fix crash in bindings
This commit is contained in:
parent
6559a5b48f
commit
79a999e95d
4 changed files with 235 additions and 116 deletions
|
@ -4,7 +4,7 @@ include(FetchContent)
|
||||||
FetchContent_Declare(
|
FetchContent_Declare(
|
||||||
llama_cpp
|
llama_cpp
|
||||||
GIT_REPOSITORY https://github.com/ggerganov/llama.cpp.git
|
GIT_REPOSITORY https://github.com/ggerganov/llama.cpp.git
|
||||||
GIT_TAG master
|
GIT_TAG 55dbb91
|
||||||
)
|
)
|
||||||
|
|
||||||
FetchContent_MakeAvailable(llama_cpp)
|
FetchContent_MakeAvailable(llama_cpp)
|
||||||
|
|
|
@ -1,25 +1,3 @@
|
||||||
// MIT License
|
|
||||||
|
|
||||||
// Copyright (c) 2023 go-skynet authors
|
|
||||||
|
|
||||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
||||||
// of this software and associated documentation files (the "Software"), to deal
|
|
||||||
// in the Software without restriction, including without limitation the rights
|
|
||||||
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
||||||
// copies of the Software, and to permit persons to whom the Software is
|
|
||||||
// furnished to do so, subject to the following conditions:
|
|
||||||
|
|
||||||
// The above copyright notice and this permission notice shall be included in
|
|
||||||
// all copies or substantial portions of the Software.
|
|
||||||
|
|
||||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
||||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
||||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
||||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
||||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
||||||
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
||||||
// SOFTWARE.
|
|
||||||
|
|
||||||
#include "common.h"
|
#include "common.h"
|
||||||
#include "llama.h"
|
#include "llama.h"
|
||||||
|
|
||||||
|
@ -55,14 +33,78 @@ void sigint_handler(int signo) {
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
int eval(void *p, void *c, char *text) {
|
int get_embeddings(void *params_ptr, void *state_pr, float *res_embeddings) {
|
||||||
gpt_params *params = (gpt_params *)params;
|
gpt_params *params_p = (gpt_params *)params_ptr;
|
||||||
llama_context *ctx = (llama_context *)ctx;
|
llama_context *ctx = (llama_context *)state_pr;
|
||||||
|
gpt_params params = *params_p;
|
||||||
|
|
||||||
|
if (params.seed <= 0) {
|
||||||
|
params.seed = time(NULL);
|
||||||
|
}
|
||||||
|
|
||||||
|
std::mt19937 rng(params.seed);
|
||||||
|
|
||||||
|
llama_init_backend(params.numa);
|
||||||
|
|
||||||
|
int n_past = 0;
|
||||||
|
|
||||||
|
// Add a space in front of the first character to match OG llama tokenizer
|
||||||
|
// behavior
|
||||||
|
params.prompt.insert(0, 1, ' ');
|
||||||
|
|
||||||
|
// tokenize the prompt
|
||||||
|
auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
|
||||||
|
|
||||||
|
// determine newline token
|
||||||
|
auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
|
||||||
|
|
||||||
|
if (embd_inp.size() > 0) {
|
||||||
|
if (llama_eval(ctx, embd_inp.data(), embd_inp.size(), n_past,
|
||||||
|
params.n_threads)) {
|
||||||
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const int n_embd = llama_n_embd(ctx);
|
||||||
|
|
||||||
|
const auto embeddings = llama_get_embeddings(ctx);
|
||||||
|
|
||||||
|
for (int i = 0; i < n_embd; i++) {
|
||||||
|
res_embeddings[i] = embeddings[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
int get_token_embeddings(void *params_ptr, void *state_pr, int *tokens,
|
||||||
|
int tokenSize, float *res_embeddings) {
|
||||||
|
gpt_params *params_p = (gpt_params *)params_ptr;
|
||||||
|
llama_context *ctx = (llama_context *)state_pr;
|
||||||
|
gpt_params params = *params_p;
|
||||||
|
|
||||||
|
for (int i = 0; i < tokenSize; i++) {
|
||||||
|
auto token_str = llama_token_to_str(ctx, tokens[i]);
|
||||||
|
if (token_str == nullptr) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
std::vector<std::string> my_vector;
|
||||||
|
std::string str_token(token_str); // create a new std::string from the char*
|
||||||
|
params_p->prompt += str_token;
|
||||||
|
}
|
||||||
|
|
||||||
|
return get_embeddings(params_ptr, state_pr, res_embeddings);
|
||||||
|
}
|
||||||
|
|
||||||
|
int eval(void *params_ptr, void *state_pr, char *text) {
|
||||||
|
gpt_params *params_p = (gpt_params *)params_ptr;
|
||||||
|
llama_context *ctx = (llama_context *)state_pr;
|
||||||
|
|
||||||
auto n_past = 0;
