deprecate ggml

- remove ggml runner
- automatically pull gguf models when ggml detected
- tell users to update to gguf in the case automatic pull fails

Co-Authored-By: Jeffrey Morgan <jmorganca@gmail.com>
This commit is contained in:
Bruce MacDonald 2023-11-24 13:58:09 -05:00 committed by Daniel Hiltgen
parent ed195f3562
commit 811b1f03c8
19 changed files with 74 additions and 393 deletions

View file

@ -3,7 +3,6 @@ ollama
app app
dist dist
scripts scripts
llm/llama.cpp/ggml
llm/llama.cpp/gguf llm/llama.cpp/gguf
.env .env
.cache .cache

5
.gitmodules vendored
View file

@ -1,8 +1,3 @@
[submodule "llm/llama.cpp/ggml"]
path = llm/llama.cpp/ggml
url = https://github.com/ggerganov/llama.cpp.git
ignore = dirty
shallow = true
[submodule "llm/llama.cpp/gguf"] [submodule "llm/llama.cpp/gguf"]
path = llm/llama.cpp/gguf path = llm/llama.cpp/gguf
url = https://github.com/ggerganov/llama.cpp.git url = https://github.com/ggerganov/llama.cpp.git

View file

@ -571,12 +571,32 @@ func generate(cmd *cobra.Command, opts generateOptions) error {
Images: images, Images: images,
} }
if err := client.Generate(ctx, &request, fn); err != nil {
switch {
case errors.Is(err, context.Canceled):
return nil
case strings.Contains(err.Error(), "unsupported model format"):
// pull and retry to see if the model has been updated
parts := strings.Split(opts.Model, string(os.PathSeparator))
if len(parts) == 1 {
// this is a library model, log some info
fmt.Fprintln(os.Stderr, "This model is no longer compatible with Ollama. Pulling a new version...")
}
if err := PullHandler(cmd, []string{opts.Model}); err != nil {
fmt.Printf("Error: %s\n", err)
return fmt.Errorf("unsupported model, please update this model to gguf format") // relay the original error
}
// retry
if err := client.Generate(ctx, &request, fn); err != nil { if err := client.Generate(ctx, &request, fn); err != nil {
if errors.Is(err, context.Canceled) { if errors.Is(err, context.Canceled) {
return nil return nil
} }
return err return err
} }
default:
return err
}
}
if opts.Prompt != "" { if opts.Prompt != "" {
fmt.Println() fmt.Println()
fmt.Println() fmt.Println()

View file

@ -188,7 +188,7 @@ SYSTEM """<system message>"""
### ADAPTER ### ADAPTER
The `ADAPTER` instruction specifies the LoRA adapter to apply to the base model. The value of this instruction should be an absolute path or a path relative to the Modelfile and the file must be in a GGML file format. The adapter should be tuned from the base model otherwise the behaviour is undefined. The `ADAPTER` instruction specifies the LoRA adapter to apply to the base model. The value of this instruction should be an absolute path or a path relative to the Modelfile and the file must be in a GGUF file format. The adapter should be tuned from the base model otherwise the behaviour is undefined.
