Improve multi-gpu handling at the limit

Still not complete, needs some refinement to our prediction to understand the
discrete GPUs available space so we can see how many layers fit in each one
since we can't split one layer across multiple GPUs we can't treat free space
as one logical block
This commit is contained in:
Daniel Hiltgen 2024-05-18 12:34:31 -07:00
parent 206797bda4
commit 6fd04ca922
11 changed files with 390 additions and 90 deletions

View file

@ -27,7 +27,7 @@ const (
GPUTotalMemoryFileGlob = "mem_banks/*/properties" // size_in_bytes line
// Direct Rendering Manager sysfs location
DRMDeviceDirGlob = "/sys/class/drm/card[0-9]/device"
DRMDeviceDirGlob = "/sys/class/drm/card*/device"
DRMTotalMemoryFile = "mem_info_vram_total"
DRMUsedMemoryFile = "mem_info_vram_used"

View file

@ -246,10 +246,6 @@ func GetGPUInfo() GpuInfoList {
return GpuInfoList{cpus[0].GpuInfo}
}
// TODO - implement
// TODO refine the discovery to only gather total memory
// On windows we bundle the nvidia library one level above the runner dir
depPath := ""
if runtime.GOOS == "windows" && envconfig.RunnersDir != "" {

View file

@ -44,14 +44,14 @@ type CPUInfo struct {
type CudaGPUInfo struct {
GpuInfo
index int // device index
index int // nolint: unused
}
type CudaGPUInfoList []CudaGPUInfo
type RocmGPUInfo struct {
GpuInfo
usedFilepath string // linux
index int // device index on windows
usedFilepath string // nolint: unused
index int // nolint: unused
}
type RocmGPUInfoList []RocmGPUInfo

View file

@ -38,7 +38,7 @@ func TestMultiModelConcurrency(t *testing.T) {
}
resp = [2][]string{
[]string{"sunlight"},
[]string{"england", "english", "massachusetts", "pilgrims"},
[]string{"england", "english", "massachusetts", "pilgrims", "british"},
}
)
var wg sync.WaitGroup
@ -229,5 +229,23 @@ func TestMultiModelStress(t *testing.T) {
}
}(i)
}
go func() {
for {
time.Sleep(2 * time.Second)
select {
case <-ctx.Done():
return
default:
models, err := client.ListRunning(ctx)
if err != nil {
slog.Warn("failed to list running models", "error", err)
continue
}
for _, m := range models.Models {
slog.Info("loaded model snapshot", "model", m)
}
}
}
}()
wg.Wait()
}

View file

@ -11,7 +11,7 @@ import (
)
func TestContextExhaustion(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute) // TODO maybe shorter?
ctx, cancel := context.WithTimeout(context.Background(), 4*time.Minute) // Longer needed for small footprint GPUs
defer cancel()
// Set up the test data
req := api.GenerateRequest{

View file

@ -331,7 +331,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
[][]string{
[]string{"sunlight"},
[]string{"soil", "organic", "earth", "black", "tan"},
[]string{"england", "english", "massachusetts", "pilgrims"},
[]string{"england", "english", "massachusetts", "pilgrims", "british"},
[]string{"fourth", "july", "declaration", "independence"},
[]string{"nitrogen", "oxygen", "carbon", "dioxide"},
}

View file

@ -307,6 +307,7 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
partialOffload = 4 * batch * embedding
partialOffload += max(
// 4*batch*(4+6*embedding+context*(2*heads)+llm.KV().GQA()),
4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embedding/heads*headsKV),
4*batch*(embedding+vocab)+embedding*vocab*105/128,
)

