull + 512ull) * MB },
{ MODEL_7B, 768ull * MB }, { MODEL_7B, ((size_t) n_ctx / 256ull + 768ull) * MB },
{ MODEL_13B, 1024ull * MB }, { MODEL_13B, ((size_t) n_ctx / 256ull + 1024ull) * MB },
{ MODEL_30B, 1280ull * MB }, { MODEL_30B, ((size_t) n_ctx / 256ull + 1280ull) * MB },
{ MODEL_65B, 1536ull * MB }, { MODEL_65B, ((size_t) n_ctx / 256ull + 1536ull) * MB },
}; };
return k_sizes; return k_sizes;
} }
@ -215,6 +216,10 @@ struct llama_hparams {
uint32_t n_head = 32; uint32_t n_head = 32;
uint32_t n_layer = 32; uint32_t n_layer = 32;
uint32_t n_rot = 64; uint32_t n_rot = 64;
float rope_freq_base = 10000.0f;
float rope_freq_scale = 1.0f;
enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16; enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
bool operator!=(const llama_hparams & other) const { bool operator!=(const llama_hparams & other) const {
@ -329,7 +334,7 @@ struct llama_model {
}; };
struct llama_context { struct llama_context {
llama_context(const llama_model & model, const llama_vocab & vocab) : model(model), vocab(vocab), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {} llama_context(const llama_model & model) : model(model), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {}
#ifdef GGML_USE_METAL #ifdef GGML_USE_METAL
~llama_context() { ~llama_context() {
if (ctx_metal) { if (ctx_metal) {
@ -350,7 +355,6 @@ struct llama_context {
int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1) int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
const llama_model & model; const llama_model & model;
const llama_vocab & vocab;
bool model_owner = false; bool model_owner = false;
@ -577,7 +581,9 @@ struct llama_file_loader {
} }
// skip to the next multiple of 32 bytes // skip to the next multiple of 32 bytes
if (file_version >= LLAMA_FILE_VERSION_GGJT_V1) {
file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR); file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
}
tensor.file_off = file.tell(); tensor.file_off = file.tell();
tensor.name = name; tensor.name = name;
@ -674,7 +680,7 @@ struct llama_model_loader {
*ctx_size_p = *mmapped_size_p = 0; *ctx_size_p = *mmapped_size_p = 0;
for (const llama_load_tensor & lt : tensors_map.tensors) { for (const llama_load_tensor & lt : tensors_map.tensors) {
*ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE; *ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
*(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size; *(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size + 16;
} }
} }
@ -870,6 +876,8 @@ struct llama_context_params llama_context_default_params() {
/*.gpu_layers =*/ 0, /*.gpu_layers =*/ 0,
/*.main_gpu =*/ 0, /*.main_gpu =*/ 0,
/*.tensor_split =*/ {0}, /*.tensor_split =*/ {0},
/*.rope_freq_base =*/ 10000.0f,
/*.rope_freq_scale =*/ 1.0f,
/*.progress_callback =*/ nullptr, /*.progress_callback =*/ nullptr,
/*.progress_callback_user_data =*/ nullptr, /*.progress_callback_user_data =*/ nullptr,
/*.low_vram =*/ false, /*.low_vram =*/ false,
@ -895,6 +903,10 @@ struct llama_model_quantize_params llama_model_quantize_default_params() {
return result; return result;
} }
int llama_max_devices() {
return LLAMA_MAX_DEVICES;
}
bool llama_mmap_supported() { bool llama_mmap_supported() {
return llama_mmap::SUPPORTED; return llama_mmap::SUPPORTED;
} }
@ -993,6 +1005,8 @@ static void llama_model_load_internal(
int n_gpu_layers, int n_gpu_layers,
int main_gpu, int main_gpu,
const float * tensor_split, const float * tensor_split,
float rope_freq_base,
float rope_freq_scale,
bool low_vram, bool low_vram,
ggml_type memory_type, ggml_type memory_type,
bool use_mmap, bool use_mmap,
@ -1027,6 +1041,9 @@ static void llama_model_load_internal(
} }
hparams.n_ctx = n_ctx; hparams.n_ctx = n_ctx;
hparams.rope_freq_base = rope_freq_base;
hparams.rope_freq_scale = rope_freq_scale;
} }
const uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult; const uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
@ -1040,6 +1057,8 @@ static void llama_model_load_internal(
fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head); fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer); fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot); fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
fprintf(stderr, "%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base);
