Merge pull request #3478 from ollama/mxyng/tensor-layer
refactor tensor query
This commit is contained in:
commit
5a25f93522
8 changed files with 135 additions and 111 deletions
|
@ -50,7 +50,7 @@ func HumanBytes(b int64) string {
|
|||
}
|
||||
}
|
||||
|
||||
func HumanBytes2(b int64) string {
|
||||
func HumanBytes2(b uint64) string {
|
||||
switch {
|
||||
case b >= MebiByte:
|
||||
return fmt.Sprintf("%.1f MiB", float64(b)/MebiByte)
|
||||
|
|
|
@ -243,7 +243,7 @@ func getCPUMem() (memInfo, error) {
|
|||
return ret, nil
|
||||
}
|
||||
|
||||
func CheckVRAM() (int64, error) {
|
||||
func CheckVRAM() (uint64, error) {
|
||||
userLimit := os.Getenv("OLLAMA_MAX_VRAM")
|
||||
if userLimit != "" {
|
||||
avail, err := strconv.ParseInt(userLimit, 10, 64)
|
||||
|
@ -251,11 +251,11 @@ func CheckVRAM() (int64, error) {
|
|||
return 0, fmt.Errorf("Invalid OLLAMA_MAX_VRAM setting %s: %s", userLimit, err)
|
||||
}
|
||||
slog.Info(fmt.Sprintf("user override OLLAMA_MAX_VRAM=%d", avail))
|
||||
return avail, nil
|
||||
return uint64(avail), nil
|
||||
}
|
||||
gpuInfo := GetGPUInfo()
|
||||
if gpuInfo.FreeMemory > 0 && (gpuInfo.Library == "cuda" || gpuInfo.Library == "rocm") {
|
||||
return int64(gpuInfo.FreeMemory), nil
|
||||
return gpuInfo.FreeMemory, nil
|
||||
}
|
||||
|
||||
return 0, fmt.Errorf("no GPU detected") // TODO - better handling of CPU based memory determiniation
|
||||
|
|
|
@ -17,7 +17,7 @@ import (
|
|||
)
|
||||
|
||||
// CheckVRAM returns the free VRAM in bytes on Linux machines with NVIDIA GPUs
|
||||
func CheckVRAM() (int64, error) {
|
||||
func CheckVRAM() (uint64, error) {
|
||||
userLimit := os.Getenv("OLLAMA_MAX_VRAM")
|
||||
if userLimit != "" {
|
||||
avail, err := strconv.ParseInt(userLimit, 10, 64)
|
||||
|
@ -25,15 +25,14 @@ func CheckVRAM() (int64, error) {
|
|||
return 0, fmt.Errorf("Invalid OLLAMA_MAX_VRAM setting %s: %s", userLimit, err)
|
||||
}
|
||||
slog.Info(fmt.Sprintf("user override OLLAMA_MAX_VRAM=%d", avail))
|
||||
return avail, nil
|
||||
return uint64(avail), nil
|
||||
}
|
||||
|
||||
if runtime.GOARCH == "amd64" {
|
||||
// gpu not supported, this may not be metal
|
||||
return 0, nil
|
||||
}
|
||||
recommendedMaxVRAM := int64(C.getRecommendedMaxVRAM())
|
||||
return recommendedMaxVRAM, nil
|
||||
return uint64(C.getRecommendedMaxVRAM()), nil
|
||||
}
|
||||
|
||||
func GetGPUInfo() GpuInfo {
|
||||
|
|
|
@ -15,7 +15,7 @@ type GpuInfo struct {
|
|||
Variant string `json:"variant,omitempty"`
|
||||
|
||||
// MinimumMemory represents the minimum memory required to use the GPU
|
||||
MinimumMemory int64 `json:"-"`
|
||||
MinimumMemory uint64 `json:"-"`
|
||||
|
||||
// TODO add other useful attributes about the card here for discovery information
|
||||
}
|
||||
|
|
|
@ -49,7 +49,7 @@ func (llm *ggla) KV() KV {
|
|||
return llm.kv
|
||||
}
|
||||
|
||||
func (llm *ggla) Tensors() []*Tensor {
|
||||
func (llm *ggla) Tensors() Tensors {
|
||||
return llm.tensors
|
||||
}
|
||||
|
||||
|
|
125
llm/ggml.go
125
llm/ggml.go
|
@ -13,16 +13,6 @@ type GGML struct {
|
|||
model
|
||||
}
|
||||
|
||||
func (ggml *GGML) LayerSize(prefix string) (n int64) {
|
||||
for _, t := range ggml.Tensors() {
|
||||
if strings.HasPrefix(t.Name, prefix) {
|
||||
n += int64(t.size())
|
||||
}
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
const (
|
||||
fileTypeF32 uint32 = iota
|
||||
fileTypeF16
|
||||
|
@ -101,7 +91,7 @@ func fileType(fileType uint32) string {
|
|||
|
||||
type model interface {
|
||||
KV() KV
|
||||
Tensors() []*Tensor
|
||||
Tensors() Tensors
|
||||
}
|
||||
|
||||
type KV map[string]any
|
||||
|
@ -167,6 +157,36 @@ func (kv KV) ContextLength() uint64 {
|
|||
return kv.u64(fmt.Sprintf("%s.context_length", kv.Architecture()))
|
||||
}
|
||||
|
||||
type Tensors []*Tensor
|
||||
|
||||
func (ts Tensors) Layers() map[string]Layer {
|
||||
layers := make(map[string]Layer)
|
||||
for _, t := range ts {
|
||||
parts := strings.Split(t.Name, ".")