View file

@ -3,9 +3,10 @@ package llm
import (
"fmt"
"log/slog"
"strconv"
"strings"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/gpu"
)
@ -16,7 +17,8 @@ func PredictServerFit(allGpus gpu.GpuInfoList, ggml *GGML, adapters, projectors
var estimatedVRAM uint64
for _, gpus := range allGpus.ByLibrary() {
var layerCount int
layerCount, estimatedVRAM, _ = EstimateGPULayers(gpus, ggml, projectors, opts)
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
layerCount, estimatedVRAM = estimate.Layers, estimate.VRAMSize
if opts.NumGPU < 0 {
if layerCount > 0 && layerCount >= int(ggml.KV().BlockCount()+1) {
return true, estimatedVRAM
@ -30,24 +32,68 @@ func PredictServerFit(allGpus gpu.GpuInfoList, ggml *GGML, adapters, projectors
return false, estimatedVRAM
}
type MemoryEstimate struct {
// How many layers we predict we can load
Layers int
// The size of the graph which occupies the main GPU
Graph uint64
// How much VRAM will be allocated given the number of layers we predict
VRAMSize uint64
// The total size of the model if loaded into VRAM. If all layers are loaded, VRAMSize == TotalSize
TotalSize uint64
// For multi-GPU scenarios, this provides the tensor split parameter
TensorSplit string
// For multi-GPU scenarios, this is the size in bytes per GPU
GPUSizes []uint64
}
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
// The GPUs provided must all be the same Library
func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts api.Options) (int, uint64, uint64) {
var memoryAvailable uint64
for _, info := range gpus {
memoryAvailable += info.FreeMemory
}
if envconfig.MaxVRAM > 0 {
memoryAvailable = envconfig.MaxVRAM
}
func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts api.Options) MemoryEstimate {
// Graph size for a partial offload, applies to all GPUs
var graphPartialOffload uint64
slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", format.HumanBytes2(memoryAvailable))
// Graph size when all layers are offloaded, applies to all GPUs
var graphFullOffload uint64
// TODO - this is probably wrong, first GPU vs secondaries will have different overheads
memoryMinimum := gpus[0].MinimumMemory
// Final graph offload once we know full or partial
var graphOffload uint64
// Projectors loaded into GPU0 only
var projectorSize uint64
// Conditional output size on GPU 0
var memoryLayerOutput uint64
var includeOutput bool
// One extra layer as a pad for each GPU
var layerBuffer uint64
// The sizes of the main layers
var layerSizes []uint64
// The sum of all the layer sizes (just for logging)
var memoryWeights uint64
// True if all the layers are loaded
var fullyLoaded bool
// Overflow that didn't fit into the GPU
var overflow uint64
availableList := make([]string, len(gpus))
for i, gpu := range gpus {
availableList[i] = format.HumanBytes2(gpu.FreeMemory)
}
slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", availableList)
for _, projector := range projectors {
memoryMinimum += projectorMemoryRequirements(projector)
projectorSize += projectorMemoryRequirements(projector)
// multimodal models require at least 2048 context
opts.NumCtx = max(opts.NumCtx, 2048)
@ -56,40 +102,28 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
layers := ggml.Tensors().Layers()
// add one layer worth of memory as a buffer
if blk0, ok := layers["blk.0"]; ok {
memoryMinimum += blk0.size()
layerBuffer = blk0.size()
}
// fp16 k,v = (1 (k) + 1 (v)) * sizeof(float16) * n_ctx * n_layer * n_embd / n_head * n_head_kv
var kv uint64 = 2 * 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * ggml.KV().EmbeddingLength() / ggml.KV().HeadCount() * ggml.KV().HeadCountKV()