```modelfile ```modelfile
ADAPTER ./ollama-lora.bin ADAPTER ./ollama-lora.bin

View file

@ -86,74 +86,6 @@ type container interface {
Decode(*readSeekOffset) (model, error) Decode(*readSeekOffset) (model, error)
} }
type containerGGML struct{}
func (c *containerGGML) Name() string {
return "ggml"
}
func (c *containerGGML) Decode(ro *readSeekOffset) (model, error) {
// file contents aren't decoded
ro.Seek(0, io.SeekEnd)
return nil, nil
}
type containerGGMF struct {
version uint32
}
func (c *containerGGMF) Name() string {
return "ggmf"
}
func (c *containerGGMF) Decode(ro *readSeekOffset) (model, error) {
var version uint32
binary.Read(ro, binary.LittleEndian, &version)
switch version {
case 1:
default:
return nil, errors.New("invalid version")
}
c.version = version
// remaining file contents aren't decoded
ro.Seek(0, io.SeekEnd)
return nil, nil
}
type containerGGJT struct {
version uint32
}
func (c *containerGGJT) Name() string {
return "ggjt"
}
func (c *containerGGJT) Decode(ro *readSeekOffset) (model, error) {
var version uint32
binary.Read(ro, binary.LittleEndian, &version)
switch version {
case 1, 2, 3:
default:
return nil, errors.New("invalid version")
}
c.version = version
// different model types may have different layouts for hyperparameters
var llama llamaModel
binary.Read(ro, binary.LittleEndian, &llama.hyperparameters)
// remaining file contents aren't decoded
ro.Seek(0, io.SeekEnd)
return &llama, nil
}
type containerLORA struct { type containerLORA struct {
version uint32 version uint32
} }
@ -194,6 +126,8 @@ const (
FILE_MAGIC_GGUF_BE = 0x47475546 FILE_MAGIC_GGUF_BE = 0x47475546
) )
var ErrUnsupportedFormat = errors.New("unsupported model format")
func DecodeGGML(r io.ReadSeeker) (*GGML, error) { func DecodeGGML(r io.ReadSeeker) (*GGML, error) {
ro := readSeekOffset{ReadSeeker: r} ro := readSeekOffset{ReadSeeker: r}
@ -204,12 +138,8 @@ func DecodeGGML(r io.ReadSeeker) (*GGML, error) {
var c container var c container
switch magic { switch magic {
case FILE_MAGIC_GGML: case FILE_MAGIC_GGML, FILE_MAGIC_GGMF, FILE_MAGIC_GGJT:
c = &containerGGML{} return nil, ErrUnsupportedFormat
case FILE_MAGIC_GGMF:
c = &containerGGMF{}
case FILE_MAGIC_GGJT:
c = &containerGGJT{}
case FILE_MAGIC_GGLA: case FILE_MAGIC_GGLA:
c = &containerLORA{} c = &containerLORA{}
case FILE_MAGIC_GGUF_LE: case FILE_MAGIC_GGUF_LE:

View file

@ -2,15 +2,6 @@ package llm
//go:generate git submodule init //go:generate git submodule init
//go:generate git submodule update --force ggml
//go:generate git -C ggml apply ../patches/0001-add-detokenize-endpoint.patch
//go:generate git -C ggml apply ../patches/0002-34B-model-support.patch
//go:generate git -C ggml apply ../patches/0003-metal-fix-synchronization-in-new-matrix-multiplicati.patch
//go:generate git -C ggml apply ../patches/0004-metal-add-missing-barriers-for-mul-mat-2699.patch
//go:generate cmake -S ggml -B ggml/build/cpu -DLLAMA_ACCELERATE=on -DLLAMA_K_QUANTS=on -DCMAKE_SYSTEM_NAME=Darwin -DCMAKE_SYSTEM_PROCESSOR=x86_64 -DCMAKE_OSX_ARCHITECTURES=x86_64 -DCMAKE_OSX_DEPLOYMENT_TARGET=11.0
//go:generate cmake --build ggml/build/cpu --target server --config Release
//go:generate mv ggml/build/cpu/bin/server ggml/build/cpu/bin/ollama-runner
//go:generate git submodule update --force gguf //go:generate git submodule update --force gguf
//go:generate git -C gguf apply ../patches/0001-update-default-log-target.patch //go:generate git -C gguf apply ../patches/0001-update-default-log-target.patch
