Merge pull request #211 from jmorganca/update-llama-cpp

update llama.cpp
This commit is contained in:
Michael Yang 2023-07-27 16:57:03 -07:00 committed by GitHub
commit 5685c16d4e
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
18 changed files with 2610 additions and 1567 deletions

View file

@ -153,6 +153,7 @@ type Options struct {
NumCtx int `json:"num_ctx,omitempty"` NumCtx int `json:"num_ctx,omitempty"`
NumKeep int `json:"num_keep,omitempty"` NumKeep int `json:"num_keep,omitempty"`
NumBatch int `json:"num_batch,omitempty"` NumBatch int `json:"num_batch,omitempty"`
NumGQA int `json:"num_gqa,omitempty"`
NumGPU int `json:"num_gpu,omitempty"` NumGPU int `json:"num_gpu,omitempty"`
MainGPU int `json:"main_gpu,omitempty"` MainGPU int `json:"main_gpu,omitempty"`
LowVRAM bool `json:"low_vram,omitempty"` LowVRAM bool `json:"low_vram,omitempty"`
@ -190,6 +191,7 @@ func DefaultOptions() Options {
NumCtx: 2048, NumCtx: 2048,
NumBatch: 1024, NumBatch: 1024,
NumGPU: 1, NumGPU: 1,
NumGQA: 1,
LowVRAM: false, LowVRAM: false,
F16KV: true, F16KV: true,
UseMMap: true, UseMMap: true,

View file

@ -1,5 +1,5 @@
/** /**
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc * llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
* *
* MIT License * MIT License
* *
@ -246,7 +246,7 @@ typedef struct {
static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding"); static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding");
#define WARP_SIZE 32 #define WARP_SIZE 32
#define MATRIX_ROW_PADDING 256 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses #define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
#define CUDA_ADD_BLOCK_SIZE 256 #define CUDA_ADD_BLOCK_SIZE 256
#define CUDA_MUL_BLOCK_SIZE 256 #define CUDA_MUL_BLOCK_SIZE 256
@ -358,12 +358,10 @@ static __global__ void norm_f32(const float * x, float * dst, const int ncols) {
} }
} }
static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols) { static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
const int row = blockIdx.x*blockDim.y + threadIdx.y; const int row = blockIdx.x*blockDim.y + threadIdx.y;
const int tid = threadIdx.x; const int tid = threadIdx.x;
const float eps = 1e-6f;
float tmp = 0.0f; // partial sum for thread in warp float tmp = 0.0f; // partial sum for thread in warp
for (int col = tid; col < ncols; col += WARP_SIZE) { for (int col = tid; col < ncols; col += WARP_SIZE) {
@ -961,12 +959,18 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx,
uint16_t aux[4]; uint16_t aux[4];
const uint8_t * sc = (const uint8_t *)aux; const uint8_t * sc = (const uint8_t *)aux;
#if K_QUANTS_PER_ITERATION == 2
uint32_t q32[4];
const uint8_t * q4 = (const uint8_t *)q32;
#else
uint16_t q16[4];
const uint8_t * q4 = (const uint8_t *)q16;
#endif
float tmp = 0; // partial sum for thread in warp float tmp = 0; // partial sum for thread in warp
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
const uint8_t * q1 = x[i].qs + q_offset;
const uint8_t * q2 = q1 + 64;
const float * y1 = yy + i*QK_K + y_offset; const float * y1 = yy + i*QK_K + y_offset;
const float * y2 = y1 + 128; const float * y2 = y1 + 128;
@ -979,14 +983,41 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx,
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2); aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2); aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
#if K_QUANTS_PER_ITERATION == 2
const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
const uint32_t * q2 = q1 + 16;
q32[0] = q1[0] & 0x0f0f0f0f;
q32[1] = q1[0] & 0xf0f0f0f0;
q32[2] = q2[0] & 0x0f0f0f0f;
q32[3] = q2[0] & 0xf0f0f0f0;