graphPartialOffload, graphFullOffload := ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
graphPartialOffload, graphFullOffload = ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
if graphPartialOffload == 0 {
graphPartialOffload = ggml.KV().GQA() * kv / 6
}
if graphFullOffload == 0 {
graphFullOffload = graphPartialOffload
}
graphFullOffload *= uint64(len(gpus))
graphPartialOffload *= uint64(len(gpus))
// on metal there's no partial offload overhead
if gpus[0].Library == "metal" {
graphPartialOffload = graphFullOffload
}
// memoryRequiredTotal represents the memory required for full GPU offloading (all layers)
memoryRequiredTotal := memoryMinimum + graphFullOffload
// memoryRequiredPartial represents the memory required for partial GPU offloading (n > 0, n < layers)
memoryRequiredPartial := memoryMinimum + graphPartialOffload
var memoryLayerOutput uint64
if layer, ok := layers["output_norm"]; ok {
memoryLayerOutput += layer.size()
}
if layer, ok := layers["output"]; ok {
memoryLayerOutput += layer.size()
} else if layer, ok := layers["token_embd"]; ok {
@ -97,38 +131,144 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
}
if gpus[0].Library == "metal" && opts.UseMMap {
// memory is preallocated for output tensors
memoryRequiredTotal += memoryLayerOutput
memoryRequiredPartial += memoryLayerOutput
includeOutput = true
} else if gpus[0].Library != "metal" || !opts.UseMMap {
includeOutput = true
}
gpuZeroOverhead := projectorSize
if includeOutput {
gpuZeroOverhead += memoryLayerOutput
}
// Reduce set of GPUs to only those that have sufficient space to fit overhead and at least one layer
var layerCount int
layerCounts := make([]int, len(gpus))
gpuAllocations := make([]uint64, len(gpus))
type gs struct {
i int
g *gpu.GpuInfo
}
gpusWithSpace := []gs{}
for i := range gpus {
var gzo uint64
if len(gpusWithSpace) == 0 {
gzo = gpuZeroOverhead
}
// Only include GPUs that can fit the graph, gpu minimum, the layer buffer and at least more layer
if gpus[i].FreeMemory < gzo+max(graphPartialOffload, graphFullOffload)+gpus[i].MinimumMemory+2*layerBuffer {
slog.Debug("gpu has too little memory to allocate any layers", "gpu", gpus[i])
continue
}
gpusWithSpace = append(gpusWithSpace, gs{i, &gpus[i]})
gpuAllocations[i] += gpus[i].MinimumMemory + layerBuffer // We hold off on graph until we know partial vs. full
}
var gpuZeroID int
if len(gpusWithSpace) > 0 {
gpuZeroID = gpusWithSpace[0].i
gpuAllocations[gpuZeroID] += gpuZeroOverhead
}
layerSizes = make([]uint64, int(ggml.KV().BlockCount()))
for i := range int(ggml.KV().BlockCount()) {
if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
memoryLayer := blk.size()
// KV is proportional to the number of layers
memoryLayer += kv / ggml.KV().BlockCount()
layerSizes[i] = memoryLayer
memoryWeights += memoryLayer
}
}
memoryRequiredTotal += memoryLayer
if (opts.NumGPU >= 0 && layerCount+1 <= opts.NumGPU) || (opts.NumGPU < 0 && memoryAvailable > memoryRequiredPartial+memoryLayer) {
memoryRequiredPartial += memoryLayer
// For all the layers, find where they can fit on the GPU(s)
for i := range layerSizes {
if layerSizes[i] == 0 {
continue
}
if opts.NumGPU >= 0 && layerCount >= opts.NumGPU {
// Stop allocating on GPU(s) once we hit the users target NumGPU
continue
}
// distribute the layers across the GPU(s) that have space
for j := len(gpusWithSpace); j > 0; j-- {
g := gpusWithSpace[i%j]
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
if g.g.FreeMemory > used+layerSizes[i] {
gpuAllocations[g.i] += layerSizes[i]
layerCounts[g.i]++
layerCount++
}
break
} else {
gpusWithSpace = append(gpusWithSpace[:i%j], gpusWithSpace[i%j+1:]...)
}