|
||||
if parts[0] == "blk" {
|
||||
parts = parts[1:]
|
||||
}
|
||||
|
||||
if _, ok := layers[parts[0]]; !ok {
|
||||
layers[parts[0]] = make(Layer)
|
||||
}
|
||||
|
||||
layers[parts[0]][strings.Join(parts[1:], ".")] = t
|
||||
}
|
||||
|
||||
return layers
|
||||
}
|
||||
|
||||
type Layer map[string]*Tensor
|
||||
|
||||
func (l Layer) size() (size uint64) {
|
||||
for _, t := range l {
|
||||
size += t.size()
|
||||
}
|
||||
|
||||
return size
|
||||
}
|
||||
|
||||
type Tensor struct {
|
||||
Name string `json:"name"`
|
||||
Kind uint32 `json:"kind"`
|
||||
|
@ -304,49 +324,52 @@ func DecodeGGML(rs io.ReadSeeker) (*GGML, int64, error) {
|
|||
}, offset, nil
|
||||
}
|
||||
|
||||
func (llm GGML) GraphSize(context, batch int) (int64, bool) {
|
||||
embeddingLength := llm.KV().EmbeddingLength()
|
||||
headCount := llm.KV().HeadCount()
|
||||
headCountKV := llm.KV().HeadCountKV()
|
||||
vocabLength := len(llm.KV()["tokenizer.ggml.tokens"].([]any))
|
||||
|
||||
var attnQKVWeight1 uint64 = 0
|
||||
for _, t := range llm.Tensors() {
|
||||
if strings.HasSuffix(t.Name, ".attn_qkv.weight") && len(t.Shape) >= 2 {
|
||||
attnQKVWeight1 = t.Shape[1]
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
var ffnGate1 uint64 = 0
|
||||
for _, t := range llm.Tensors() {
|
||||
if strings.Index(t.Name, ".ffn_gate") > 0 && len(t.Shape) >= 2 {
|
||||
ffnGate1 = t.Shape[1]
|
||||
break
|
||||
}
|
||||
}
|
||||
func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload uint64) {
|
||||
embedding := llm.KV().EmbeddingLength()
|
||||
heads := llm.KV().HeadCount()
|
||||
headsKV := llm.KV().HeadCountKV()
|
||||
vocab := uint64(len(llm.KV()["tokenizer.ggml.tokens"].([]any)))
|
||||
|
||||
switch llm.KV().Architecture() {
|
||||
case "gemma", "command-r":
|
||||
return 4 * int64(batch) * int64(embeddingLength+uint64(vocabLength)), true
|
||||
case "phi2":
|
||||
return max(
|
||||
4*int64(batch)*int64(embeddingLength+uint64(vocabLength)),
|
||||
4*int64(batch)*int64(1+4*embeddingLength+uint64(context)+attnQKVWeight1+uint64(context)*headCount),
|
||||
), true
|
||||
case "qwen2":
|
||||
return max(
|
||||
4*int64(batch)*int64(embeddingLength+uint64(vocabLength)),
|
||||
4*int64(batch)*int64(1+2*embeddingLength+uint64(context)+uint64(context)*headCount),
|
||||
), true
|
||||
case "llama":
|
||||
if ffnGate1 > 0 {
|
||||
// moe
|
||||
return 4 * int64(batch) * int64(2+3*embeddingLength+uint64(context)+uint64(context)*headCount+2*headCountKV+ffnGate1), true
|
||||
fullOffload = 4 * batch * (1 + 4*embedding + context*(1+heads))
|
||||
|
||||
partialOffload = 4 * batch * embedding
|
||||
partialOffload += max(
|
||||
4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embedding/heads*headsKV),
|
||||
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
||||
)
|
||||
case "gemma":
|
||||
fullOffload = 4 * batch * (embedding + vocab)
|
||||
partialOffload = 4*batch*(2*embedding+vocab+1) + embedding*vocab*105/128
|
||||
case "command-r":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
4*batch*(2+4*embedding+context*(1+heads)),
|
||||
)
|
||||
|
||||
partialOffload = max(
|
||||
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
||||
4*batch*(1+2*embedding+context*(1+heads))+ 4*embedding*context+embedding*embedding*9/16,
|
||||
)
|
||||
case "qwen2":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
4*batch*(1+2*embedding+context+context*heads),
|
||||
)
|
||||
|
||||
partialOffload = max(
|
||||
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
||||
4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
|
||||
)
|
||||
case "phi2":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
4*batch*(1+4*embedding+context+context*heads),
|
||||
)
|
||||
|
||||
partialOffload = 4*batch*(2*embedding+vocab) + embedding*vocab*105/128
|
||||
}
|
||||
|
||||