float4 s = {0.f, 0.f, 0.f, 0.f}; float4 s = {0.f, 0.f, 0.f, 0.f};
float smin = 0; float smin = 0;
for (int l = 0; l < n; ++l) { for (int l = 0; l < 4; ++l) {
s.x += y1[l] * (q1[l] & 0xF); s.y += y1[l+32] * (q1[l] >> 4); s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
s.z += y2[l] * (q2[l] & 0xF); s.w += y2[l+32] * (q2[l] >> 4); s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7]; smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
} }
tmp += dall * (s.x * sc[0] + s.y * sc[1] + s.z * sc[4] + s.w * sc[5]) - dmin * smin; tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
#else
const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
const uint16_t * q2 = q1 + 32;
q16[0] = q1[0] & 0x0f0f;
q16[1] = q1[0] & 0xf0f0;
q16[2] = q2[0] & 0x0f0f;
q16[3] = q2[0] & 0xf0f0;
float4 s = {0.f, 0.f, 0.f, 0.f};
float smin = 0;
for (int l = 0; l < 2; ++l) {
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
}
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
#endif
} }
#else #else
@ -1066,10 +1097,12 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx,
uint16_t aux[4]; uint16_t aux[4];
const uint8_t * sc = (const uint8_t *)aux; const uint8_t * sc = (const uint8_t *)aux;
uint16_t q16[8];
const uint8_t * q4 = (const uint8_t *)q16;
for (int i = ix; i < num_blocks_per_row; i += 2) { for (int i = ix; i < num_blocks_per_row; i += 2) {
const uint8_t * ql1 = x[i].qs + q_offset; const uint8_t * ql1 = x[i].qs + q_offset;
const uint8_t * ql2 = ql1 + 64;
const uint8_t * qh = x[i].qh + l0; const uint8_t * qh = x[i].qh + l0;
const float * y1 = yy + i*QK_K + y_offset; const float * y1 = yy + i*QK_K + y_offset;
const float * y2 = y1 + 128; const float * y2 = y1 + 128;
@ -1085,15 +1118,25 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx,
float4 sum = {0.f, 0.f, 0.f, 0.f}; float4 sum = {0.f, 0.f, 0.f, 0.f};
float smin = 0; float smin = 0;
const uint16_t * q1 = (const uint16_t *)ql1;
const uint16_t * q2 = q1 + 32;
q16[0] = q1[0] & 0x0f0f;
q16[1] = q1[8] & 0x0f0f;
q16[2] = (q1[0] >> 4) & 0x0f0f;
q16[3] = (q1[8] >> 4) & 0x0f0f;
q16[4] = q2[0] & 0x0f0f;
q16[5] = q2[8] & 0x0f0f;
q16[6] = (q2[0] >> 4) & 0x0f0f;
q16[7] = (q2[8] >> 4) & 0x0f0f;
for (int l = 0; l < n; ++l) { for (int l = 0; l < n; ++l) {
sum.x += y1[l+ 0] * ((ql1[l+ 0] & 0xF) + (qh[l+ 0] & (hm1 << 0) ? 16 : 0)) sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
+ y1[l+16] * ((ql1[l+16] & 0xF) + (qh[l+16] & (hm1 << 0) ? 16 : 0)); + y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
sum.y += y1[l+32] * ((ql1[l+ 0] >> 4) + (qh[l+ 0] & (hm1 << 1) ? 16 : 0)) sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
+ y1[l+48] * ((ql1[l+16] >> 4) + (qh[l+16] & (hm1 << 1) ? 16 : 0)); + y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
sum.z += y2[l+ 0] * ((ql2[l+ 0] & 0xF) + (qh[l+ 0] & (hm2 << 0) ? 16 : 0)) sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
+ y2[l+16] * ((ql2[l+16] & 0xF) + (qh[l+16] & (hm2 << 0) ? 16 : 0)); + y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
sum.w += y2[l+32] * ((ql2[l+ 0] >> 4) + (qh[l+ 0] & (hm2 << 1) ? 16 : 0)) sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
+ y2[l+48] * ((ql2[l+16] >> 4) + (qh[l+16] & (hm2 << 1) ? 16 : 0)); + y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3] smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
+ (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7]; + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
} }
@ -1547,33 +1590,95 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
const block_q4_K * bq4_K = (const block_q4_K *) vbq; const block_q4_K * bq4_K = (const block_q4_K *) vbq;
const int bq8_offset = QR4_K * (iqs / QI8_1);
