fix crash in bindings

This commit is contained in:
Jeffrey Morgan 2023-07-05 16:28:18 -04:00
parent 6559a5b48f
commit 79a999e95d
4 changed files with 235 additions and 116 deletions

View file

@ -4,7 +4,7 @@ include(FetchContent)
FetchContent_Declare(
llama_cpp
GIT_REPOSITORY https://github.com/ggerganov/llama.cpp.git
GIT_TAG master
GIT_TAG 55dbb91
)
FetchContent_MakeAvailable(llama_cpp)

View file

@ -1,25 +1,3 @@
// MIT License
// Copyright (c) 2023 go-skynet authors
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#include "common.h"
#include "llama.h"
@ -55,14 +33,78 @@ void sigint_handler(int signo) {
}
#endif
int eval(void *p, void *c, char *text) {
gpt_params *params = (gpt_params *)params;
llama_context *ctx = (llama_context *)ctx;
int get_embeddings(void *params_ptr, void *state_pr, float *res_embeddings) {
gpt_params *params_p = (gpt_params *)params_ptr;
llama_context *ctx = (llama_context *)state_pr;
gpt_params params = *params_p;
if (params.seed <= 0) {
params.seed = time(NULL);
}
std::mt19937 rng(params.seed);
llama_init_backend(params.numa);
int n_past = 0;
// Add a space in front of the first character to match OG llama tokenizer
// behavior
params.prompt.insert(0, 1, ' ');
// tokenize the prompt
auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
// determine newline token
auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
if (embd_inp.size() > 0) {
if (llama_eval(ctx, embd_inp.data(), embd_inp.size(), n_past,
params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
}
const int n_embd = llama_n_embd(ctx);
const auto embeddings = llama_get_embeddings(ctx);
for (int i = 0; i < n_embd; i++) {
res_embeddings[i] = embeddings[i];
}
return 0;
}
int get_token_embeddings(void *params_ptr, void *state_pr, int *tokens,
int tokenSize, float *res_embeddings) {
gpt_params *params_p = (gpt_params *)params_ptr;
llama_context *ctx = (llama_context *)state_pr;
gpt_params params = *params_p;
for (int i = 0; i < tokenSize; i++) {
auto token_str = llama_token_to_str(ctx, tokens[i]);
if (token_str == nullptr) {
continue;
}
std::vector<std::string> my_vector;
std::string str_token(token_str); // create a new std::string from the char*
params_p->prompt += str_token;
}
return get_embeddings(params_ptr, state_pr, res_embeddings);
}
int eval(void *params_ptr, void *state_pr, char *text) {
gpt_params *params_p = (gpt_params *)params_ptr;
llama_context *ctx = (llama_context *)state_pr;
auto n_past = 0;
auto last_n_tokens_data = std::vector<llama_token>(params->repeat_last_n, 0);
auto last_n_tokens_data =
std::vector<llama_token>(params_p->repeat_last_n, 0);
auto tokens = std::vector<llama_token>(params->n_ctx);
auto tokens = std::vector<llama_token>(params_p->n_ctx);
auto n_prompt_tokens =
llama_tokenize(ctx, text, tokens.data(), tokens.size(), true);
@ -71,22 +113,26 @@ int eval(void *p, void *c, char *text) {
return 1;
}
// evaluate prompt
return llama_eval(ctx, tokens.data(), n_prompt_tokens, n_past,
params->n_threads);
params_p->n_threads);
}
int llama_predict(void *p, void *c, char *result, bool debug) {
gpt_params *params = (gpt_params *)params;
llama_context *ctx = (llama_context *)ctx;
int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug) {
gpt_params *params_p = (gpt_params *)params_ptr;
llama_context *ctx = (llama_context *)state_pr;
gpt_params params = *params_p;
const int n_ctx = llama_n_ctx(ctx);
if (params->seed <= 0) {
params->seed = time(NULL);
if (params.seed <= 0) {
params.seed = time(NULL);
}
std::mt19937 rng(params->seed);
std::string path_session = params->path_prompt_cache;
std::mt19937 rng(params.seed);
std::string path_session = params.path_prompt_cache;
std::vector<llama_token> session_tokens;
if (!path_session.empty()) {
@ -109,7 +155,7 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
return 1;
}
session_tokens.resize(n_token_count_out);
llama_set_rng_seed(ctx, params->seed);
llama_set_rng_seed(ctx, params.seed);
if (debug) {
fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n",
__func__, (int)session_tokens.size());
@ -123,12 +169,12 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
}
std::vector<llama_token> embd_inp;
if (!params->prompt.empty() || session_tokens.empty()) {
if (!params.prompt.empty() || session_tokens.empty()) {
// Add a space in front of the first character to match OG llama tokenizer
// behavior
params->prompt.insert(0, 1, ' ');
params.prompt.insert(0, 1, ' ');
embd_inp = ::llama_tokenize(ctx, params->prompt, true);
embd_inp = ::llama_tokenize(ctx, params.prompt, true);
} else {
embd_inp = session_tokens;
}
@ -144,7 +190,7 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
n_matching_session_tokens++;
}
if (debug) {
if (params->prompt.empty() &&
if (params.prompt.empty() &&
n_matching_session_tokens == embd_inp.size()) {
fprintf(stderr, "%s: using full prompt from session file\n", __func__);