return 4 * int64(batch) * int64(1+4*embeddingLength+uint64(context)+uint64(context)*headCount), true
|
||||
}
|
||||
|
||||
return 0, false
|
||||
return
|
||||
}
|
||||
|
|
|
@ -109,7 +109,7 @@ func (llm *gguf) KV() KV {
|
|||
return llm.kv
|
||||
}
|
||||
|
||||
func (llm *gguf) Tensors() []*Tensor {
|
||||
func (llm *gguf) Tensors() Tensors {
|
||||
return llm.tensors
|
||||
}
|
||||
|
||||
|
|
|
@ -41,10 +41,6 @@ var cpuOnlyFamilies = []string{
|
|||
}
|
||||
|
||||
func NewLlamaServer(model string, adapters, projectors []string, opts api.Options) (*LlamaServer, error) {
|
||||
if _, err := os.Stat(model); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
f, err := os.Open(model)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
|
@ -65,67 +61,79 @@ func NewLlamaServer(model string, adapters, projectors []string, opts api.Option
|
|||
opts.NumCtx = 4
|
||||
}
|
||||
|
||||
availableMemory, _ := gpu.CheckVRAM()
|
||||
memoryAvailable, _ := gpu.CheckVRAM()
|
||||
info := gpu.GetGPUInfo()
|
||||
|
||||
usedMemory := info.MinimumMemory
|
||||
memoryMinimum := info.MinimumMemory
|
||||
for _, projector := range projectors {
|
||||
usedMemory += projectorMemoryRequirements(projector)
|
||||
memoryMinimum += projectorMemoryRequirements(projector)
|
||||
|
||||
// multimodal models require at least 2048 context
|
||||
opts.NumCtx = max(opts.NumCtx, 2048)
|
||||
}
|
||||
|
||||
// fp16 k,v = (1 (k) + 1 (v)) * sizeof(float16) * n_ctx * n_layer * n_embd / n_head * n_head_kv
|
||||
kv := 2 * 2 * int64(opts.NumCtx) * int64(ggml.KV().BlockCount()) * int64(ggml.KV().EmbeddingLength()) / int64(ggml.KV().HeadCount()) * int64(ggml.KV().HeadCountKV())
|
||||
var kv uint64 = 2 * 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * ggml.KV().EmbeddingLength() / ggml.KV().HeadCount() * ggml.KV().HeadCountKV()
|
||||
|
||||
graph, ok := ggml.GraphSize(opts.NumCtx, min(opts.NumCtx, opts.NumBatch))
|
||||
if !ok {
|
||||
graph = int64(ggml.KV().GQA()) * kv / 6
|
||||
graphPartialOffload, graphFullOffload := ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
|
||||
if graphPartialOffload == 0 {
|
||||
graphPartialOffload = ggml.KV().GQA() * kv / 6
|
||||
}
|
||||
|
||||
usedMemory += graph
|
||||
if graphFullOffload == 0 {
|
||||
graphFullOffload = graphPartialOffload
|
||||
}
|
||||
|
||||
if (usedMemory > availableMemory || slices.Contains(cpuOnlyFamilies, ggml.KV().Architecture())) && info.Library != "metal" {
|
||||
// memoryRequiredTotal represents the memory required for full GPU offloading (all layers)
|
||||
memoryRequiredTotal := memoryMinimum + graphFullOffload
|
||||
|
||||
// memoryRequiredPartial represents the memory required for partial GPU offloading (n > 0, n < layers)
|
||||
memoryRequiredPartial := memoryMinimum + graphPartialOffload
|
||||
|
||||
if info.Library != "metal" {
|
||||
if memoryRequiredPartial > memoryAvailable || slices.Contains(cpuOnlyFamilies, ggml.KV().Architecture()) {
|
||||
info.Library = "cpu"
|
||||
}
|
||||
}
|
||||
|
||||
requiredMemory := usedMemory
|
||||
|
||||
var layers int
|
||||
var layerCount int
|
||||
layers := ggml.Tensors().Layers()
|
||||
for i := 0; i < int(ggml.KV().BlockCount()); i++ {
|
||||
layerMemory := ggml.LayerSize(fmt.Sprintf("blk.%d.", i)) + kv/int64(ggml.KV().BlockCount())
|
||||
requiredMemory += layerMemory
|
||||
memoryLayer := layers[fmt.Sprintf("%d", i)].size()
|
||||
|
||||
if availableMemory > usedMemory+layerMemory && (opts.NumGPU < 0 || layers < opts.NumGPU) {
|
||||
usedMemory += layerMemory
|
||||
layers++
|
||||
// KV is proportional to the number of layers
|
||||
memoryLayer += kv / ggml.KV().BlockCount()
|
||||
|
||||
memoryRequiredTotal += memoryLayer
|
||||
if memoryAvailable > memoryRequiredPartial+memoryLayer {
|
||||
memoryRequiredPartial += memoryLayer
|
||||
layerCount++
|
||||
}
|
||||
}
|
||||
|
||||
memOutputLayer := ggml.LayerSize("output.")