float sumf_d = 0.0f; float sumf_d = 0.0f;
float sumf_m = 0.0f; float sumf_m = 0.0f;
#ifndef GGML_QKK_64
// iqs is in 0...15. bq8_offset = 2 * (iqs/4) -> bq8_offset = 0, 2, 4, 6
const int bq8_offset = QR4_K * (iqs / (QI8_1/2));
const float d = bq4_K->d; const float d = bq4_K->d;
const float dmin = bq4_K->dmin; const float dmin = bq4_K->dmin;
const int v = *((int *) &bq4_K->qs[sizeof(int) * iqs]); // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
// iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
// iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
// iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * (iqs%4));
const int v1 = q4[0];
const int v2 = q4[4];
const uint16_t * scales = (const uint16_t *)bq4_K->scales;
uint16_t aux[2];
const int j = bq8_offset/2;
if (j < 2) {
aux[0] = scales[j+0] & 0x3f3f;
aux[1] = scales[j+2] & 0x3f3f;
} else {
aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
}
const uint8_t * sc = (const uint8_t *)aux;
const uint8_t * m = sc + 2;
for (int i = 0; i < QR4_K; ++i) { for (int i = 0; i < QR4_K; ++i) {
const int isc = bq8_offset + i;
uint8_t sc, m;
get_scale_min_k4(isc, bq4_K->scales, sc, m);
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i; const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
const int ui = *((int*) &bq8i->qs[sizeof(int) * (iqs % QI8_1)]);
const float d8i = bq8i->d; const float d8i = bq8i->d;
const int * q8 = (const int *)bq8i->qs + (iqs%4);
const int ui1 = q8[0];
const int ui2 = q8[4];
const int vi = (v >> (4*i)) & 0x0F0F0F0F; const int vi1 = (v1 >> (4*i)) & 0x0F0F0F0F;
const int vi2 = (v2 >> (4*i)) & 0x0F0F0F0F;
sumf_d += d8i * (__dp4a(vi, ui, 0) * sc); // SIMD dot product const int dot1 = __dp4a(vi2, ui2, __dp4a(vi1, ui1, 0)); // SIMD dot product
sumf_m += d8i * (__dp4a(0x01010101, ui, 0) * m); // multiply constant part of q4_K with sum of q8_1 values const int dot2 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
sumf_d += d8i * (dot1 * sc[i]);
sumf_m += d8i * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values
} }
return d*sumf_d - dmin*sumf_m; return d*sumf_d - dmin*sumf_m;
#else
uint16_t aux16[2];
const uint8_t * s = (const uint8_t *)aux16;
const uint16_t * a = (const uint16_t *)bq4_K->scales;
aux16[0] = a[0] & 0x0f0f;
aux16[1] = (a[0] >> 4) & 0x0f0f;
const float dall = bq4_K->d[0];
const float dmin = bq4_K->d[1];
const float d8_1 = bq8_1[0].d;
const float d8_2 = bq8_1[1].d;
const int ui1 = *((const int *)bq8_1[0].qs + iqs);
const int ui2 = *((const int *)bq8_1[0].qs + iqs + 4);
const int ui3 = *((const int *)bq8_1[1].qs + iqs);
const int ui4 = *((const int *)bq8_1[1].qs + iqs + 4);
const int * q4 = (const int *)bq4_K->qs + iqs;
const int v1 = q4[0];
const int v2 = q4[4];
const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
return dall * sumf_d - dmin * sumf_m;
#endif
#else #else
return 0.0f; // only to satisfy the compiler return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
@ -1585,7 +1690,11 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
const block_q5_K * bq5_K = (const block_q5_K *) vbq; const block_q5_K * bq5_K = (const block_q5_K *) vbq;
const int bq8_offset = QR5_K * (iqs / QI8_1); #ifndef GGML_QKK_64
const int bq8_offset = QR5_K * (iqs / (QI8_1/2));
const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * (iqs%4));
const int * qh = (const int *)(bq5_K->qh + 4 * (iqs%4));
float sumf_d = 0.0f; float sumf_d = 0.0f;
float sumf_m = 0.0f; float sumf_m = 0.0f;
@ -1593,31 +1702,87 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
const float d = bq5_K->d; const float d = bq5_K->d;
const float dmin = bq5_K->dmin; const float dmin = bq5_K->dmin;