fprintf(stderr, "%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale);
fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype)); fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff); fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type)); fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
@ -1191,9 +1210,9 @@ static void llama_model_load_internal(
const size_t mem_required = const size_t mem_required =
ctx_size + ctx_size +
mmapped_size - vram_weights + // weights in VRAM not in memory mmapped_size - vram_weights + // weights in VRAM not in memory
MEM_REQ_SCRATCH0().at(model.type) + MEM_REQ_SCRATCH0(hparams.n_ctx).at(model.type) +
MEM_REQ_SCRATCH1().at(model.type) + MEM_REQ_SCRATCH1().at(model.type) +
MEM_REQ_EVAL().at (model.type); MEM_REQ_EVAL(hparams.n_ctx).at(model.type);
// this is the memory required by one llama_state // this is the memory required by one llama_state
const size_t mem_required_state = const size_t mem_required_state =
@ -1297,6 +1316,8 @@ static bool llama_model_load(
int n_gpu_layers, int n_gpu_layers,
int main_gpu, int main_gpu,
float * tensor_split, float * tensor_split,
float rope_freq_base,
float rope_freq_scale,
bool low_vram, bool low_vram,
ggml_type memory_type, ggml_type memory_type,
bool use_mmap, bool use_mmap,
@ -1305,7 +1326,7 @@ static bool llama_model_load(
llama_progress_callback progress_callback, llama_progress_callback progress_callback,
void *progress_callback_user_data) { void *progress_callback_user_data) {
try { try {
llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, low_vram, memory_type, llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, rope_freq_base, rope_freq_scale, low_vram, memory_type,
use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data); use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
return true; return true;
} catch (const std::exception & err) { } catch (const std::exception & err) {
@ -1357,6 +1378,9 @@ static bool llama_eval_internal(
const int n_rot = hparams.n_embd/hparams.n_head; const int n_rot = hparams.n_embd/hparams.n_head;
const int n_gpu_layers = model.n_gpu_layers; const int n_gpu_layers = model.n_gpu_layers;
const float freq_base = hparams.rope_freq_base;
const float freq_scale = hparams.rope_freq_scale;
auto & mem_per_token = lctx.mem_per_token; auto & mem_per_token = lctx.mem_per_token;
auto & buf_compute = lctx.buf_compute; auto & buf_compute = lctx.buf_compute;
@ -1454,11 +1478,11 @@ static bool llama_eval_internal(
offload_func_kq(tmpq); offload_func_kq(tmpq);
ggml_set_name(tmpq, "tmpq"); ggml_set_name(tmpq, "tmpq");
struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0, 0); struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0, freq_base, freq_scale, 0);
offload_func_kq(Kcur); offload_func_kq(Kcur);
ggml_set_name(Kcur, "Kcur"); ggml_set_name(Kcur, "Kcur");
struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0, 0); struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0, freq_base, freq_scale, 0);
offload_func_kq(Qcur); offload_func_kq(Qcur);
ggml_set_name(Qcur, "Qcur"); ggml_set_name(Qcur, "Qcur");
@ -2032,10 +2056,19 @@ void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array *
} }
// Normalize the second derivatives // Normalize the second derivatives
float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f); {
const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
if (second_derivatives_sum > 1e-6f) {
for (float & value : second_derivatives) { for (float & value : second_derivatives) {
value /= second_derivatives_sum; value /= second_derivatives_sum;
} }
} else {
for (float & value : second_derivatives) {
value = 1.0f / second_derivatives.size();
}
}
}
float cum_sum = 0.0f; float cum_sum = 0.0f;
size_t last_idx = candidates->size; size_t last_idx = candidates->size;
@ -2213,7 +2246,7 @@ void llama_sample_classifier_free_guidance(
struct llama_context * guidance_ctx, struct llama_context * guidance_ctx,
float scale, float scale,
float smooth_factor) { float smooth_factor) {
int64_t t_start_sample_us = t_start_sample_us = ggml_time_us(); int64_t t_start_sample_us = ggml_time_us();
assert(ctx); assert(ctx);
auto n_vocab = llama_n_vocab(ctx); auto n_vocab = llama_n_vocab(ctx);
@ -2701,8 +2734,9 @@ struct llama_model * llama_load_model_from_file(