//go:generate cmake -S gguf -B gguf/build/cpu -DLLAMA_METAL=off -DLLAMA_ACCELERATE=on -DLLAMA_K_QUANTS=on -DCMAKE_SYSTEM_NAME=Darwin -DCMAKE_SYSTEM_PROCESSOR=x86_64 -DCMAKE_OSX_ARCHITECTURES=x86_64 -DCMAKE_OSX_DEPLOYMENT_TARGET=11.0 -DLLAMA_NATIVE=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=on //go:generate cmake -S gguf -B gguf/build/cpu -DLLAMA_METAL=off -DLLAMA_ACCELERATE=on -DLLAMA_K_QUANTS=on -DCMAKE_SYSTEM_NAME=Darwin -DCMAKE_SYSTEM_PROCESSOR=x86_64 -DCMAKE_OSX_ARCHITECTURES=x86_64 -DCMAKE_OSX_DEPLOYMENT_TARGET=11.0 -DLLAMA_NATIVE=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=on

View file

@ -2,15 +2,6 @@ package llm
//go:generate git submodule init //go:generate git submodule init
//go:generate git submodule update --force ggml
//go:generate git -C ggml apply ../patches/0001-add-detokenize-endpoint.patch
//go:generate git -C ggml apply ../patches/0002-34B-model-support.patch
//go:generate git -C ggml apply ../patches/0003-metal-fix-synchronization-in-new-matrix-multiplicati.patch
//go:generate git -C ggml apply ../patches/0004-metal-add-missing-barriers-for-mul-mat-2699.patch
//go:generate cmake -S ggml -B ggml/build/metal -DLLAMA_METAL=on -DLLAMA_ACCELERATE=on -DLLAMA_K_QUANTS=on -DCMAKE_SYSTEM_PROCESSOR=arm64 -DCMAKE_OSX_ARCHITECTURES=arm64 -DCMAKE_OSX_DEPLOYMENT_TARGET=11.0
//go:generate cmake --build ggml/build/metal --target server --config Release
//go:generate mv ggml/build/metal/bin/server ggml/build/metal/bin/ollama-runner
//go:generate git submodule update --force gguf //go:generate git submodule update --force gguf
//go:generate git -C gguf apply ../patches/0001-update-default-log-target.patch //go:generate git -C gguf apply ../patches/0001-update-default-log-target.patch
//go:generate cmake -S gguf -B gguf/build/metal -DLLAMA_METAL=on -DLLAMA_ACCELERATE=on -DLLAMA_K_QUANTS=on -DCMAKE_SYSTEM_PROCESSOR=arm64 -DCMAKE_OSX_ARCHITECTURES=arm64 -DCMAKE_OSX_DEPLOYMENT_TARGET=11.0 //go:generate cmake -S gguf -B gguf/build/metal -DLLAMA_METAL=on -DLLAMA_ACCELERATE=on -DLLAMA_K_QUANTS=on -DCMAKE_SYSTEM_PROCESSOR=arm64 -DCMAKE_OSX_ARCHITECTURES=arm64 -DCMAKE_OSX_DEPLOYMENT_TARGET=11.0

View file

@ -2,15 +2,6 @@ package llm
//go:generate git submodule init //go:generate git submodule init
//go:generate git submodule update --force ggml
//go:generate git -C ggml apply ../patches/0001-add-detokenize-endpoint.patch
//go:generate git -C ggml apply ../patches/0002-34B-model-support.patch
//go:generate git -C ggml apply ../patches/0005-ggml-support-CUDA-s-half-type-for-aarch64-1455-2670.patch
//go:generate git -C ggml apply ../patches/0001-copy-cuda-runtime-libraries.patch
//go:generate cmake -S ggml -B ggml/build/cpu -DLLAMA_K_QUANTS=on
//go:generate cmake --build ggml/build/cpu --target server --config Release
//go:generate mv ggml/build/cpu/bin/server ggml/build/cpu/bin/ollama-runner
//go:generate git submodule update --force gguf //go:generate git submodule update --force gguf
//go:generate git -C gguf apply ../patches/0001-copy-cuda-runtime-libraries.patch //go:generate git -C gguf apply ../patches/0001-copy-cuda-runtime-libraries.patch
//go:generate git -C gguf apply ../patches/0001-update-default-log-target.patch //go:generate git -C gguf apply ../patches/0001-update-default-log-target.patch
@ -18,9 +9,6 @@ package llm
//go:generate cmake --build gguf/build/cpu --target server --config Release //go:generate cmake --build gguf/build/cpu --target server --config Release