const int vl = *((int *) &bq5_K->qs[sizeof(int) * iqs]); const int vl1 = ql[0];
const int vl2 = ql[4];
const int vh = (*((int *) &bq5_K->qh[sizeof(int) * (iqs % (QI5_K/4))])) >> bq8_offset; const int vh1 = qh[0] >> bq8_offset;
const int vh2 = qh[4] >> bq8_offset;
const uint16_t * scales = (const uint16_t *)bq5_K->scales;
uint16_t aux[2];
const int j = bq8_offset/2;
if (j < 2) {
aux[0] = scales[j+0] & 0x3f3f;
aux[1] = scales[j+2] & 0x3f3f;
} else {
aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
}
const uint8_t * sc = (const uint8_t *)aux;
const uint8_t * m = sc + 2;
for (int i = 0; i < QR5_K; ++i) { for (int i = 0; i < QR5_K; ++i) {
const int isc = bq8_offset + i;
uint8_t sc, m;
get_scale_min_k4(isc, bq5_K->scales, sc, m);
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i; const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
const int ui = *((int*) &bq8i->qs[sizeof(int) * (iqs % QI8_1)]);
const float d8i = bq8i->d; const float d8i = bq8i->d;
const int * q8 = (const int *)bq8i->qs + (iqs%4);
const int ui1 = q8[0];
const int ui2 = q8[4];
const int vil = (vl >> (4*i)) & 0x0F0F0F0F; const int vil1 = (vl1 >> (4*i)) & 0x0F0F0F0F;
const int vil2 = (vl2 >> (4*i)) & 0x0F0F0F0F;
const int vih = ((vh >> i) << 4) & 0x10101010; const int vih1 = ((vh1 >> i) << 4) & 0x10101010;
const int vih2 = ((vh2 >> i) << 4) & 0x10101010;
const int vi = vil | vih; const int vi1 = vil1 | vih1;
const int vi2 = vil2 | vih2;
const int dot1 = __dp4a(vi2, ui2, __dp4a(vi1, ui1, 0)); // SIMD dot product
const int dot2 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
sumf_d += d8i * (dot1 * sc[i]);
sumf_m += d8i * (dot2 * m[i]);
sumf_d += d8i * (__dp4a(vi, ui, 0) * sc); // SIMD dot product
sumf_m += d8i * (__dp4a(0x01010101, ui, 0) * m); // multiply constant part of q5_K with sum of q8_1 values
} }
return d*sumf_d - dmin*sumf_m; return d*sumf_d - dmin*sumf_m;
#else
const int8_t * s = bq5_K->scales;
const float d = bq5_K->d;
const float d8_1 = bq8_1[0].d;
const float d8_2 = bq8_1[1].d;
const int ui1 = *((const int *)bq8_1[0].qs + iqs);
const int ui2 = *((const int *)bq8_1[0].qs + iqs + 4);
const int ui3 = *((const int *)bq8_1[1].qs + iqs);
const int ui4 = *((const int *)bq8_1[1].qs + iqs + 4);
const int * ql = (const int *)bq5_K->qs + iqs;
const int vl1 = ql[0];
const int vl2 = ql[4];
const int step = 4 * iqs; // 0, 4, 8, 12
const int im = step/8; // = 0 for iqs = 0, 1, = 1 for iqs = 2, 3
const int in = step%8; // 0, 4, 0, 4
const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
+ d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
return d * sumf_d;
#endif
#else #else
return 0.0f; // only to satisfy the compiler return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
@ -1771,11 +1936,15 @@ static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, cons
} }
} }
static __global__ void mul_mat_p021_f16_f32(const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int nchannels_x) { static __global__ void mul_mat_p021_f16_f32(
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
const half * x = (const half *) vx; const half * x = (const half *) vx;
const int row_x = blockDim.y*blockIdx.y + threadIdx.y; const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
const int channel = blockDim.z*blockIdx.z + threadIdx.z; const int channel = blockDim.z*blockIdx.z + threadIdx.z;
const int channel_x = channel / (nchannels_y / nchannels_x);
const int nrows_y = ncols_x; const int nrows_y = ncols_x;
const int nrows_dst = nrows_x; const int nrows_dst = nrows_x;
@ -1791,7 +1960,7 @@ static __global__ void mul_mat_p021_f16_f32(const void * __restrict__ vx, const
} }