|
auto n_past = 0;
|
||||||
auto last_n_tokens_data = std::vector<llama_token>(params->repeat_last_n, 0);
|
auto last_n_tokens_data =
|
||||||
|
std::vector<llama_token>(params_p->repeat_last_n, 0);
|
||||||
|
|
||||||
auto tokens = std::vector<llama_token>(params->n_ctx);
|
auto tokens = std::vector<llama_token>(params_p->n_ctx);
|
||||||
auto n_prompt_tokens =
|
auto n_prompt_tokens =
|
||||||
llama_tokenize(ctx, text, tokens.data(), tokens.size(), true);
|
llama_tokenize(ctx, text, tokens.data(), tokens.size(), true);
|
||||||
|
|
||||||
|
@ -71,22 +113,26 @@ int eval(void *p, void *c, char *text) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// evaluate prompt
|
||||||
return llama_eval(ctx, tokens.data(), n_prompt_tokens, n_past,
|
return llama_eval(ctx, tokens.data(), n_prompt_tokens, n_past,
|
||||||
params->n_threads);
|
params_p->n_threads);
|
||||||
}
|
}
|
||||||
|
|
||||||
int llama_predict(void *p, void *c, char *result, bool debug) {
|
int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug) {
|
||||||
gpt_params *params = (gpt_params *)params;
|
gpt_params *params_p = (gpt_params *)params_ptr;
|
||||||
llama_context *ctx = (llama_context *)ctx;
|
llama_context *ctx = (llama_context *)state_pr;
|
||||||
|
|
||||||
|
gpt_params params = *params_p;
|
||||||
|
|
||||||
const int n_ctx = llama_n_ctx(ctx);
|
const int n_ctx = llama_n_ctx(ctx);
|
||||||
|
|
||||||
if (params->seed <= 0) {
|
if (params.seed <= 0) {
|
||||||
params->seed = time(NULL);
|
params.seed = time(NULL);
|
||||||
}
|
}
|
||||||
|
|
||||||
std::mt19937 rng(params->seed);
|
std::mt19937 rng(params.seed);
|
||||||
std::string path_session = params->path_prompt_cache;
|
|
||||||
|
std::string path_session = params.path_prompt_cache;
|
||||||
std::vector<llama_token> session_tokens;
|
std::vector<llama_token> session_tokens;
|
||||||
|
|
||||||
if (!path_session.empty()) {
|
if (!path_session.empty()) {
|
||||||
|
@ -109,7 +155,7 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
session_tokens.resize(n_token_count_out);
|
session_tokens.resize(n_token_count_out);
|
||||||
llama_set_rng_seed(ctx, params->seed);
|
llama_set_rng_seed(ctx, params.seed);
|
||||||
if (debug) {
|
if (debug) {
|
||||||
fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n",
|
fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n",
|
||||||
__func__, (int)session_tokens.size());
|
__func__, (int)session_tokens.size());
|
||||||
|
@ -123,12 +169,12 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
|
||||||
}
|
}
|
||||||
|
|
||||||
std::vector<llama_token> embd_inp;
|
std::vector<llama_token> embd_inp;
|
||||||
if (!params->prompt.empty() || session_tokens.empty()) {
|
if (!params.prompt.empty() || session_tokens.empty()) {
|
||||||
// Add a space in front of the first character to match OG llama tokenizer
|
// Add a space in front of the first character to match OG llama tokenizer
|
||||||
// behavior
|
// behavior
|
||||||
params->prompt.insert(0, 1, ' ');
|
params.prompt.insert(0, 1, ' ');
|
||||||
|
|
||||||
embd_inp = ::llama_tokenize(ctx, params->prompt, true);
|
embd_inp = ::llama_tokenize(ctx, params.prompt, true);
|
||||||
} else {
|
} else {
|
||||||
embd_inp = session_tokens;
|
embd_inp = session_tokens;
|
||||||
}
|
}
|
||||||
|
@ -144,7 +190,7 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
|
||||||
n_matching_session_tokens++;
|
n_matching_session_tokens++;
|
||||||
}
|
}
|
||||||
if (debug) {
|
if (debug) {
|
||||||
if (params->prompt.empty() &&
|
if (params.prompt.empty() &&
|
||||||
n_matching_session_tokens == embd_inp.size()) {
|
n_matching_session_tokens == embd_inp.size()) {
|
||||||
fprintf(stderr, "%s: using full prompt from session file\n", __func__);
|
fprintf(stderr, "%s: using full prompt from session file\n", __func__);
|
||||||
} else if (n_matching_session_tokens >= embd_inp.size()) {
|
} else if (n_matching_session_tokens >= embd_inp.size()) {
|
||||||
|
@ -169,8 +215,8 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
|
||||||
session_tokens.resize(embd_inp.size() - 1);
|
session_tokens.resize(embd_inp.size() - 1);
|
||||||
}
|
}
|
||||||
// number of tokens to keep when resetting context
|
// number of tokens to keep when resetting context
|
||||||
if (params->n_keep < 0 || params->n_keep > (int)embd_inp.size()) {
|
if (params.n_keep < 0 || params.n_keep > (int)embd_inp.size()) {
|
||||||
params->n_keep = (int)embd_inp.size();