//go:generate mv gguf/build/cpu/bin/server gguf/build/cpu/bin/ollama-runner //go:generate mv gguf/build/cpu/bin/server gguf/build/cpu/bin/ollama-runner
//go:generate cmake -S ggml -B ggml/build/cuda -DLLAMA_CUBLAS=on -DLLAMA_ACCELERATE=on -DLLAMA_K_QUANTS=on
//go:generate cmake --build ggml/build/cuda --target server --config Release
//go:generate mv ggml/build/cuda/bin/server ggml/build/cuda/bin/ollama-runner
//go:generate cmake -S gguf -B gguf/build/cuda -DLLAMA_CUBLAS=on -DLLAMA_ACCELERATE=on -DLLAMA_K_QUANTS=on -DLLAMA_NATIVE=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off -DLLAMA_CUDA_PEER_MAX_BATCH_SIZE=0 //go:generate cmake -S gguf -B gguf/build/cuda -DLLAMA_CUBLAS=on -DLLAMA_ACCELERATE=on -DLLAMA_K_QUANTS=on -DLLAMA_NATIVE=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off -DLLAMA_CUDA_PEER_MAX_BATCH_SIZE=0
//go:generate cmake --build gguf/build/cuda --target server --config Release //go:generate cmake --build gguf/build/cuda --target server --config Release
//go:generate mv gguf/build/cuda/bin/server gguf/build/cuda/bin/ollama-runner //go:generate mv gguf/build/cuda/bin/server gguf/build/cuda/bin/ollama-runner

View file

@ -2,13 +2,6 @@ package llm
//go:generate git submodule init //go:generate git submodule init
//go:generate git submodule update --force ggml
//go:generate git -C ggml apply ../patches/0001-add-detokenize-endpoint.patch
//go:generate git -C ggml apply ../patches/0002-34B-model-support.patch
//go:generate cmake -S ggml -B ggml/build/cpu -DLLAMA_K_QUANTS=on
//go:generate cmake --build ggml/build/cpu --target server --config Release
//go:generate cmd /c move ggml\build\cpu\bin\Release\server.exe ggml\build\cpu\bin\Release\ollama-runner.exe
//go:generate git submodule update --force gguf //go:generate git submodule update --force gguf
//go:generate git -C gguf apply ../patches/0001-update-default-log-target.patch //go:generate git -C gguf apply ../patches/0001-update-default-log-target.patch
//go:generate cmake -S gguf -B gguf/build/cpu -DLLAMA_K_QUANTS=on -DLLAMA_NATIVE=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off //go:generate cmake -S gguf -B gguf/build/cpu -DLLAMA_K_QUANTS=on -DLLAMA_NATIVE=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off

@ -1 +0,0 @@
Subproject commit 9e232f0234073358e7031c1b8d7aa45020469a3b

View file

@ -1,51 +0,0 @@
From 032ef7ff2423f5117bb59d42fb71be9cebf0a2de Mon Sep 17 00:00:00 2001
From: Bruce MacDonald <brucewmacdonald@gmail.com>
Date: Mon, 28 Aug 2023 18:08:12 -0400
Subject: [PATCH] add detokenize endpoint
---
examples/server/server.cpp | 21 +++++++++++++++++++++
1 file changed, 21 insertions(+)
diff --git a/examples/server/server.cpp b/examples/server/server.cpp
index 9966045..5014691 100644
--- a/examples/server/server.cpp
+++ b/examples/server/server.cpp
@@ -1075,6 +1075,12 @@ static json format_tokenizer_response(const std::vector<llama_token> &tokens)
{"tokens", tokens}};
}
+static json format_detokenized_response(std::string content)
+{
+ return json{
+ {"content", content}};
+}
+
static void parse_options_completion(const json &body, llama_server_context &llama)
{
gpt_params default_params;
@@ -1361,6 +1367,21 @@ int main(int argc, char **argv)
const json data = format_tokenizer_response(tokens);
return res.set_content(data.dump(), "application/json"); });
+ svr.Post("/detokenize", [&llama](const Request &req, Response &res)
+ {
+ auto lock = llama.lock();
+
+ const json body = json::parse(req.body);
+ std::string content;
