Merge pull request #6064 from ollama/mxyng/convert-llama3

convert: update llama conversion for llama3.1
This commit is contained in:
Michael Yang 2024-08-21 12:57:09 -07:00 committed by GitHub
commit 6bd8a4b0a1
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
9 changed files with 44 additions and 9 deletions

View file

@ -88,7 +88,6 @@ func (p *bert) parseMore(fsys fs.FS) error {
func (p *bert) KV(t *Tokenizer) llm.KV { func (p *bert) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t) kv := p.Parameters.KV(t)
kv["general.architecture"] = "bert" kv["general.architecture"] = "bert"
kv["general.name"] = "bert"
kv["bert.attention.causal"] = false kv["bert.attention.causal"] = false
kv["bert.pooling_type"] = p.PoolingType kv["bert.pooling_type"] = p.PoolingType

View file

@ -26,7 +26,6 @@ var _ Converter = (*gemma)(nil)
func (p *gemma) KV(t *Tokenizer) llm.KV { func (p *gemma) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t) kv := p.Parameters.KV(t)
kv["general.architecture"] = "gemma" kv["general.architecture"] = "gemma"
kv["general.name"] = "gemma"
kv["gemma.context_length"] = p.MaxPositionEmbeddings kv["gemma.context_length"] = p.MaxPositionEmbeddings
kv["gemma.embedding_length"] = p.HiddenSize kv["gemma.embedding_length"] = p.HiddenSize
kv["gemma.block_count"] = p.HiddenLayers kv["gemma.block_count"] = p.HiddenLayers

View file

@ -14,7 +14,6 @@ type gemma2 struct {
func (p *gemma2) KV(t *Tokenizer) llm.KV { func (p *gemma2) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t) kv := p.Parameters.KV(t)
kv["general.architecture"] = "gemma2" kv["general.architecture"] = "gemma2"
kv["general.name"] = "gemma2"
kv["gemma2.context_length"] = p.MaxPositionEmbeddings kv["gemma2.context_length"] = p.MaxPositionEmbeddings
kv["gemma2.embedding_length"] = p.HiddenSize kv["gemma2.embedding_length"] = p.HiddenSize
kv["gemma2.block_count"] = p.HiddenLayers kv["gemma2.block_count"] = p.HiddenLayers

View file

@ -3,6 +3,7 @@ package convert
import ( import (
"cmp" "cmp"
"fmt" "fmt"
"math"
"strings" "strings"
"github.com/pdevine/tensor" "github.com/pdevine/tensor"
@ -27,8 +28,14 @@ type llama struct {
NumKeyValueHeads uint32 `json:"num_key_value_heads"` NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"` RopeTheta float32 `json:"rope_theta"`
RopeScaling struct { RopeScaling struct {
Type string `json:"type"` Type string `json:"type"`
Factor float32 `json:"factor"` RopeType string `json:"rope_type"`
Factor float32 `json:"factor"`
LowFrequencyFactor float32 `json:"low_freq_factor"`
HighFrequencyFactor float32 `json:"high_freq_factor"`
OriginalMaxPositionalEmbeddings uint32 `json:"original_max_positional_embeddings"`
factors ropeFactor
} `json:"rope_scaling"` } `json:"rope_scaling"`
RMSNormEPS float32 `json:"rms_norm_eps"` RMSNormEPS float32 `json:"rms_norm_eps"`
LayerNormEPS float32 `json:"layer_norm_eps"` LayerNormEPS float32 `json:"layer_norm_eps"`
@ -42,7 +49,6 @@ var _ Converter = (*llama)(nil)
func (p *llama) KV(t *Tokenizer) llm.KV { func (p *llama) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t) kv := p.Parameters.KV(t)
kv["general.architecture"] = "llama" kv["general.architecture"] = "llama"
kv["general.name"] = "llama"
kv["llama.vocab_size"] = p.VocabSize kv["llama.vocab_size"] = p.VocabSize
kv["llama.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer) kv["llama.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
@ -71,6 +77,27 @@ func (p *llama) KV(t *Tokenizer) llm.KV {
if p.RopeScaling.Type == "linear" { if p.RopeScaling.Type == "linear" {
kv["llama.rope.scaling.type"] = p.RopeScaling.Type kv["llama.rope.scaling.type"] = p.RopeScaling.Type
kv["llama.rope.scaling.factor"] = p.RopeScaling.Factor kv["llama.rope.scaling.factor"] = p.RopeScaling.Factor
} else if p.RopeScaling.RopeType == "llama3" {
dim := p.HiddenSize / p.NumAttentionHeads
for i := uint32(0); i < dim; i += 2 {
factor := cmp.Or(p.RopeScaling.Factor, 8.0)
factorLow := cmp.Or(p.RopeScaling.LowFrequencyFactor, 1.0)
factorHigh := cmp.Or(p.RopeScaling.HighFrequencyFactor, 4.0)
original := cmp.Or(p.RopeScaling.OriginalMaxPositionalEmbeddings, 8192)
lambdaLow := float32(original) / factorLow
lambdaHigh := float32(original) / factorHigh
lambda := 2 * math.Pi * math.Pow(float64(p.RopeTheta), float64(i)/float64(dim))
if lambda < float64(lambdaHigh) {
p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0)
} else if lambda > float64(lambdaLow) {
p.RopeScaling.factors = append(p.RopeScaling.factors, factor)
} else {
smooth := (float32(original)/float32(lambda) - factorLow) / (factorHigh - factorLow)
p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0/((1-smooth)/factor+smooth))
}
}
} }
if p.NumKeyValueHeads > 0 { if p.NumKeyValueHeads > 0 {
@ -95,6 +122,16 @@ func (p *llama) KV(t *Tokenizer) llm.KV {
func (p *llama) Tensors(ts []Tensor) []llm.Tensor { func (p *llama) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor var out []llm.Tensor
if p.RopeScaling.factors != nil {
out = append(out, llm.Tensor{
Name: "rope_freqs.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
WriterTo: p.RopeScaling.factors,
})
}
for _, t := range ts { for _, t := range ts {
if strings.HasSuffix(t.Name(), "attn_q.weight") || if strings.HasSuffix(t.Name(), "attn_q.weight") ||
strings.HasSuffix(t.Name(), "attn_k.weight") { strings.HasSuffix(t.Name(), "attn_k.weight") {