|
params.n_keep = (int)embd_inp.size();
|
||||||
}
|
}
|
||||||
|
|
||||||
// determine newline token
|
// determine newline token
|
||||||
|
@ -183,7 +229,7 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
|
||||||
bool need_to_save_session =
|
bool need_to_save_session =
|
||||||
!path_session.empty() && n_matching_session_tokens < embd_inp.size();
|
!path_session.empty() && n_matching_session_tokens < embd_inp.size();
|
||||||
int n_past = 0;
|
int n_past = 0;
|
||||||
int n_remain = params->n_predict;
|
int n_remain = params.n_predict;
|
||||||
int n_consumed = 0;
|
int n_consumed = 0;
|
||||||
int n_session_consumed = 0;
|
int n_session_consumed = 0;
|
||||||
|
|
||||||
|
@ -195,7 +241,7 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
|
||||||
const std::vector<llama_token> tmp = {
|
const std::vector<llama_token> tmp = {
|
||||||
llama_token_bos(),
|
llama_token_bos(),
|
||||||
};
|
};
|
||||||
llama_eval(ctx, tmp.data(), tmp.size(), 0, params->n_threads);
|
llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
|
||||||
llama_reset_timings(ctx);
|
llama_reset_timings(ctx);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -208,10 +254,10 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
|
||||||
// - take half of the last (n_ctx - n_keep) tokens and recompute the
|
// - take half of the last (n_ctx - n_keep) tokens and recompute the
|
||||||
// logits in batches
|
// logits in batches
|
||||||
if (n_past + (int)embd.size() > n_ctx) {
|
if (n_past + (int)embd.size() > n_ctx) {
|
||||||
const int n_left = n_past - params->n_keep;
|
const int n_left = n_past - params.n_keep;
|
||||||
|
|
||||||
// always keep the first token - BOS
|
// always keep the first token - BOS
|
||||||
n_past = std::max(1, params->n_keep);
|
n_past = std::max(1, params.n_keep);
|
||||||
|
|
||||||
// insert n_left/2 tokens at the start of embd from last_n_tokens
|
// insert n_left/2 tokens at the start of embd from last_n_tokens
|
||||||
embd.insert(embd.begin(),
|
embd.insert(embd.begin(),
|
||||||
|
@ -220,6 +266,14 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
|
||||||
|
|
||||||
// stop saving session if we run out of context
|
// stop saving session if we run out of context
|
||||||
path_session.clear();
|
path_session.clear();
|
||||||
|
|
||||||
|
// printf("\n---\n");
|
||||||
|
// printf("resetting: '");
|
||||||
|
// for (int i = 0; i < (int) embd.size(); i++) {
|
||||||
|
// printf("%s", llama_token_to_str(ctx, embd[i]));
|
||||||
|
// }
|
||||||
|
// printf("'\n");
|
||||||
|
// printf("\n---\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
// try to reuse a matching prefix from the loaded session instead of
|
// try to reuse a matching prefix from the loaded session instead of
|
||||||
|
@ -248,17 +302,15 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
|
||||||
// evaluate tokens in batches
|
// evaluate tokens in batches
|
||||||
// embd is typically prepared beforehand to fit within a batch, but not
|
// embd is typically prepared beforehand to fit within a batch, but not
|
||||||
// always
|
// always
|
||||||
for (int i = 0; i < (int)embd.size(); i += params->n_batch) {
|
for (int i = 0; i < (int)embd.size(); i += params.n_batch) {
|
||||||
int n_eval = (int)embd.size() - i;
|
int n_eval = (int)embd.size() - i;
|
||||||
if (n_eval > params->n_batch) {
|
if (n_eval > params.n_batch) {
|
||||||
n_eval = params->n_batch;
|
n_eval = params.n_batch;
|
||||||
}
|
}
|
||||||
|
if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads)) {
|
||||||
if (llama_eval(ctx, &embd[i], n_eval, n_past, params->n_threads)) {
|
|
||||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
n_past += n_eval;
|
n_past += n_eval;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -272,26 +324,26 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
|
||||||
|
|
||||||
if ((int)embd_inp.size() <= n_consumed) {
|
if ((int)embd_inp.size() <= n_consumed) {
|
||||||
// out of user input, sample next token
|
// out of user input, sample next token
|
||||||
const float temp = params->temp;
|
const float temp = params.temp;
|
||||||
const int32_t top_k =
|
const int32_t top_k =
|
||||||
params->top_k <= 0 ? llama_n_vocab(ctx) : params->top_k;
|
params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
|
||||||
const float top_p = params->top_p;
|
const float top_p = params.top_p;
|
||||||
const float tfs_z = params->tfs_z;