} else if (n_matching_session_tokens >= embd_inp.size()) {
@ -169,8 +215,8 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
session_tokens.resize(embd_inp.size() - 1);
}
// number of tokens to keep when resetting context
if (params->n_keep < 0 || params->n_keep > (int)embd_inp.size()) {
params->n_keep = (int)embd_inp.size();
if (params.n_keep < 0 || params.n_keep > (int)embd_inp.size()) {
params.n_keep = (int)embd_inp.size();
}
// determine newline token
@ -183,7 +229,7 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
bool need_to_save_session =
!path_session.empty() && n_matching_session_tokens < embd_inp.size();
int n_past = 0;
int n_remain = params->n_predict;
int n_remain = params.n_predict;
int n_consumed = 0;
int n_session_consumed = 0;
@ -195,7 +241,7 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
const std::vector<llama_token> tmp = {
llama_token_bos(),
};
llama_eval(ctx, tmp.data(), tmp.size(), 0, params->n_threads);
llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
llama_reset_timings(ctx);
}
@ -208,10 +254,10 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
// - take half of the last (n_ctx - n_keep) tokens and recompute the
// logits in batches
if (n_past + (int)embd.size() > n_ctx) {
const int n_left = n_past - params->n_keep;
const int n_left = n_past - params.n_keep;
// always keep the first token - BOS
n_past = std::max(1, params->n_keep);
n_past = std::max(1, params.n_keep);
// insert n_left/2 tokens at the start of embd from last_n_tokens
embd.insert(embd.begin(),
@ -220,6 +266,14 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
// stop saving session if we run out of context
path_session.clear();
// printf("\n---\n");
// printf("resetting: '");
// for (int i = 0; i < (int) embd.size(); i++) {
// printf("%s", llama_token_to_str(ctx, embd[i]));
// }
// printf("'\n");
// printf("\n---\n");
}
// try to reuse a matching prefix from the loaded session instead of
@ -248,17 +302,15 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
// evaluate tokens in batches
// embd is typically prepared beforehand to fit within a batch, but not
// always
for (int i = 0; i < (int)embd.size(); i += params->n_batch) {
for (int i = 0; i < (int)embd.size(); i += params.n_batch) {
int n_eval = (int)embd.size() - i;
if (n_eval > params->n_batch) {
n_eval = params->n_batch;
if (n_eval > params.n_batch) {
n_eval = params.n_batch;
}
if (llama_eval(ctx, &embd[i], n_eval, n_past, params->n_threads)) {
if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
n_past += n_eval;
}
@ -272,26 +324,26 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
if ((int)embd_inp.size() <= n_consumed) {
// out of user input, sample next token
const float temp = params->temp;
const float temp = params.temp;
const int32_t top_k =
params->top_k <= 0 ? llama_n_vocab(ctx) : params->top_k;
const float top_p = params->top_p;
const float tfs_z = params->tfs_z;
const float typical_p = params->typical_p;
params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
const float top_p = params.top_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
const int32_t repeat_last_n =
params->repeat_last_n < 0 ? n_ctx : params->repeat_last_n;
const float repeat_penalty = params->repeat_penalty;
const float alpha_presence = params->presence_penalty;
const float alpha_frequency = params->frequency_penalty;
const int mirostat = params->mirostat;
const float mirostat_tau = params->mirostat_tau;
const float mirostat_eta = params->mirostat_eta;
const bool penalize_nl = params->penalize_nl;
params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
const float repeat_penalty = params.repeat_penalty;
const float alpha_presence = params.presence_penalty;
const float alpha_frequency = params.frequency_penalty;
const int mirostat = params.mirostat;
const float mirostat_tau = params.mirostat_tau;
const float mirostat_eta = params.mirostat_eta;
const bool penalize_nl = params.penalize_nl;
// optionally save the session on first sample (for faster prompt loading
// next time)
if (!path_session.empty() && need_to_save_session &&
!params->prompt_cache_ro) {
!params.prompt_cache_ro) {
need_to_save_session = false;
llama_save_session_file(ctx, path_session.c_str(),
session_tokens.data(), session_tokens.size());
@ -304,8 +356,8 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
auto n_vocab = llama_n_vocab(ctx);
// Apply params.logit_bias map
for (auto it = params->logit_bias.begin();
it != params->logit_bias.end(); it++) {
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end();
it++) {
logits[it->first] += it->second;
}
@ -361,6 +413,7 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
id = llama_sample_token(ctx, &candidates_p);
}
}
// printf("`%d`", candidates_p.size);
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(id);
@ -375,7 +428,7 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