// x is transposed and permuted // x is transposed and permuted
const int ix = row_x*nchannels_x*ncols_x + channel*ncols_x + col_x; const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
const float xi = __half2float(x[ix]); const float xi = __half2float(x[ix]);
const int row_y = col_x; const int row_y = col_x;
@ -1819,12 +1988,13 @@ static __global__ void mul_mat_p021_f16_f32(const void * __restrict__ vx, const
static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x, const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
const int row_stride_x, const int channel_stride_x) { const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
const half * x = (const half *) vx; const half * x = (const half *) vx;
const int row_x = blockDim.y*blockIdx.y + threadIdx.y; const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
const int channel = blockDim.z*blockIdx.z + threadIdx.z; const int channel = blockDim.z*blockIdx.z + threadIdx.z;
const int channel_x = channel / channel_x_divisor;
const int nrows_y = ncols_x; const int nrows_y = ncols_x;
const int nrows_dst = nrows_x; const int nrows_dst = nrows_x;
@ -1841,7 +2011,7 @@ static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
break; break;
} }
const int ix = channel*channel_stride_x + row_x*row_stride_x + col_x; const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
const float xi = __half2float(x[ix]); const float xi = __half2float(x[ix]);
const int row_y = col_x; const int row_y = col_x;
@ -2053,10 +2223,10 @@ static void norm_f32_cuda(const float * x, float * dst, const int ncols, const i
norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols); norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
} }
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) { static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
GGML_ASSERT(ncols % WARP_SIZE == 0); GGML_ASSERT(ncols % WARP_SIZE == 0);
const dim3 block_dims(WARP_SIZE, 1, 1); const dim3 block_dims(WARP_SIZE, 1, 1);
rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols); rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
} }
static void quantize_row_q8_1_cuda(const float * x, void * vy, const int ndata, const int k, cudaStream_t stream) { static void quantize_row_q8_1_cuda(const float * x, void * vy, const int ndata, const int k, cudaStream_t stream) {
@ -2285,7 +2455,10 @@ static void mul_mat_vec_q4_K_q8_1_cuda(const void * vx, const void * vy, float *
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1); const dim3 block_nums(1, block_num_y, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
mul_mat_vec_q<QK_K, QI4_K, block_q4_K, vec_dot_q4_K_q8_1> // Note: we use QI4_K/2 instead of QI4_K to make the dot product template require 4 groups of quants to be processed per
// kernel call instead of 2. This results in a better perfmance because the cost of computing the k-quant scales
// is better amortized.
mul_mat_vec_q<QK_K, QI4_K/2, block_q4_K, vec_dot_q4_K_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows); <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
} }
@ -2294,7 +2467,10 @@ static void mul_mat_vec_q5_K_q8_1_cuda(const void * vx, const void * vy, float *
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1); const dim3 block_nums(1, block_num_y, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
mul_mat_vec_q<QK_K, QI5_K, block_q5_K, vec_dot_q5_K_q8_1> // Note: we use QI5_K/2 instead of QI5_K to make the dot product template require 4 groups of quants to be processed per
// kernel call instead of 2. This results in a better perfmance because the cost of computing the k-quant scales
// is better amortized.