+ if (body.count("tokens") != 0)
+ {
+ const std::vector<llama_token> tokens = body["tokens"];
+ content = tokens_to_str(llama.ctx, tokens.cbegin(), tokens.cend());
+ }
+
+ const json data = format_detokenized_response(content);
+ return res.set_content(data.dump(), "application/json"); });
+
svr.Post("/embedding", [&llama](const Request &req, Response &res)
{
auto lock = llama.lock();
--
2.39.2 (Apple Git-143)

View file

@ -1,89 +0,0 @@
From 6145068a6613c37bb43a7408b5496524bdcfc402 Mon Sep 17 00:00:00 2001
From: Bruce MacDonald <brucewmacdonald@gmail.com>
Date: Mon, 28 Aug 2023 18:08:53 -0400
Subject: [PATCH] 34B model support
---
llama.cpp | 10 ++++++++++
1 file changed, 10 insertions(+)
diff --git a/llama.cpp b/llama.cpp
index f2cbe76..62c5cdf 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -79,6 +79,7 @@ enum e_model {
MODEL_7B,
MODEL_13B,
MODEL_30B,
+ MODEL_34B,
MODEL_65B,
MODEL_70B,
};
@@ -122,6 +123,7 @@ static std::map<e_model, size_t> MEM_REQ_SCRATCH0(int n_ctx)
{ MODEL_7B, ((size_t) n_ctx / 16ull + 100ull) * MB },
{ MODEL_13B, ((size_t) n_ctx / 12ull + 120ull) * MB },
{ MODEL_30B, ((size_t) n_ctx / 9ull + 160ull) * MB },
+ { MODEL_34B, ((size_t) n_ctx / 9ull + 160ull) * MB },
{ MODEL_65B, ((size_t) n_ctx / 6ull + 256ull) * MB }, // guess
{ MODEL_70B, ((size_t) n_ctx / 7ull + 164ull) * MB },
};
@@ -135,6 +137,7 @@ static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
{ MODEL_7B, 160ull * MB },
{ MODEL_13B, 192ull * MB },
{ MODEL_30B, 256ull * MB },
+ { MODEL_34B, 256ull * MB },
{ MODEL_65B, 384ull * MB }, // guess
{ MODEL_70B, 304ull * MB },
};
@@ -149,6 +152,7 @@ static const std::map<e_model, size_t> & MEM_REQ_EVAL()
{ MODEL_7B, 10ull * MB },
{ MODEL_13B, 12ull * MB },
{ MODEL_30B, 16ull * MB },
+ { MODEL_34B, 16ull * MB },
{ MODEL_65B, 24ull * MB }, // guess
{ MODEL_70B, 24ull * MB },
};
@@ -164,6 +168,7 @@ static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_BASE()
{ MODEL_7B, 512ull * kB },
{ MODEL_13B, 640ull * kB },
{ MODEL_30B, 768ull * kB },
+ { MODEL_34B, 768ull * kB },
{ MODEL_65B, 1280ull * kB },
{ MODEL_70B, 1280ull * kB },
};
@@ -179,6 +184,7 @@ static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_PER_CONTEXT()
{ MODEL_7B, 128ull },
{ MODEL_13B, 160ull },
{ MODEL_30B, 208ull },
+ { MODEL_34B, 208ull },
{ MODEL_65B, 256ull },
{ MODEL_70B, 256ull },
};
@@ -1027,6 +1033,7 @@ static const char * llama_model_type_name(e_model type) {
case MODEL_7B: return "7B";
case MODEL_13B: return "13B";
case MODEL_30B: return "30B";
+ case MODEL_34B: return "34B";
case MODEL_65B: return "65B";
case MODEL_70B: return "70B";
default: LLAMA_ASSERT(false);
@@ -1074,6 +1081,7 @@ static void llama_model_load_internal(
case 26: model.type = e_model::MODEL_3B; break;
case 32: model.type = e_model::MODEL_7B; break;
case 40: model.type = e_model::MODEL_13B; break;
+ case 48: model.type = e_model::MODEL_34B; break;
case 60: model.type = e_model::MODEL_30B; break;
case 80: model.type = e_model::MODEL_65B; break;
default:
@@ -1094,6 +1102,8 @@ static void llama_model_load_internal(
LLAMA_LOG_WARN("%s: warning: assuming 70B model based on GQA == %d\n", __func__, n_gqa);
model.type = e_model::MODEL_70B;
hparams.f_ffn_mult = 1.3f; // from the params.json of the 70B model
+ } else if (model.type == e_model::MODEL_34B && n_gqa == 8) {
+ hparams.f_ffn_mult = 1.0f; // from the params.json of the 34B model
}
hparams.rope_freq_base = rope_freq_base;
--
2.39.2 (Apple Git-143)

View file