|
const float tfs_z = params.tfs_z;
|
||||||
const float typical_p = params->typical_p;
|
const float typical_p = params.typical_p;
|
||||||
const int32_t repeat_last_n =
|
const int32_t repeat_last_n =
|
||||||
params->repeat_last_n < 0 ? n_ctx : params->repeat_last_n;
|
params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
|
||||||
const float repeat_penalty = params->repeat_penalty;
|
const float repeat_penalty = params.repeat_penalty;
|
||||||
const float alpha_presence = params->presence_penalty;
|
const float alpha_presence = params.presence_penalty;
|
||||||
const float alpha_frequency = params->frequency_penalty;
|
const float alpha_frequency = params.frequency_penalty;
|
||||||
const int mirostat = params->mirostat;
|
const int mirostat = params.mirostat;
|
||||||
const float mirostat_tau = params->mirostat_tau;
|
const float mirostat_tau = params.mirostat_tau;
|
||||||
const float mirostat_eta = params->mirostat_eta;
|
const float mirostat_eta = params.mirostat_eta;
|
||||||
const bool penalize_nl = params->penalize_nl;
|
const bool penalize_nl = params.penalize_nl;
|
||||||
|
|
||||||
// optionally save the session on first sample (for faster prompt loading
|
// optionally save the session on first sample (for faster prompt loading
|
||||||
// next time)
|
// next time)
|
||||||
if (!path_session.empty() && need_to_save_session &&
|
if (!path_session.empty() && need_to_save_session &&
|
||||||
!params->prompt_cache_ro) {
|
!params.prompt_cache_ro) {
|
||||||
need_to_save_session = false;
|
need_to_save_session = false;
|
||||||
llama_save_session_file(ctx, path_session.c_str(),
|
llama_save_session_file(ctx, path_session.c_str(),
|
||||||
session_tokens.data(), session_tokens.size());
|
session_tokens.data(), session_tokens.size());
|
||||||
|
@ -304,8 +356,8 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
|
||||||
auto n_vocab = llama_n_vocab(ctx);
|
auto n_vocab = llama_n_vocab(ctx);
|
||||||
|
|
||||||
// Apply params.logit_bias map
|
// Apply params.logit_bias map
|
||||||
for (auto it = params->logit_bias.begin();
|
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end();
|
||||||
it != params->logit_bias.end(); it++) {
|
it++) {
|
||||||
logits[it->first] += it->second;
|
logits[it->first] += it->second;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -361,6 +413,7 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
|
||||||
id = llama_sample_token(ctx, &candidates_p);
|
id = llama_sample_token(ctx, &candidates_p);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
// printf("`%d`", candidates_p.size);
|
||||||
|
|
||||||
last_n_tokens.erase(last_n_tokens.begin());
|
last_n_tokens.erase(last_n_tokens.begin());
|
||||||
last_n_tokens.push_back(id);
|
last_n_tokens.push_back(id);
|
||||||
|
@ -375,7 +428,7 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
|
||||||
// call the token callback, no need to check if one is actually
|
// call the token callback, no need to check if one is actually
|
||||||
// registered, that will be handled on the Go side.
|
// registered, that will be handled on the Go side.
|
||||||
auto token_str = llama_token_to_str(ctx, id);
|
auto token_str = llama_token_to_str(ctx, id);
|
||||||
if (!tokenCallback(ctx, (char *)token_str)) {
|
if (!tokenCallback(state_pr, (char *)token_str)) {
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
|
@ -386,7 +439,7 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
|
||||||
last_n_tokens.erase(last_n_tokens.begin());
|
last_n_tokens.erase(last_n_tokens.begin());
|
||||||
last_n_tokens.push_back(embd_inp[n_consumed]);
|
last_n_tokens.push_back(embd_inp[n_consumed]);
|
||||||
++n_consumed;
|
++n_consumed;
|
||||||
if ((int)embd.size() >= params->n_batch) {
|
if ((int)embd.size() >= params.n_batch) {
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -397,13 +450,13 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
|
||||||
}
|
}
|
||||||
|
|
||||||
// check for stop prompt
|
// check for stop prompt
|
||||||
if (params->antiprompt.size()) {
|
if (params.antiprompt.size()) {
|
||||||
std::string last_output;
|
std::string last_output;
|
||||||
for (auto id : last_n_tokens) {
|
for (auto id : last_n_tokens) {
|
||||||
last_output += llama_token_to_str(ctx, id);
|
last_output += llama_token_to_str(ctx, id);
|
||||||
}
|
}
|
||||||
// Check if each of the reverse prompts appears at the end of the output.