|
||||
requiredMemory += memOutputLayer
|
||||
memoryLayerOutput := layers["output"].size()
|
||||
memoryRequiredTotal += memoryLayerOutput
|
||||
if memoryAvailable > memoryRequiredTotal {
|
||||
layerCount = int(ggml.KV().BlockCount()) + 1
|
||||
memoryRequiredPartial = memoryRequiredTotal
|
||||
}
|
||||
|
||||
// only offload output layer if all repeating layers are offloaded
|
||||
if layers >= int(ggml.KV().BlockCount()) && availableMemory > usedMemory+memOutputLayer {
|
||||
usedMemory += memOutputLayer
|
||||
layers++
|
||||
if opts.NumGPU < 0 {
|
||||
opts.NumGPU = layerCount
|
||||
}
|
||||
|
||||
slog.Info(
|
||||
"offload to gpu",
|
||||
"layers", layers,
|
||||
"required", format.HumanBytes2(requiredMemory),
|
||||
"used", format.HumanBytes2(usedMemory),
|
||||
"available", format.HumanBytes2(availableMemory),
|
||||
"reallayers", opts.NumGPU,
|
||||
"layers", layerCount,
|
||||
"required", format.HumanBytes2(memoryRequiredTotal),
|
||||
"used", format.HumanBytes2(memoryRequiredPartial),
|
||||
"available", format.HumanBytes2(memoryAvailable),
|
||||
"kv", format.HumanBytes2(kv),
|
||||
"graph", format.HumanBytes2(graph),
|
||||
"fulloffload", format.HumanBytes2(graphFullOffload),
|
||||
"partialoffload", format.HumanBytes2(graphPartialOffload),
|
||||
)
|
||||
|
||||
if opts.NumGPU < 0 && info.Library != "cpu" {
|
||||
opts.NumGPU = layers
|
||||
}
|
||||
|
||||
if len(adapters) > 1 {
|
||||
return nil, errors.New("ollama supports only one lora adapter, but multiple were provided")
|
||||
}
|
||||
|
@ -282,7 +290,7 @@ func NewLlamaServer(model string, adapters, projectors []string, opts api.Option
|
|||
return nil, finalErr
|
||||
}
|
||||
|
||||
func projectorMemoryRequirements(filename string) int64 {
|
||||
func projectorMemoryRequirements(filename string) uint64 {
|
||||
file, err := os.Open(filename)
|
||||
if err != nil {
|
||||
return 0
|
||||
|
@ -294,18 +302,12 @@ func projectorMemoryRequirements(filename string) int64 {
|
|||
return 0
|
||||
}
|
||||
|
||||
prefixes := make(map[string]struct{})
|
||||
for _, layer := range ggml.Tensors() {
|
||||
parts := strings.Split(layer.Name, ".")
|
||||
prefixes[strings.Join(parts[:2], ".")] = struct{}{}
|
||||
var mem uint64
|
||||
for _, layer := range ggml.Tensors().Layers() {
|
||||
mem += layer.size()
|
||||
}
|
||||
|
||||
var ask int64
|
||||
for prefix := range prefixes {
|
||||
ask += ggml.LayerSize(prefix)
|
||||
}
|
||||
|
||||
return ask
|
||||
return mem
|
||||
}
|
||||
|
||||
type ServerStatus int
|
||||
|
|
Loading…
Reference in a new issue