@ -1,30 +0,0 @@
From dadbed99e65252d79f81101a392d0d6497b86caa Mon Sep 17 00:00:00 2001
From: Shouzheng Liu <lshzh.hi@gmail.com>
Date: Mon, 21 Aug 2023 06:59:29 -0400
Subject: [PATCH] metal : fix synchronization in new matrix multiplication
kernel (#2686)
---
ggml-metal.metal | 3 ++-
1 file changed, 2 insertions(+), 1 deletion(-)
diff --git a/ggml-metal.metal b/ggml-metal.metal
index 3f31252..88d48f6 100644
--- a/ggml-metal.metal
+++ b/ggml-metal.metal
@@ -1898,10 +1898,11 @@ kernel void kernel_mul_mm(device const uchar * src0,
threadgroup float *temp_str = ((threadgroup float *)shared_memory) \
+ 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M;
for (int i = 0; i < 8; i++) {
+ threadgroup_barrier(mem_flags::mem_device);
simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M);
}
- threadgroup_barrier(mem_flags::mem_threadgroup);
+ threadgroup_barrier(mem_flags::mem_device);
device float *C = dst + BLOCK_SIZE_M * r0 + (BLOCK_SIZE_N * r1) * ne0 + im*ne1*ne0;
if (sgitg==0) {
for (int i = 0; i < n_rows; i++) {
--
2.41.0

View file

@ -1,41 +0,0 @@
From 14b1d7e6f720dee41ce5a826376df738096d9033 Mon Sep 17 00:00:00 2001
From: Shouzheng Liu <lshzh.hi@gmail.com>
Date: Tue, 22 Aug 2023 02:18:40 -0400
Subject: [PATCH] metal : add missing barriers for mul-mat (#2699)
---
ggml-metal.metal | 5 +++--
1 file changed, 3 insertions(+), 2 deletions(-)
diff --git a/ggml-metal.metal b/ggml-metal.metal
index 88d48f6..ce3541f 100644
--- a/ggml-metal.metal
+++ b/ggml-metal.metal
@@ -1850,6 +1850,7 @@ kernel void kernel_mul_mm(device const uchar * src0,
//load data and store to threadgroup memory
half4x4 temp_a;
dequantize_func(x, il, temp_a);
+ threadgroup_barrier(mem_flags::mem_threadgroup);
#pragma unroll(16)
for (int i = 0; i < 16; i++) {
*(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \
@@ -1895,14 +1896,14 @@ kernel void kernel_mul_mm(device const uchar * src0,
}
} else {
// block is smaller than 64x32, we should avoid writing data outside of the matrix
+ threadgroup_barrier(mem_flags::mem_threadgroup);
threadgroup float *temp_str = ((threadgroup float *)shared_memory) \
+ 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M;
for (int i = 0; i < 8; i++) {
- threadgroup_barrier(mem_flags::mem_device);
simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M);
}
- threadgroup_barrier(mem_flags::mem_device);
+ threadgroup_barrier(mem_flags::mem_threadgroup);
device float *C = dst + BLOCK_SIZE_M * r0 + (BLOCK_SIZE_N * r1) * ne0 + im*ne1*ne0;
if (sgitg==0) {
for (int i = 0; i < n_rows; i++) {
--
2.41.0

View file

@ -1,32 +0,0 @@
From 1e3bc523d8053a77df3ac7126a84d0297ee97ef6 Mon Sep 17 00:00:00 2001
From: Kylin <56434533+KyL0N@users.noreply.github.com>
Date: Tue, 22 Aug 2023 15:14:23 +0800
Subject: [PATCH] ggml : support CUDA's half type for aarch64(#1455) (#2670)
* ggml: support CUDA's half type for aarch64(#1455)
support CUDA's half type for aarch64 in ggml_fp16_t definition
* ggml: use __CUDACC__ to recognise nvcc compiler
---
ggml.h | 5 +++--
1 file changed, 3 insertions(+), 2 deletions(-)
diff --git a/ggml.h b/ggml.h
index 544ad2d..0ec7ec5 100644
--- a/ggml.h
+++ b/ggml.h
@@ -259,8 +259,9 @@
extern "C" {
#endif
-#ifdef __ARM_NEON
- // we use the built-in 16-bit float type
+#if defined(__ARM_NEON) && defined(__CUDACC__)
+ typedef half ggml_fp16_t;
+#elif defined(__ARM_NEON)
typedef __fp16 ggml_fp16_t;
#else
typedef uint16_t ggml_fp16_t;
--
2.39.2 (Apple Git-143)

View file

@ -59,13 +59,12 @@ ws ::= ([ \t\n] ws)?