}
if gpus[0].Library != "metal" || !opts.UseMMap {
// memory was not preallocated for output tensors
memoryRequiredTotal += memoryLayerOutput
}
if layerCount >= int(ggml.KV().BlockCount()) {
fullyLoaded = true
} else {
for i := layerCount; i < int(ggml.KV().BlockCount()); i++ {
overflow += layerSizes[i]
}
}
// Find where the output fits
if includeOutput && memoryLayerOutput > 0 && (opts.NumGPU < 0 || layerCount < opts.NumGPU) {
for j := len(gpusWithSpace); j > 0; j-- {
g := gpusWithSpace[layerCount%j]
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
if g.g.FreeMemory > used+memoryLayerOutput {
gpuAllocations[g.i] += memoryLayerOutput
layerCounts[g.i]++
layerCount++
break
}
}
if layerCount < int(ggml.KV().BlockCount())+1 {
fullyLoaded = false
overflow += memoryLayerOutput
}
}
if (opts.NumGPU >= 0 && layerCount+1 <= opts.NumGPU) || (opts.NumGPU < 0 && memoryAvailable > memoryRequiredTotal) {
layerCount = int(ggml.KV().BlockCount()) + 1
memoryRequiredPartial = memoryRequiredTotal
// Add the applicable (full or partial) graph allocations
for i := range gpus {
if layerCounts[i] <= 0 {
continue
}
if fullyLoaded {
gpuAllocations[i] += graphFullOffload
} else {
gpuAllocations[i] += graphPartialOffload
}
}
if fullyLoaded {
graphOffload = graphFullOffload
} else {
graphOffload = graphPartialOffload
}
memoryWeights := memoryRequiredTotal - memoryMinimum - graphFullOffload - kv
// Summaries for the log
var memoryRequiredPartial, memoryRequiredTotal uint64
for i := range gpuAllocations {
memoryRequiredPartial += gpuAllocations[i]
}
memoryRequiredTotal = memoryRequiredPartial + overflow
tensorSplit := ""
if len(gpus) > 1 {
splits := make([]string, len(gpus))
for i, count := range layerCounts {
splits[i] = strconv.Itoa(count)
}
tensorSplit = strings.Join(splits, ",")
}
allocationsList := []string{}
for _, a := range gpuAllocations {
allocationsList = append(allocationsList, format.HumanBytes2(a))
}
slog.Info(
"offload to gpu",
@ -136,13 +276,17 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
"layers",
// requested number of layers to offload
"requested", opts.NumGPU,
// The number of layers the model has (including output)
"model", int(ggml.KV().BlockCount())+1,
// estimated number of layers that can be offloaded
"real", layerCount,
"offload", layerCount,
// multi-gpu split for tesnors
"split", tensorSplit,
),
slog.Group(
"memory",
// memory available for offloading
"available", format.HumanBytes2(memoryAvailable),
// memory available by GPU for offloading
"available", availableList,
slog.Group(
"required",
// memory required for full offloading
@ -151,6 +295,8 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
"partial", format.HumanBytes2(memoryRequiredPartial),
// memory of KV cache
"kv", format.HumanBytes2(kv),
// Allocations across the GPUs
"allocations", allocationsList,
),
slog.Group(
"weights",
@ -171,12 +317,31 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
),
)
if gpus[0].Library == "cpu" {
return 0, 0, memoryRequiredTotal
return MemoryEstimate{
Layers: 0,
Graph: 0,
VRAMSize: 0,
TotalSize: memoryRequiredTotal,
GPUSizes: []uint64{},
}
if memoryRequiredPartial > memoryAvailable {
}
if layerCount == 0 {
slog.Debug("insufficient VRAM to load any model layers")
return 0, 0, memoryRequiredTotal
return MemoryEstimate{
Layers: 0,
Graph: 0,
VRAMSize: 0,
TotalSize: memoryRequiredTotal,
GPUSizes: []uint64{},
}
}
return layerCount, memoryRequiredPartial, memoryRequiredTotal
return MemoryEstimate{
Layers: layerCount,
Graph: graphOffload,
VRAMSize: memoryRequiredPartial,
TotalSize: memoryRequiredTotal,
TensorSplit: tensorSplit,
GPUSizes: gpuAllocations,
}
}