View file

@ -40,7 +40,6 @@ var _ Converter = (*phi3)(nil)
func (p *phi3) KV(t *Tokenizer) llm.KV { func (p *phi3) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t) kv := p.Parameters.KV(t)
kv["general.architecture"] = "phi3" kv["general.architecture"] = "phi3"
kv["general.name"] = "phi3"
kv["phi3.context_length"] = p.MaxPositionEmbeddings kv["phi3.context_length"] = p.MaxPositionEmbeddings
kv["phi3.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd) kv["phi3.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
kv["phi3.feed_forward_length"] = p.IntermediateSize kv["phi3.feed_forward_length"] = p.IntermediateSize

View file

@ -62,6 +62,7 @@ func TestMain(m *testing.M) {
func TestConvertFull(t *testing.T) { func TestConvertFull(t *testing.T) {
cases := []string{ cases := []string{
"Meta-Llama-3-8B-Instruct", "Meta-Llama-3-8B-Instruct",
"Meta-Llama-3.1-8B-Instruct",
"Mistral-7B-Instruct-v0.2", "Mistral-7B-Instruct-v0.2",
"Mixtral-8x7B-Instruct-v0.1", "Mixtral-8x7B-Instruct-v0.1",
"gemma-2b-it", "gemma-2b-it",

View file

@ -0,0 +1,3 @@
{
"rope_freqs.weight": "80fd5efb2f729381785b293a091a268cfeceb0079167f6ece9b07070e662b222"
}

View file

@ -33,7 +33,6 @@ func TestEstimateGPULayers(t *testing.T) {
assert.Len(t, tensors, inputLayerCount+1) assert.Len(t, tensors, inputLayerCount+1)
err = WriteGGUF(f, KV{ err = WriteGGUF(f, KV{
"general.architecture": "llama", "general.architecture": "llama",
"general.name": "name",
"llama.context_length": uint32(32), "llama.context_length": uint32(32),
"llama.embedding_length": uint32(4096), "llama.embedding_length": uint32(4096),
"llama.block_count": uint32(inputLayerCount), "llama.block_count": uint32(inputLayerCount),

View file

@ -117,7 +117,6 @@ func newScenarioRequest(t *testing.T, ctx context.Context, modelName string, est
require.NoError(t, llm.WriteGGUF(f, llm.KV{ require.NoError(t, llm.WriteGGUF(f, llm.KV{
"general.architecture": "llama", "general.architecture": "llama",
"general.name": "name",
"llama.context_length": uint32(32), "llama.context_length": uint32(32),
"llama.embedding_length": uint32(4096), "llama.embedding_length": uint32(4096),
"llama.block_count": uint32(1), "llama.block_count": uint32(1),