// call the token callback, no need to check if one is actually
// registered, that will be handled on the Go side.
auto token_str = llama_token_to_str(ctx, id);
if (!tokenCallback(ctx, (char *)token_str)) {
if (!tokenCallback(state_pr, (char *)token_str)) {
break;
}
} else {
@ -386,7 +439,7 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(embd_inp[n_consumed]);
++n_consumed;
if ((int)embd.size() >= params->n_batch) {
if ((int)embd.size() >= params.n_batch) {
break;
}
}
@ -397,13 +450,13 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
}
// check for stop prompt
if (params->antiprompt.size()) {
if (params.antiprompt.size()) {
std::string last_output;
for (auto id : last_n_tokens) {
last_output += llama_token_to_str(ctx, id);
}
// Check if each of the reverse prompts appears at the end of the output.
for (std::string &antiprompt : params->antiprompt) {
for (std::string &antiprompt : params.antiprompt) {
// size_t extra_padding = params.interactive ? 0 : 2;
size_t extra_padding = 2;
size_t search_start_pos =
@ -426,8 +479,8 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
}
}
if (!path_session.empty() && params->prompt_cache_all &&
!params->prompt_cache_ro) {
if (!path_session.empty() && params.prompt_cache_all &&
!params.prompt_cache_ro) {
if (debug) {
fprintf(stderr, "\n%s: saving final output to session file '%s'\n",
__func__, path_session.c_str());
@ -450,8 +503,68 @@ end:
return 0;
}
void llama_binding_free_model(void *ctx) { llama_free((llama_context *)ctx); }
void llama_free_params(void *params) { delete (gpt_params *)params; }
void llama_binding_free_model(void *state_ptr) {
llama_context *ctx = (llama_context *)state_ptr;
llama_free(ctx);
}
void llama_free_params(void *params_ptr) {
gpt_params *params = (gpt_params *)params_ptr;
delete params;
}
std::vector<std::string> create_vector(const char **strings, int count) {
std::vector<std::string> *vec = new std::vector<std::string>;
for (int i = 0; i < count; i++) {
vec->push_back(std::string(strings[i]));
}
return *vec;
}
void delete_vector(std::vector<std::string> *vec) { delete vec; }
int load_state(void *ctx, char *statefile, char *modes) {
llama_context *state = (llama_context *)ctx;
const llama_context *constState = static_cast<const llama_context *>(state);
const size_t state_size = llama_get_state_size(state);
uint8_t *state_mem = new uint8_t[state_size];
{
FILE *fp_read = fopen(statefile, modes);
if (state_size != llama_get_state_size(constState)) {
fprintf(stderr, "\n%s : failed to validate state size\n", __func__);
return 1;
}
const size_t ret = fread(state_mem, 1, state_size, fp_read);
if (ret != state_size) {
fprintf(stderr, "\n%s : failed to read state\n", __func__);
return 1;
}
llama_set_state_data(
state, state_mem); // could also read directly from memory mapped file
fclose(fp_read);
}
return 0;
}
void save_state(void *ctx, char *dst, char *modes) {
llama_context *state = (llama_context *)ctx;
const size_t state_size = llama_get_state_size(state);
uint8_t *state_mem = new uint8_t[state_size];
// Save state (rng, logits, embedding and kv_cache) to file
{
FILE *fp_write = fopen(dst, modes);
llama_copy_state_data(
state, state_mem); // could also copy directly to memory mapped file
fwrite(state_mem, 1, state_size, fp_write);
fclose(fp_write);
}
}
void *llama_allocate_params(
const char *prompt, int seed, int threads, int tokens, int top_k,
@ -505,13 +618,9 @@ void *llama_allocate_params(
if (ignore_eos) {
params->logit_bias[llama_token_eos()] = -INFINITY;
}
if (antiprompt_count > 0) {
for (int i = 0; i < antiprompt_count; i++) {
params->antiprompt.push_back(std::string(antiprompt[i]));
params->antiprompt = create_vector(antiprompt, antiprompt_count);
}
}
params->tfs_z = tfs_z;
params->typical_p = typical_p;
params->presence_penalty = presence_penalty;
@ -519,7 +628,6 @@ void *llama_allocate_params(
params->mirostat_eta = mirostat_eta;
params->mirostat_tau = mirostat_tau;
params->penalize_nl = penalize_nl;
std::stringstream ss(logit_bias);
llama_token key;
char sign;
@ -539,6 +647,7 @@ void *load_model(const char *fname, int n_ctx, int n_seed, bool memory_f16,
bool mlock, bool embeddings, bool mmap, bool low_vram,
bool vocab_only, int n_gpu_layers, int n_batch,
const char *maingpu, const char *tensorsplit, bool numa) {
// load the model
auto lparams = llama_context_default_params();
lparams.n_ctx = n_ctx;
@ -575,11 +684,13 @@ void *load_model(const char *fname, int n_ctx, int n_seed, bool memory_f16,
lparams.n_batch = n_batch;
llama_init_backend(numa);
struct llama_model *model = llama_load_model_from_file(fname, lparams);
if (!model) {
return nullptr;
void *res = nullptr;
try {
res = llama_init_from_file(fname, lparams);
} catch (std::runtime_error &e) {
fprintf(stderr, "failed %s", e.what());
return res;
}
return llama_new_context_with_model(model, lparams);
return res;
}