|
// Check if each of the reverse prompts appears at the end of the output.
|
||||||
for (std::string &antiprompt : params->antiprompt) {
|
for (std::string &antiprompt : params.antiprompt) {
|
||||||
// size_t extra_padding = params.interactive ? 0 : 2;
|
// size_t extra_padding = params.interactive ? 0 : 2;
|
||||||
size_t extra_padding = 2;
|
size_t extra_padding = 2;
|
||||||
size_t search_start_pos =
|
size_t search_start_pos =
|
||||||
|
@ -426,8 +479,8 @@ int llama_predict(void *p, void *c, char *result, bool debug) {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (!path_session.empty() && params->prompt_cache_all &&
|
if (!path_session.empty() && params.prompt_cache_all &&
|
||||||
!params->prompt_cache_ro) {
|
!params.prompt_cache_ro) {
|
||||||
if (debug) {
|
if (debug) {
|
||||||
fprintf(stderr, "\n%s: saving final output to session file '%s'\n",
|
fprintf(stderr, "\n%s: saving final output to session file '%s'\n",
|
||||||
__func__, path_session.c_str());
|
__func__, path_session.c_str());
|
||||||
|
@ -450,8 +503,68 @@ end:
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
void llama_binding_free_model(void *ctx) { llama_free((llama_context *)ctx); }
|
void llama_binding_free_model(void *state_ptr) {
|
||||||
void llama_free_params(void *params) { delete (gpt_params *)params; }
|
llama_context *ctx = (llama_context *)state_ptr;
|
||||||
|
llama_free(ctx);
|
||||||
|
}
|
||||||
|
|
||||||
|
void llama_free_params(void *params_ptr) {
|
||||||
|
gpt_params *params = (gpt_params *)params_ptr;
|
||||||
|
delete params;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::string> create_vector(const char **strings, int count) {
|
||||||
|
std::vector<std::string> *vec = new std::vector<std::string>;
|
||||||
|
for (int i = 0; i < count; i++) {
|
||||||
|
vec->push_back(std::string(strings[i]));
|
||||||
|
}
|
||||||
|
return *vec;
|
||||||
|
}
|
||||||
|
|
||||||
|
void delete_vector(std::vector<std::string> *vec) { delete vec; }
|
||||||
|
|
||||||
|
int load_state(void *ctx, char *statefile, char *modes) {
|
||||||
|
llama_context *state = (llama_context *)ctx;
|
||||||
|
const llama_context *constState = static_cast<const llama_context *>(state);
|
||||||
|
const size_t state_size = llama_get_state_size(state);
|
||||||
|
uint8_t *state_mem = new uint8_t[state_size];
|
||||||
|
|
||||||
|
{
|
||||||
|
FILE *fp_read = fopen(statefile, modes);
|
||||||
|
if (state_size != llama_get_state_size(constState)) {
|
||||||
|
fprintf(stderr, "\n%s : failed to validate state size\n", __func__);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
const size_t ret = fread(state_mem, 1, state_size, fp_read);
|
||||||
|
if (ret != state_size) {
|
||||||
|
fprintf(stderr, "\n%s : failed to read state\n", __func__);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_set_state_data(
|
||||||
|
state, state_mem); // could also read directly from memory mapped file
|
||||||
|
fclose(fp_read);
|
||||||
|
}
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void save_state(void *ctx, char *dst, char *modes) {
|
||||||
|
llama_context *state = (llama_context *)ctx;
|
||||||
|
|
||||||
|
const size_t state_size = llama_get_state_size(state);
|
||||||
|
uint8_t *state_mem = new uint8_t[state_size];
|
||||||
|
|
||||||
|
// Save state (rng, logits, embedding and kv_cache) to file
|
||||||
|
{
|
||||||
|
FILE *fp_write = fopen(dst, modes);
|
||||||
|
llama_copy_state_data(
|
||||||
|
state, state_mem); // could also copy directly to memory mapped file
|
||||||
|
fwrite(state_mem, 1, state_size, fp_write);
|
||||||
|
fclose(fp_write);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
void *llama_allocate_params(
|
void *llama_allocate_params(
|
||||||
const char *prompt, int seed, int threads, int tokens, int top_k,
|