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32; ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gpu_layers, if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gpu_layers,
params.main_gpu, params.tensor_split, params.low_vram, memory_type, params.use_mmap, params.use_mlock, params.main_gpu, params.tensor_split, params.rope_freq_base, params.rope_freq_scale,params.low_vram,
params.vocab_only, params.progress_callback, params.progress_callback_user_data)) { memory_type, params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback,
params.progress_callback_user_data)) {
delete model; delete model;
fprintf(stderr, "%s: failed to load model\n", __func__); fprintf(stderr, "%s: failed to load model\n", __func__);
return nullptr; return nullptr;
@ -2723,7 +2757,7 @@ struct llama_context * llama_new_context_with_model(
return nullptr; return nullptr;
} }
llama_context * ctx = new llama_context(*model, model->vocab); llama_context * ctx = new llama_context(*model);
if (params.seed == LLAMA_DEFAULT_SEED) { if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL); params.seed = time(NULL);
@ -2777,9 +2811,9 @@ struct llama_context * llama_new_context_with_model(
ctx->embedding.resize(hparams.n_embd); ctx->embedding.resize(hparams.n_embd);
} }
ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type)); ctx->buf_compute.resize(MEM_REQ_EVAL(hparams.n_ctx).at(ctx->model.type));
ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0().at(ctx->model.type)); ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type));
ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type)); ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
} }
@ -3561,13 +3595,13 @@ int llama_eval_export(struct llama_context * ctx, const char * fname) {
return 0; return 0;
} }
int llama_tokenize( int llama_tokenize_with_model(
struct llama_context * ctx, const struct llama_model * model,
const char * text, const char * text,
llama_token * tokens, llama_token * tokens,
int n_max_tokens, int n_max_tokens,
bool add_bos) { bool add_bos) {
auto res = llama_tokenize(ctx->vocab, text, add_bos); auto res = llama_tokenize(model->vocab, text, add_bos);
if (n_max_tokens < (int) res.size()) { if (n_max_tokens < (int) res.size()) {
fprintf(stderr, "%s: too many tokens\n", __func__); fprintf(stderr, "%s: too many tokens\n", __func__);
@ -3581,8 +3615,29 @@ int llama_tokenize(
return res.size(); return res.size();
} }
int llama_tokenize(
struct llama_context * ctx,
const char * text,
llama_token * tokens,
int n_max_tokens,
bool add_bos) {
return llama_tokenize_with_model(&ctx->model, text, tokens, n_max_tokens, add_bos);
}
int llama_n_vocab_from_model(const struct llama_model * model) {
return model->vocab.id_to_token.size();
}
int llama_n_ctx_from_model(const struct llama_model * model) {
return model->hparams.n_ctx;
}
int llama_n_embd_from_model(const struct llama_model * model) {
return model->hparams.n_embd;
}
int llama_n_vocab(const struct llama_context * ctx) { int llama_n_vocab(const struct llama_context * ctx) {
return ctx->vocab.id_to_token.size(); return ctx->model.vocab.id_to_token.size();
} }
int llama_n_ctx(const struct llama_context * ctx) { int llama_n_ctx(const struct llama_context * ctx) {
@ -3593,17 +3648,25 @@ int llama_n_embd(const struct llama_context * ctx) {
return ctx->model.hparams.n_embd; return ctx->model.hparams.n_embd;
} }
int llama_get_vocab_from_model(
const struct llama_model * model,
const char * * strings,
float * scores,
int capacity) {
int n = std::min(capacity, (int) model->vocab.id_to_token.size());
for (int i = 0; i<n; ++i) {
strings[i] = model->vocab.id_to_token[i].tok.c_str();
scores[i] = model->vocab.id_to_token[i].score;
}
return n;
}
int llama_get_vocab( int llama_get_vocab(
const struct llama_context * ctx, const struct llama_context * ctx,
const char * * strings, const char * * strings,
float * scores, float * scores,
int capacity) { int capacity) {
int n = std::min(capacity, (int) ctx->vocab.id_to_token.size()); return llama_get_vocab_from_model(&ctx->model, strings, scores, capacity);
for (int i = 0; i<n; ++i) {
strings[i] = ctx->vocab.id_to_token[i].tok.c_str();
scores[i] = ctx->vocab.id_to_token[i].score;
}
return n;
} }
float * llama_get_logits(struct llama_context * ctx) { float * llama_get_logits(struct llama_context * ctx) {
@ -3614,12 +3677,16 @@ float * llama_get_embeddings(struct llama_context * ctx) {