View file

@ -1,25 +1,3 @@
// MIT License
// Copyright (c) 2023 go-skynet authors
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#ifdef __cplusplus
#include <string>
#include <vector>
@ -30,13 +8,22 @@ extern "C" {
extern unsigned char tokenCallback(void *, char *);
int eval(void *p, void *c, char *text);
int load_state(void *ctx, char *statefile, char *modes);
int eval(void *params_ptr, void *ctx, char *text);
void save_state(void *ctx, char *dst, char *modes);
void *load_model(const char *fname, int n_ctx, int n_seed, bool memory_f16,
bool mlock, bool embeddings, bool mmap, bool low_vram,
bool vocab_only, int n_gpu, int n_batch, const char *maingpu,
const char *tensorsplit, bool numa);
int get_embeddings(void *params_ptr, void *state_pr, float *res_embeddings);
int get_token_embeddings(void *params_ptr, void *state_pr, int *tokens,
int tokenSize, float *res_embeddings);
void *llama_allocate_params(
const char *prompt, int seed, int threads, int tokens, int top_k,
float top_p, float temp, float repeat_penalty, int repeat_last_n,
@ -50,11 +37,13 @@ void *llama_allocate_params(
void llama_free_params(void *params_ptr);
void llama_binding_free_model(void *ctx);
void llama_binding_free_model(void *state);
int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug);
#ifdef __cplusplus
}
std::vector<std::string> create_vector(const char **strings, int count);
void delete_vector(std::vector<std::string> *vec);
#endif