const char *prompt, int seed, int threads, int tokens, int top_k,
|
||||||
|
@ -505,13 +618,9 @@ void *llama_allocate_params(
|
||||||
if (ignore_eos) {
|
if (ignore_eos) {
|
||||||
params->logit_bias[llama_token_eos()] = -INFINITY;
|
params->logit_bias[llama_token_eos()] = -INFINITY;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (antiprompt_count > 0) {
|
if (antiprompt_count > 0) {
|
||||||
for (int i = 0; i < antiprompt_count; i++) {
|
params->antiprompt = create_vector(antiprompt, antiprompt_count);
|
||||||
params->antiprompt.push_back(std::string(antiprompt[i]));
|
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
params->tfs_z = tfs_z;
|
params->tfs_z = tfs_z;
|
||||||
params->typical_p = typical_p;
|
params->typical_p = typical_p;
|
||||||
params->presence_penalty = presence_penalty;
|
params->presence_penalty = presence_penalty;
|
||||||
|
@ -519,7 +628,6 @@ void *llama_allocate_params(
|
||||||
params->mirostat_eta = mirostat_eta;
|
params->mirostat_eta = mirostat_eta;
|
||||||
params->mirostat_tau = mirostat_tau;
|
params->mirostat_tau = mirostat_tau;
|
||||||
params->penalize_nl = penalize_nl;
|
params->penalize_nl = penalize_nl;
|
||||||
|
|
||||||
std::stringstream ss(logit_bias);
|
std::stringstream ss(logit_bias);
|
||||||
llama_token key;
|
llama_token key;
|
||||||
char sign;
|
char sign;
|
||||||
|
@ -539,6 +647,7 @@ void *load_model(const char *fname, int n_ctx, int n_seed, bool memory_f16,
|
||||||
bool mlock, bool embeddings, bool mmap, bool low_vram,
|
bool mlock, bool embeddings, bool mmap, bool low_vram,
|
||||||
bool vocab_only, int n_gpu_layers, int n_batch,
|
bool vocab_only, int n_gpu_layers, int n_batch,
|
||||||
const char *maingpu, const char *tensorsplit, bool numa) {
|
const char *maingpu, const char *tensorsplit, bool numa) {
|
||||||
|
// load the model
|
||||||
auto lparams = llama_context_default_params();
|
auto lparams = llama_context_default_params();
|
||||||
|
|
||||||
lparams.n_ctx = n_ctx;
|
lparams.n_ctx = n_ctx;
|
||||||
|
@ -575,11 +684,13 @@ void *load_model(const char *fname, int n_ctx, int n_seed, bool memory_f16,
|
||||||
lparams.n_batch = n_batch;
|
lparams.n_batch = n_batch;
|
||||||
|
|
||||||
llama_init_backend(numa);
|
llama_init_backend(numa);
|
||||||
|
void *res = nullptr;
|
||||||
struct llama_model *model = llama_load_model_from_file(fname, lparams);
|
try {
|
||||||
if (!model) {
|
res = llama_init_from_file(fname, lparams);
|
||||||
return nullptr;
|
} catch (std::runtime_error &e) {
|
||||||
|
fprintf(stderr, "failed %s", e.what());
|
||||||
|
return res;
|
||||||
}
|
}
|
||||||
|
|
||||||
return llama_new_context_with_model(model, lparams);
|
return res;
|
||||||
}
|
}
|
|
@ -1,25 +1,3 @@
|
||||||
// MIT License
|
|
||||||
|
|
||||||
// Copyright (c) 2023 go-skynet authors
|
|
||||||
|
|
||||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
||||||
// of this software and associated documentation files (the "Software"), to deal
|
|
||||||
// in the Software without restriction, including without limitation the rights
|
|
||||||
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
||||||
// copies of the Software, and to permit persons to whom the Software is
|
|
||||||
// furnished to do so, subject to the following conditions:
|
|
||||||
|
|
||||||
// The above copyright notice and this permission notice shall be included in
|
|
||||||
// all copies or substantial portions of the Software.
|
|
||||||
|
|
||||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
||||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
||||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
||||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
||||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
||||||
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
||||||
// SOFTWARE.