mul_mat_vec_q<QK_K, QI5_K/2, block_q5_K, vec_dot_q5_K_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows); <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
} }
@ -2350,20 +2526,23 @@ static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
} }
} }
static void ggml_mul_mat_p021_f16_f32_cuda(const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nchannels_x, cudaStream_t stream) { static void ggml_mul_mat_p021_f16_f32_cuda(
const dim3 block_nums(1, nrows_x, nchannels_x); const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
const dim3 block_nums(1, nrows_x, nchannels_y);
const dim3 block_dims(WARP_SIZE, 1, 1); const dim3 block_dims(WARP_SIZE, 1, 1);
mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x); mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
} }
static void ggml_mul_mat_vec_nc_f16_f32_cuda( static void ggml_mul_mat_vec_nc_f16_f32_cuda(
const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x, const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
const int nchannels_x, const int channel_stride_x, cudaStream_t stream) { const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
const dim3 block_nums(1, nrows_x, nchannels_x); const dim3 block_nums(1, nrows_x, nchannels_y);
const dim3 block_dims(WARP_SIZE, 1, 1); const dim3 block_dims(WARP_SIZE, 1, 1);
mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>> mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
(vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x); (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
} }
static void ggml_cpy_f32_f32_cuda( static void ggml_cpy_f32_f32_cuda(
@ -2449,10 +2628,26 @@ static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
scoped_spin_lock lock(g_cuda_pool_lock); scoped_spin_lock lock(g_cuda_pool_lock);
int id; int id;
CUDA_CHECK(cudaGetDevice(&id)); CUDA_CHECK(cudaGetDevice(&id));
#ifdef DEBUG_CUDA_MALLOC
int nnz = 0;
size_t max_size = 0, tot_size = 0;
#endif
size_t best_diff = 1ull << 36;
int ibest = -1;
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) { for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
cuda_buffer& b = g_cuda_buffer_pool[id][i]; cuda_buffer& b = g_cuda_buffer_pool[id][i];
if (b.size >= size && b.ptr != nullptr) { if (b.ptr != nullptr) {
#ifdef DEBUG_CUDA_MALLOC
++nnz;
tot_size += b.size;
if (b.size > max_size) max_size = b.size;
#endif
if (b.size >= size) {
size_t diff = b.size - size;
if (diff < best_diff) {
best_diff = diff;
ibest = i;
if (!best_diff) {
void * ptr = b.ptr; void * ptr = b.ptr;
*actual_size = b.size; *actual_size = b.size;
b.ptr = nullptr; b.ptr = nullptr;
@ -2460,9 +2655,26 @@ static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
return ptr; return ptr;
} }
} }
}
}
}
if (ibest >= 0) {
cuda_buffer& b = g_cuda_buffer_pool[id][ibest];
void * ptr = b.ptr;
*actual_size = b.size;
b.ptr = nullptr;
b.size = 0;
return ptr;
}
#ifdef DEBUG_CUDA_MALLOC
fprintf(stderr, "%s: %d buffers, max_size = %u MB, tot_size = %u MB, requested %u MB\n", __func__, nnz,
(uint32_t)(max_size/1024/1024), (uint32_t)(tot_size/1024/1024), (uint32_t)(size/1024/1024));
#endif
void * ptr; void * ptr;
CUDA_CHECK(cudaMalloc((void **) &ptr, size)); size_t look_ahead_size = (size_t) (1.05 * size);
*actual_size = size; look_ahead_size = 256 * ((look_ahead_size + 255)/256);
CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size));
*actual_size = look_ahead_size;
return ptr; return ptr;
} }
@ -2490,7 +2702,9 @@ static size_t g_scratch_offset = 0;
static int g_device_count = -1; static int g_device_count = -1;
static int g_main_device = 0; static int g_main_device = 0;
#ifndef GGML_CUDA_FORCE_DMMV
static int g_compute_capabilities[GGML_CUDA_MAX_DEVICES]; static int g_compute_capabilities[GGML_CUDA_MAX_DEVICES];
#endif
static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0}; static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0};
static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr}; static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
@ -2513,7 +2727,9 @@ void ggml_init_cublas() {
g_tensor_split[id] = total_vram; g_tensor_split[id] = total_vram;
total_vram += prop.totalGlobalMem; total_vram += prop.totalGlobalMem;
#ifndef GGML_CUDA_FORCE_DMMV
g_compute_capabilities[id] = 100*prop.major + 10*prop.minor; g_compute_capabilities[id] = 100*prop.major + 10*prop.minor;
#endif
} }
for (int id = 0; id < g_device_count; ++id) { for (int id = 0; id < g_device_count; ++id) {
g_tensor_split[id] /= total_vram; g_tensor_split[id] /= total_vram;
@ -2538,6 +2754,9 @@ void ggml_init_cublas() {
} }
void ggml_cuda_set_tensor_split(const float * tensor_split) { void ggml_cuda_set_tensor_split(const float * tensor_split) {
if (tensor_split == nullptr) {
return;
}
bool all_zero = true; bool all_zero = true;
for (int i = 0; i < g_device_count; ++i) { for (int i = 0; i < g_device_count; ++i) {
if (tensor_split[i] != 0.0f) { if (tensor_split[i] != 0.0f) {
@ -2678,6 +2897,7 @@ inline void ggml_cuda_op_mul(
(void) dst; (void) dst;
(void) src0_ddq_i; (void) src0_ddq_i;
(void) i02; (void) i02;
(void) i1;
} }
inline void ggml_cuda_op_gelu( inline void ggml_cuda_op_gelu(
@ -2757,8 +2977,11 @@ inline void ggml_cuda_op_rms_norm(
const int64_t ne00 = src0->ne[0]; const int64_t ne00 = src0->ne[0];
const int64_t i01_diff = i01_high - i01_low; const int64_t i01_diff = i01_high - i01_low;
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
// compute // compute
rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main); rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, eps, cudaStream_main);
(void) src1; (void) src1;
(void) dst; (void) dst;
@ -2805,8 +3028,8 @@ inline void ggml_cuda_op_mul_mat_vec(
#endif #endif
if (use_mul_mat_vec_q) { if (use_mul_mat_vec_q) {
int64_t padded_row_size = ne00 + MATRIX_ROW_PADDING - 1; const int64_t padded_row_size = ne00 % MATRIX_ROW_PADDING == 0 ?