View file

@ -28,6 +28,7 @@ package llama
// #cgo CXXFLAGS: -std=c++11
// #cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
// #include "binding/binding.h"
// #include <stdlib.h>
import "C"
import (
"fmt"
@ -45,8 +46,8 @@ type LLama struct {
func New(model string, opts ...ModelOption) (*LLama, error) {
mo := NewModelOptions(opts...)
// TODO: free this pointer
modelPath := C.CString(model)
defer C.free(unsafe.Pointer(modelPath))
ctx := C.load_model(modelPath, C.int(mo.ContextSize), C.int(mo.Seed), C.bool(mo.F16Memory), C.bool(mo.MLock), C.bool(mo.Embeddings), C.bool(mo.MMap), C.bool(mo.LowVRAM), C.bool(mo.VocabOnly), C.int(mo.NGPULayers), C.int(mo.NBatch), C.CString(mo.MainGPU), C.CString(mo.TensorSplit), C.bool(mo.NUMA))
if ctx == nil {
@ -94,24 +95,34 @@ func (l *LLama) Eval(text string, opts ...PredictOption) error {
return fmt.Errorf("inference failed")
}
fmt.Println("hi 4")
C.llama_free_params(params)
fmt.Println("hi 5")
return nil
}
func (l *LLama) Predict(text string, opts ...PredictOption) (string, error) {
po := NewPredictOptions(opts...)
fmt.Println("predict 1")
if po.TokenCallback != nil {
setCallback(l.ctx, po.TokenCallback)
}
fmt.Println("predict 2")
input := C.CString(text)
if po.Tokens == 0 {
po.Tokens = 99999999
}
out := make([]byte, po.Tokens)
fmt.Println("predict 3")
reverseCount := len(po.StopPrompts)
reversePrompt := make([]*C.char, reverseCount)
var pass **C.char
@ -121,6 +132,8 @@ func (l *LLama) Predict(text string, opts ...PredictOption) (string, error) {
pass = &reversePrompt[0]
}
fmt.Println("predict 4")
params := C.llama_allocate_params(input, C.int(po.Seed), C.int(po.Threads), C.int(po.Tokens), C.int(po.TopK),
C.float(po.TopP), C.float(po.Temperature), C.float(po.Penalty), C.int(po.Repeat),
C.bool(po.IgnoreEOS), C.bool(po.F16KV),
@ -131,12 +144,16 @@ func (l *LLama) Predict(text string, opts ...PredictOption) (string, error) {
C.CString(po.MainGPU), C.CString(po.TensorSplit),
C.bool(po.PromptCacheRO),
)
fmt.Println("predict 4.5")
ret := C.llama_predict(params, l.ctx, (*C.char)(unsafe.Pointer(&out[0])), C.bool(po.DebugMode))
if ret != 0 {
return "", fmt.Errorf("inference failed")
}
res := C.GoString((*C.char)(unsafe.Pointer(&out[0])))
fmt.Println("predict 5")
res = strings.TrimPrefix(res, " ")
res = strings.TrimPrefix(res, text)
res = strings.TrimPrefix(res, "\n")
@ -145,6 +162,8 @@ func (l *LLama) Predict(text string, opts ...PredictOption) (string, error) {
res = strings.TrimRight(res, s)
}
fmt.Println("predict 6")
C.llama_free_params(params)
if po.TokenCallback != nil {