var llamaCppEmbed embed.FS var llamaCppEmbed embed.FS
type ModelRunner struct { type ModelRunner struct {
Type string // "gguf" or "ggml"
Path string // path to the model runner executable Path string // path to the model runner executable
Accelerated bool Accelerated bool
} }
func chooseRunners(workDir, runnerType string) []ModelRunner { func chooseRunners(workDir string) []ModelRunner {
buildPath := path.Join("llama.cpp", runnerType, "build") buildPath := path.Join("llama.cpp", "gguf", "build")
var runners []ModelRunner var runners []ModelRunner
// set the runners based on the OS // set the runners based on the OS
@ -73,25 +72,25 @@ func chooseRunners(workDir, runnerType string) []ModelRunner {
switch runtime.GOOS { switch runtime.GOOS {
case "darwin": case "darwin":
if runtime.GOARCH == "arm64" { if runtime.GOARCH == "arm64" {
runners = []ModelRunner{{Type: runnerType, Path: path.Join(buildPath, "metal", "bin", "ollama-runner")}} runners = []ModelRunner{{Path: path.Join(buildPath, "metal", "bin", "ollama-runner")}}
} else { } else {
runners = []ModelRunner{{Type: runnerType, Path: path.Join(buildPath, "cpu", "bin", "ollama-runner")}} runners = []ModelRunner{{Path: path.Join(buildPath, "cpu", "bin", "ollama-runner")}}
} }
case "linux": case "linux":
runners = []ModelRunner{ runners = []ModelRunner{
{Type: runnerType, Path: path.Join(buildPath, "cuda", "bin", "ollama-runner"), Accelerated: true}, {Path: path.Join(buildPath, "cuda", "bin", "ollama-runner"), Accelerated: true},
{Type: runnerType, Path: path.Join(buildPath, "cpu", "bin", "ollama-runner")}, {Path: path.Join(buildPath, "cpu", "bin", "ollama-runner")},
} }
case "windows": case "windows":
// TODO: select windows GPU runner here when available // TODO: select windows GPU runner here when available
runners = []ModelRunner{ runners = []ModelRunner{
{Type: runnerType, Path: path.Join(buildPath, "cuda", "bin", "Release", "ollama-runner.exe"), Accelerated: true}, {Path: path.Join(buildPath, "cuda", "bin", "Release", "ollama-runner.exe"), Accelerated: true},
{Type: runnerType, Path: path.Join(buildPath, "cpu", "bin", "Release", "ollama-runner.exe")}, {Path: path.Join(buildPath, "cpu", "bin", "Release", "ollama-runner.exe")},
} }
default: default:
log.Printf("unknown OS, running on CPU: %s", runtime.GOOS) log.Printf("unknown OS, running on CPU: %s", runtime.GOOS)
runners = []ModelRunner{ runners = []ModelRunner{
{Type: runnerType, Path: path.Join(buildPath, "cpu", "bin", "ollama-runner")}, {Path: path.Join(buildPath, "cpu", "bin", "ollama-runner")},
} }
} }
@ -141,7 +140,7 @@ func chooseRunners(workDir, runnerType string) []ModelRunner {
} }
} }
if !runnerAvailable { if !runnerAvailable {
log.Fatalf("%s runner not found", runnerType) log.Fatalf("gguf runner not found")
} }
// return the runners to try in priority order // return the runners to try in priority order
@ -149,7 +148,6 @@ func chooseRunners(workDir, runnerType string) []ModelRunner {
for _, r := range runners { for _, r := range runners {
// clean the ModelRunner paths so that they match the OS we are running on // clean the ModelRunner paths so that they match the OS we are running on
localRunnersByPriority = append(localRunnersByPriority, ModelRunner{ localRunnersByPriority = append(localRunnersByPriority, ModelRunner{
Type: r.Type,
Path: filepath.Clean(path.Join(workDir, r.Path)), Path: filepath.Clean(path.Join(workDir, r.Path)),
Accelerated: r.Accelerated, Accelerated: r.Accelerated,
}) })
@ -350,6 +348,7 @@ func newLlama(model string, adapters, projectors []string, runners []ModelRunner
"--batch-size", fmt.Sprintf("%d", opts.NumBatch), "--batch-size", fmt.Sprintf("%d", opts.NumBatch),
"--n-gpu-layers", fmt.Sprintf("%d", numGPU), "--n-gpu-layers", fmt.Sprintf("%d", numGPU),
"--embedding", "--embedding",
"--parallel", "2",
} }
if opts.MainGPU > 0 { if opts.MainGPU > 0 {

View file