116
llm/memory_test.go Normal file
View file

@ -0,0 +1,116 @@
package llm
import (
"bytes"
"encoding/binary"
"fmt"
"os"
"testing"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/gpu"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
func TestEstimateGPULayers(t *testing.T) {
envconfig.Debug = true
modelName := "dummy"
f, err := os.CreateTemp(t.TempDir(), modelName)
assert.Nil(t, err)
defer f.Close()
gguf := NewGGUFV3(binary.LittleEndian)
inputLayerCount := 5
tensors := []Tensor{
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
{Name: "blk.1.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
{Name: "blk.2.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
{Name: "blk.3.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
{Name: "blk.4.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
}
assert.Equal(t, inputLayerCount+1, len(tensors))
err = gguf.Encode(f, KV{
"general.architecture": "llama",
"general.name": "name",
"llama.context_length": uint32(32),
"llama.embedding_length": uint32(4096),
"llama.block_count": uint32(inputLayerCount),
"llama.attention.head_count": uint32(32),
"llama.attention.head_count_kv": uint32(32),
"tokenizer.ggml.tokens": []string{" "},
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, tensors)
require.NoError(t, err)
ggml, err := LoadModel(f.Name())
require.NoError(t, err)
// Simple CPU scenario
gpus := []gpu.GpuInfo{
{
Library: "cpu",
},
}
projectors := []string{}
opts := api.DefaultOptions()
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
assert.Equal(t, 0, estimate.Layers)
assert.Equal(t, uint64(0), estimate.Graph)
// derived from the dummy ggml file above
graphPartialOffload := uint64(202377216)
graphFullOffload := uint64(171968512)
layerSize := uint64(33554436)
projectorSize := uint64(0)
memoryLayerOutput := uint64(4)
// Dual CUDA scenario with assymetry
gpuMinimumMemory := uint64(2048)
gpus = []gpu.GpuInfo{
{
Library: "cuda",
MinimumMemory: gpuMinimumMemory,
},
{
Library: "cuda",
MinimumMemory: gpuMinimumMemory,
},
}
// Nested array: GPU0 layer space, GPU1 layer space, expected gpu0, expected gpu1
for i, s := range [][]uint64{
{1, 1, 1, 1},
{2, 1, 2, 1},
{2, 2, 2, 2},
{1, 2, 1, 2},
{3, 3, 3, 3},
{4, 4, 3, 3},
{6, 6, 3, 3},
{0, 3, 0, 3},
} {
gpus[0].FreeMemory = 0
gpus[1].FreeMemory = 0
gpus[0].FreeMemory += projectorSize + memoryLayerOutput
gpus[0].FreeMemory += gpuMinimumMemory + layerSize + s[0]*layerSize + 1
gpus[1].FreeMemory += gpuMinimumMemory + layerSize + s[1]*layerSize + 1
gpus[0].FreeMemory += max(graphFullOffload, graphPartialOffload)
gpus[1].FreeMemory += max(graphFullOffload, graphPartialOffload)
estimate = EstimateGPULayers(gpus, ggml, projectors, opts)
assert.Equal(t, int(s[2]+s[3]), estimate.Layers, "scenario %d: %v", i, s)
assert.Equal(t, fmt.Sprintf("%d,%d", s[2], s[3]), estimate.TensorSplit, "scenario %d: %v", i, s)
var layerSums uint64
for _, b := range estimate.GPUSizes {
layerSums += b
}
if estimate.Layers < inputLayerCount+1 {
assert.Less(t, estimate.VRAMSize, estimate.TotalSize, "scenario %d: %v %+v", i, s, estimate)
assert.Equal(t, estimate.VRAMSize, layerSums, "scenario %d: %v %+v", i, s, estimate)
} else {
assert.Equal(t, estimate.VRAMSize, estimate.TotalSize, "scenario %d: %v %+v", i, s, estimate)
assert.Equal(t, estimate.TotalSize, layerSums, "scenario %d: %v %+v", i, s, estimate)
}
}
}

