Doc container usage and workaround for nvidia errors
This commit is contained in:
parent
d5eec16d23
commit
8cc0ee2efe
3 changed files with 92 additions and 2 deletions
|
@ -6,7 +6,7 @@
|
|||
* [Importing models](./import.md)
|
||||
* [Linux Documentation](./linux.md)
|
||||
* [Windows Documentation](./windows.md)
|
||||
* [Docker Documentation](https://hub.docker.com/r/ollama/ollama)
|
||||
* [Docker Documentation](./docker.md)
|
||||
|
||||
### Reference
|
||||
|
||||
|
|
71
docs/docker.md
Normal file
71
docs/docker.md
Normal file
|
@ -0,0 +1,71 @@
|
|||
# Ollama Docker image
|
||||
|
||||
### CPU only
|
||||
|
||||
```bash
|
||||
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
|
||||
```
|
||||
|
||||
### Nvidia GPU
|
||||
Install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installation).
|
||||
|
||||
#### Install with Apt
|
||||
1. Configure the repository
|
||||
```bash
|
||||
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey \
|
||||
| sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
|
||||
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
|
||||
| sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' \
|
||||
| sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
|
||||
sudo apt-get update
|
||||
```
|
||||
2. Install the NVIDIA Container Toolkit packages
|
||||
```bash
|
||||
sudo apt-get install -y nvidia-container-toolkit
|
||||
```
|
||||
|
||||
#### Install with Yum or Dnf
|
||||
1. Configure the repository
|
||||
|
||||
```bash
|
||||
curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo \
|
||||
| sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
|
||||
```
|
||||
|
||||
2. Install the NVIDIA Container Toolkit packages
|
||||
|
||||
```bash
|
||||
sudo yum install -y nvidia-container-toolkit
|
||||
```
|
||||
|
||||
#### Configure Docker to use Nvidia driver
|
||||
```
|
||||
sudo nvidia-ctk runtime configure --runtime=docker
|
||||
sudo systemctl restart docker
|
||||
```
|
||||
|
||||
#### Start the container
|
||||
|
||||
```bash
|
||||
docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
|
||||
```
|
||||
|
||||
### AMD GPU
|
||||
|
||||
To run Ollama using Docker with AMD GPUs, use the `rocm` tag and the following command:
|
||||
|
||||
```
|
||||
docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama:rocm
|
||||
```
|
||||
|
||||
### Run model locally
|
||||
|
||||
Now you can run a model:
|
||||
|
||||
```
|
||||
docker exec -it ollama ollama run llama3
|
||||
```
|
||||
|
||||
### Try different models
|
||||
|
||||
More models can be found on the [Ollama library](https://ollama.com/library).
|
|
@ -83,3 +83,22 @@ If your system is configured with the "noexec" flag where Ollama stores its
|
|||
temporary executable files, you can specify an alternate location by setting
|
||||
OLLAMA_TMPDIR to a location writable by the user ollama runs as. For example
|
||||
OLLAMA_TMPDIR=/usr/share/ollama/
|
||||
|
||||
## Container fails to run on NVIDIA GPU
|
||||
|
||||
Make sure you've set up the conatiner runtime first as described in [docker.md](./docker.md)
|
||||
|
||||
Sometimes the container runtime can have difficulties initializing the GPU.
|
||||
When you check the server logs, this can show up as various error codes, such
|
||||
as "3" (not initialized), "46" (device unavailable), "100" (no device), "999"
|
||||
(unknown), or others. The following troubleshooting techniques may help resolve
|
||||
the problem
|
||||
|
||||
- Is the uvm driver not loaded? `sudo nvidia-modprobe -u`
|
||||
- Try reloading the nvidia_uvm driver - `sudo rmmod nvidia_uvm` then `sudo modprobe nvidia_uvm`
|
||||
- Try rebooting
|
||||
- Make sure you're running the latest nvidia drivers
|
||||
|
||||
If none of those resolve the problem, gather additional information and file an issue:
|
||||
- Set `CUDA_ERROR_LEVEL=50` and try again to get more diagnostic logs
|
||||
- Check dmesg for any errors `sudo dmesg | grep -i nvrm` and `sudo dmesg | grep -i nvidia`
|
||||
|
|
Loading…
Reference in a new issue