@ -76,16 +76,8 @@ func New(workDir, model string, adapters, projectors []string, opts api.Options)
} }
} }
switch ggml.Name() {
case "gguf":
// TODO: gguf will load these options automatically from the model binary
opts.NumGQA = 0 opts.NumGQA = 0
opts.RopeFrequencyBase = 0.0 opts.RopeFrequencyBase = 0.0
opts.RopeFrequencyScale = 0.0 opts.RopeFrequencyScale = 0.0
return newLlama(model, adapters, projectors, chooseRunners(workDir, "gguf"), ggml.NumLayers(), opts) return newLlama(model, adapters, projectors, chooseRunners(workDir), ggml.NumLayers(), opts)
case "ggml", "ggmf", "ggjt", "ggla":
return newLlama(model, adapters, projectors, chooseRunners(workDir, "ggml"), ggml.NumLayers(), opts)
default:
return nil, fmt.Errorf("unknown ggml type: %s", ggml.ModelFamily())
}
} }

View file

@ -418,6 +418,27 @@ func CreateModel(ctx context.Context, name, modelFileDir string, commands []pars
return err return err
} }
// if the model is not in gguf format, pull the base model to try and get it in gguf format
if fromConfig.ModelFormat != "gguf" {
fn(api.ProgressResponse{Status: "updating base model"})
if err := PullModel(ctx, c.Args, &RegistryOptions{}, fn); err != nil {
log.Printf("error pulling model: %v", err)
}
// Reset the file pointer to the beginning of the file
_, err = fromConfigFile.Seek(0, 0)
if err != nil {
return fmt.Errorf("update from config after pull: %w", err)
}
if err := json.NewDecoder(fromConfigFile).Decode(&fromConfig); err != nil {
return err
}
}
// if the model is still not in gguf format, error out
if fromConfig.ModelFormat != "gguf" {
return fmt.Errorf("%s is not in gguf format, this base model is not compatible with this version of ollama", c.Args)
}
config.SetModelFormat(fromConfig.ModelFormat) config.SetModelFormat(fromConfig.ModelFormat)
config.SetModelFamily(append(fromConfig.ModelFamilies, fromConfig.ModelFamily)...) config.SetModelFamily(append(fromConfig.ModelFamilies, fromConfig.ModelFamily)...)
config.SetModelType(fromConfig.ModelType) config.SetModelType(fromConfig.ModelType)
@ -456,16 +477,22 @@ func CreateModel(ctx context.Context, name, modelFileDir string, commands []pars
defer bin.Close() defer bin.Close()
var offset int64 var offset int64
CREATE:
for { for {
fn(api.ProgressResponse{Status: "creating model layer"}) fn(api.ProgressResponse{Status: "creating model layer"})
bin.Seek(offset, io.SeekStart) bin.Seek(offset, io.SeekStart)
ggml, err := llm.DecodeGGML(bin) ggml, err := llm.DecodeGGML(bin)
if errors.Is(err, io.EOF) { if err != nil {
break switch {
} else if err != nil { case errors.Is(err, io.EOF):
break CREATE
case errors.Is(err, llm.ErrUnsupportedFormat):
return fmt.Errorf("model binary specified in FROM field is not a valid gguf format model, %w", err)
default:
return err return err
} }
}
config.SetModelFormat(ggml.Name()) config.SetModelFormat(ggml.Name())
config.SetModelFamily(ggml.ModelFamily()) config.SetModelFamily(ggml.ModelFamily())

View file

@ -114,7 +114,7 @@ func load(c *gin.Context, modelName string, reqOpts map[string]interface{}, sess
// some older models are not compatible with newer versions of llama.cpp // some older models are not compatible with newer versions of llama.cpp
// show a generalized compatibility error until there is a better way to // show a generalized compatibility error until there is a better way to
// check for model compatibility // check for model compatibility
if strings.Contains(err.Error(), "failed to load model") { if errors.Is(llm.ErrUnsupportedFormat, err) || strings.Contains(err.Error(), "failed to load model") {
err = fmt.Errorf("%v: this model may be incompatible with your version of Ollama. If you previously pulled this model, try updating it by running `ollama pull %s`", err, model.ShortName) err = fmt.Errorf("%v: this model may be incompatible with your version of Ollama. If you previously pulled this model, try updating it by running `ollama pull %s`", err, model.ShortName)
} }