|
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
@ -30,13 +8,22 @@ extern "C" {
|
||||||
|
|
||||||
extern unsigned char tokenCallback(void *, char *);
|
extern unsigned char tokenCallback(void *, char *);
|
||||||
|
|
||||||
int eval(void *p, void *c, char *text);
|
int load_state(void *ctx, char *statefile, char *modes);
|
||||||
|
|
||||||
|
int eval(void *params_ptr, void *ctx, char *text);
|
||||||
|
|
||||||
|
void save_state(void *ctx, char *dst, char *modes);
|
||||||
|
|
||||||
void *load_model(const char *fname, int n_ctx, int n_seed, bool memory_f16,
|
void *load_model(const char *fname, int n_ctx, int n_seed, bool memory_f16,
|
||||||
bool mlock, bool embeddings, bool mmap, bool low_vram,
|
bool mlock, bool embeddings, bool mmap, bool low_vram,
|
||||||
bool vocab_only, int n_gpu, int n_batch, const char *maingpu,
|
bool vocab_only, int n_gpu, int n_batch, const char *maingpu,
|
||||||
const char *tensorsplit, bool numa);
|
const char *tensorsplit, bool numa);
|
||||||
|
|
||||||
|
int get_embeddings(void *params_ptr, void *state_pr, float *res_embeddings);
|
||||||
|
|
||||||
|
int get_token_embeddings(void *params_ptr, void *state_pr, int *tokens,
|
||||||
|
int tokenSize, float *res_embeddings);
|
||||||
|
|
||||||
void *llama_allocate_params(
|
void *llama_allocate_params(
|
||||||
const char *prompt, int seed, int threads, int tokens, int top_k,
|
const char *prompt, int seed, int threads, int tokens, int top_k,
|
||||||
float top_p, float temp, float repeat_penalty, int repeat_last_n,
|
float top_p, float temp, float repeat_penalty, int repeat_last_n,
|
||||||
|
@ -50,11 +37,13 @@ void *llama_allocate_params(
|
||||||
|
|
||||||
void llama_free_params(void *params_ptr);
|
void llama_free_params(void *params_ptr);
|
||||||
|
|
||||||
void llama_binding_free_model(void *ctx);
|
void llama_binding_free_model(void *state);
|
||||||
|
|
||||||
int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug);
|
int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug);
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
|
|
||||||
|
std::vector<std::string> create_vector(const char **strings, int count);
|
||||||
|
void delete_vector(std::vector<std::string> *vec);
|
||||||
#endif
|
#endif
|
|
@ -28,6 +28,7 @@ package llama
|
||||||
// #cgo CXXFLAGS: -std=c++11
|
// #cgo CXXFLAGS: -std=c++11
|
||||||
// #cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
|
// #cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
|
||||||
// #include "binding/binding.h"
|
// #include "binding/binding.h"
|
||||||
|
// #include <stdlib.h>
|
||||||
import "C"
|
import "C"
|
||||||
import (
|
import (
|
||||||
"fmt"
|
"fmt"
|
||||||
|
@ -45,8 +46,8 @@ type LLama struct {
|
||||||
func New(model string, opts ...ModelOption) (*LLama, error) {
|
func New(model string, opts ...ModelOption) (*LLama, error) {
|
||||||
mo := NewModelOptions(opts...)
|
mo := NewModelOptions(opts...)
|
||||||
|
|
||||||
// TODO: free this pointer
|
|
||||||
modelPath := C.CString(model)
|
modelPath := C.CString(model)
|
||||||
|
defer C.free(unsafe.Pointer(modelPath))
|
||||||
|
|
||||||
ctx := C.load_model(modelPath, C.int(mo.ContextSize), C.int(mo.Seed), C.bool(mo.F16Memory), C.bool(mo.MLock), C.bool(mo.Embeddings), C.bool(mo.MMap), C.bool(mo.LowVRAM), C.bool(mo.VocabOnly), C.int(mo.NGPULayers), C.int(mo.NBatch), C.CString(mo.MainGPU), C.CString(mo.TensorSplit), C.bool(mo.NUMA))
|
ctx := C.load_model(modelPath, C.int(mo.ContextSize), C.int(mo.Seed), C.bool(mo.F16Memory), C.bool(mo.MLock), C.bool(mo.Embeddings), C.bool(mo.MMap), C.bool(mo.LowVRAM), C.bool(mo.VocabOnly), C.int(mo.NGPULayers), C.int(mo.NBatch), C.CString(mo.MainGPU), C.CString(mo.TensorSplit), C.bool(mo.NUMA))
|
||||||
if ctx == nil {
|
if ctx == nil {
|
||||||
|
@ -94,24 +95,34 @@ func (l *LLama) Eval(text string, opts ...PredictOption) error {
|
||||||
return fmt.Errorf("inference failed")
|
return fmt.Errorf("inference failed")
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fmt.Println("hi 4")
|
||||||
|
|
||||||
C.llama_free_params(params)
|
C.llama_free_params(params)
|
||||||
|
|
||||||
|
fmt.Println("hi 5")
|
||||||
|
|
||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
|
|
||||||
func (l *LLama) Predict(text string, opts ...PredictOption) (string, error) {
|
func (l *LLama) Predict(text string, opts ...PredictOption) (string, error) {
|
||||||
po := NewPredictOptions(opts...)