View file

@ -49,9 +49,7 @@ type llmServer struct {
status *StatusWriter
options api.Options
// TODO - this should be broken down by GPU
estimatedVRAM uint64 // Estimated usage of VRAM by the loaded model
estimatedTotal uint64 // Total size of model
estimate MemoryEstimate
totalLayers uint64
gpuCount int
loadDuration time.Duration // Record how long it took the model to load
@ -80,8 +78,7 @@ func LoadModel(model string) (*GGML, error) {
func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, projectors []string, opts api.Options) (LlamaServer, error) {
var err error
var cpuRunner string
var estimatedVRAM uint64
var estimatedTotal uint64
var estimate MemoryEstimate
var systemMemory uint64
gpuCount := len(gpus)
if (len(gpus) == 1 && gpus[0].Library == "cpu") || opts.NumGPU == 0 {
@ -89,7 +86,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
cpuRunner = serverForCpu()
gpuCount = 0
_, _, estimatedTotal = EstimateGPULayers(gpus, ggml, projectors, opts)
estimate = EstimateGPULayers(gpus, ggml, projectors, opts)
} else {
if gpus[0].Library == "metal" {
memInfo, err := gpu.GetCPUMem()
@ -100,20 +97,19 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
slog.Debug("system memory", "total", format.HumanBytes2(systemMemory))
}
}
var layers int
layers, estimatedVRAM, estimatedTotal = EstimateGPULayers(gpus, ggml, projectors, opts)
estimate = EstimateGPULayers(gpus, ggml, projectors, opts)
switch {
case gpus[0].Library == "metal" && estimatedVRAM > systemMemory:
case gpus[0].Library == "metal" && estimate.VRAMSize > systemMemory:
// disable partial offloading when model is greater than total system memory as this
// can lead to locking up the system
opts.NumGPU = 0
case gpus[0].Library != "metal" && layers == 0:
case gpus[0].Library != "metal" && estimate.Layers == 0:
// Don't bother loading into the GPU if no layers can fit
cpuRunner = serverForCpu()
gpuCount = 0
case opts.NumGPU < 0 && layers > 0 && gpus[0].Library != "cpu":
opts.NumGPU = layers
case opts.NumGPU < 0 && estimate.Layers > 0 && gpus[0].Library != "cpu":
opts.NumGPU = estimate.Layers
}
}
@ -232,6 +228,14 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
params = append(params, "--parallel", fmt.Sprintf("%d", numParallel))
if estimate.TensorSplit != "" {
params = append(params, "--tensor-split", estimate.TensorSplit)
}
if estimate.TensorSplit != "" {
params = append(params, "--tensor-split", estimate.TensorSplit)
}
for i := range len(servers) {
dir := availableServers[servers[i]]
if dir == "" {
@ -303,8 +307,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
cmd: exec.Command(server, finalParams...),
status: NewStatusWriter(os.Stderr),
options: opts,
estimatedVRAM: estimatedVRAM,
estimatedTotal: estimatedTotal,
estimate: estimate,
sem: semaphore.NewWeighted(int64(numParallel)),
totalLayers: ggml.KV().BlockCount() + 1,
gpuCount: gpuCount,
@ -1004,11 +1007,11 @@ func (s *llmServer) Close() error {
}
func (s *llmServer) EstimatedVRAM() uint64 {
return s.estimatedVRAM
return s.estimate.VRAMSize
}
func (s *llmServer) EstimatedTotal() uint64 {
return s.estimatedTotal
return s.estimate.TotalSize
}
func parseDurationMs(ms float64) time.Duration {

View file

@ -129,6 +129,7 @@ func newScenario(t *testing.T, ctx context.Context, modelName string, estimatedV
"tokenizer.ggml.token_type": []int32{0},
}, []llm.Tensor{
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
})
require.NoError(t, err)