return ctx->embedding.data(); return ctx->embedding.data();
} }
const char * llama_token_to_str(const struct llama_context * ctx, llama_token token) { const char * llama_token_to_str_with_model(const struct llama_model * model, llama_token token) {
if (token >= llama_n_vocab(ctx)) { if (token >= llama_n_vocab_from_model(model)) {
return nullptr; return nullptr;
} }
return ctx->vocab.id_to_token[token].tok.c_str(); return model->vocab.id_to_token[token].tok.c_str();
}
const char * llama_token_to_str(const struct llama_context * ctx, llama_token token) {
return llama_token_to_str_with_model(&ctx->model, token);
} }
llama_token llama_token_bos() { llama_token llama_token_bos() {

View file

@ -1,5 +1,5 @@
/** /**
* llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066 * llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
* *
* MIT License * MIT License
* *
@ -115,6 +115,11 @@ extern "C" {
int32_t n_gpu_layers; // number of layers to store in VRAM int32_t n_gpu_layers; // number of layers to store in VRAM
int32_t main_gpu; // the GPU that is used for scratch and small tensors int32_t main_gpu; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
float rope_freq_base; // RoPE base frequency
float rope_freq_scale; // RoPE frequency scaling factor
// called with a progress value between 0 and 1, pass NULL to disable // called with a progress value between 0 and 1, pass NULL to disable
llama_progress_callback progress_callback; llama_progress_callback progress_callback;
// context pointer passed to the progress callback // context pointer passed to the progress callback
@ -174,6 +179,8 @@ extern "C" {
int32_t n_eval; int32_t n_eval;
}; };
LLAMA_API int llama_max_devices();
LLAMA_API struct llama_context_params llama_context_default_params(); LLAMA_API struct llama_context_params llama_context_default_params();
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(); LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params();
@ -296,10 +303,21 @@ extern "C" {
int n_max_tokens, int n_max_tokens,
bool add_bos); bool add_bos);
LLAMA_API int llama_tokenize_with_model(
const struct llama_model * model,
const char * text,
llama_token * tokens,
int n_max_tokens,
bool add_bos);
LLAMA_API int llama_n_vocab(const struct llama_context * ctx); LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
LLAMA_API int llama_n_ctx (const struct llama_context * ctx); LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
LLAMA_API int llama_n_embd (const struct llama_context * ctx); LLAMA_API int llama_n_embd (const struct llama_context * ctx);
LLAMA_API int llama_n_vocab_from_model(const struct llama_model * model);
LLAMA_API int llama_n_ctx_from_model (const struct llama_model * model);
LLAMA_API int llama_n_embd_from_model (const struct llama_model * model);
// Get the vocabulary as output parameters. // Get the vocabulary as output parameters.
// Returns number of results. // Returns number of results.
LLAMA_API int llama_get_vocab( LLAMA_API int llama_get_vocab(
@ -308,6 +326,12 @@ extern "C" {
float * scores, float * scores,
int capacity); int capacity);
LLAMA_API int llama_get_vocab_from_model(
const struct llama_model * model,
const char * * strings,
float * scores,
int capacity);
// Token logits obtained from the last call to llama_eval() // Token logits obtained from the last call to llama_eval()
// The logits for the last token are stored in the last row // The logits for the last token are stored in the last row
// Can be mutated in order to change the probabilities of the next token // Can be mutated in order to change the probabilities of the next token
@ -320,7 +344,13 @@ extern "C" {
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx); LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
// Token Id -> String. Uses the vocabulary in the provided context // Token Id -> String. Uses the vocabulary in the provided context
LLAMA_API const char * llama_token_to_str(const struct llama_context * ctx, llama_token token); LLAMA_API const char * llama_token_to_str(
const struct llama_context * ctx,
llama_token token);
LLAMA_API const char * llama_token_to_str_with_model(
const struct llama_model * model,
llama_token token);
// Special tokens // Special tokens
LLAMA_API llama_token llama_token_bos(); // beginning-of-sentence LLAMA_API llama_token llama_token_bos(); // beginning-of-sentence