|
po := NewPredictOptions(opts...)
|
||||||
|
|
||||||
|
fmt.Println("predict 1")
|
||||||
|
|
||||||
if po.TokenCallback != nil {
|
if po.TokenCallback != nil {
|
||||||
setCallback(l.ctx, po.TokenCallback)
|
setCallback(l.ctx, po.TokenCallback)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fmt.Println("predict 2")
|
||||||
|
|
||||||
input := C.CString(text)
|
input := C.CString(text)
|
||||||
if po.Tokens == 0 {
|
if po.Tokens == 0 {
|
||||||
po.Tokens = 99999999
|
po.Tokens = 99999999
|
||||||
}
|
}
|
||||||
out := make([]byte, po.Tokens)
|
out := make([]byte, po.Tokens)
|
||||||
|
|
||||||
|
fmt.Println("predict 3")
|
||||||
|
|
||||||
reverseCount := len(po.StopPrompts)
|
reverseCount := len(po.StopPrompts)
|
||||||
reversePrompt := make([]*C.char, reverseCount)
|
reversePrompt := make([]*C.char, reverseCount)
|
||||||
var pass **C.char
|
var pass **C.char
|
||||||
|
@ -121,6 +132,8 @@ func (l *LLama) Predict(text string, opts ...PredictOption) (string, error) {
|
||||||
pass = &reversePrompt[0]
|
pass = &reversePrompt[0]
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fmt.Println("predict 4")
|
||||||
|
|
||||||
params := C.llama_allocate_params(input, C.int(po.Seed), C.int(po.Threads), C.int(po.Tokens), C.int(po.TopK),
|
params := C.llama_allocate_params(input, C.int(po.Seed), C.int(po.Threads), C.int(po.Tokens), C.int(po.TopK),
|
||||||
C.float(po.TopP), C.float(po.Temperature), C.float(po.Penalty), C.int(po.Repeat),
|
C.float(po.TopP), C.float(po.Temperature), C.float(po.Penalty), C.int(po.Repeat),
|
||||||
C.bool(po.IgnoreEOS), C.bool(po.F16KV),
|
C.bool(po.IgnoreEOS), C.bool(po.F16KV),
|
||||||
|
@ -131,12 +144,16 @@ func (l *LLama) Predict(text string, opts ...PredictOption) (string, error) {
|
||||||
C.CString(po.MainGPU), C.CString(po.TensorSplit),
|
C.CString(po.MainGPU), C.CString(po.TensorSplit),
|
||||||
C.bool(po.PromptCacheRO),
|
C.bool(po.PromptCacheRO),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
fmt.Println("predict 4.5")
|
||||||
ret := C.llama_predict(params, l.ctx, (*C.char)(unsafe.Pointer(&out[0])), C.bool(po.DebugMode))
|
ret := C.llama_predict(params, l.ctx, (*C.char)(unsafe.Pointer(&out[0])), C.bool(po.DebugMode))
|
||||||
if ret != 0 {
|
if ret != 0 {
|
||||||
return "", fmt.Errorf("inference failed")
|
return "", fmt.Errorf("inference failed")
|
||||||
}
|
}
|
||||||
res := C.GoString((*C.char)(unsafe.Pointer(&out[0])))
|
res := C.GoString((*C.char)(unsafe.Pointer(&out[0])))
|
||||||
|
|
||||||
|
fmt.Println("predict 5")
|
||||||
|
|
||||||
res = strings.TrimPrefix(res, " ")
|
res = strings.TrimPrefix(res, " ")
|
||||||
res = strings.TrimPrefix(res, text)
|
res = strings.TrimPrefix(res, text)
|
||||||
res = strings.TrimPrefix(res, "\n")
|
res = strings.TrimPrefix(res, "\n")
|
||||||
|
@ -145,6 +162,8 @@ func (l *LLama) Predict(text string, opts ...PredictOption) (string, error) {
|
||||||
res = strings.TrimRight(res, s)
|
res = strings.TrimRight(res, s)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fmt.Println("predict 6")
|
||||||
|
|
||||||
C.llama_free_params(params)
|
C.llama_free_params(params)
|
||||||
|
|
||||||
if po.TokenCallback != nil {
|
if po.TokenCallback != nil {
|
||||||
|
|
Loading…
Reference in a new issue