padded_row_size -= padded_row_size % MATRIX_ROW_PADDING; ne00 : ne00 - ne00 % MATRIX_ROW_PADDING + MATRIX_ROW_PADDING;
size_t as; size_t as;
void * src1_q8_1 = ggml_cuda_pool_malloc(padded_row_size*sizeof(block_q8_1)/QK8_1, &as); void * src1_q8_1 = ggml_cuda_pool_malloc(padded_row_size*sizeof(block_q8_1)/QK8_1, &as);
quantize_row_q8_1_cuda(src1_ddf_i, src1_q8_1, ne00, padded_row_size, cudaStream_main); quantize_row_q8_1_cuda(src1_ddf_i, src1_q8_1, ne00, padded_row_size, cudaStream_main);
@ -2973,13 +3196,18 @@ inline void ggml_cuda_op_rope(
const int64_t ne00 = src0->ne[0]; const int64_t ne00 = src0->ne[0];
const int64_t i01_diff = i01_high - i01_low; const int64_t i01_diff = i01_high - i01_low;
const int n_past = ((int32_t *) src1->data)[0]; const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) src1->data)[1]; const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) src1->data)[2]; const int mode = ((int32_t *) dst->op_params)[2];
const int n_ctx = ((int32_t *) src1->data)[3]; const int n_ctx = ((int32_t *) dst->op_params)[3];
// RoPE alteration for extended context
const float theta_scale = powf(10000.0, -2.0f/n_dims); float freq_base, freq_scale;
const float p = ((mode & 1) == 0 ? n_past + i02 : i02); memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
const float theta_scale = powf(freq_base, -2.0f/n_dims);
const float p = (((mode & 1) == 0 ? n_past + i02 : i02)) * freq_scale;
bool is_glm = mode & 4; bool is_glm = mode & 4;
@ -2992,6 +3220,7 @@ inline void ggml_cuda_op_rope(
rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p, theta_scale, cudaStream_main); rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p, theta_scale, cudaStream_main);
} }
(void) src1;
(void) dst; (void) dst;
(void) src0_ddq_i; (void) src0_ddq_i;
(void) src1_ddf_i; (void) src1_ddf_i;
@ -3010,11 +3239,12 @@ inline void ggml_cuda_op_diag_mask_inf(
const int64_t ne01 = src0->ne[1]; const int64_t ne01 = src0->ne[1];
const int64_t i01_diff = i01_high - i01_low; const int64_t i01_diff = i01_high - i01_low;
const int n_past = ((int32_t *) src1->data)[0]; const int n_past = ((int32_t *) dst->op_params)[0];
// compute // compute
diag_mask_inf_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, ne01, n_past, cudaStream_main); diag_mask_inf_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, ne01, n_past, cudaStream_main);
(void) src1;
(void) dst; (void) dst;
(void) src0_ddq_i; (void) src0_ddq_i;
(void) src1_ddf_i; (void) src1_ddf_i;
@ -3082,6 +3312,9 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
const int64_t ne11 = use_src1 ? src1->ne[1] : 1; const int64_t ne11 = use_src1 ? src1->ne[1] : 1;
const int64_t ne12 = use_src1 ? src1->ne[2] : 1; const int64_t ne12 = use_src1 ? src1->ne[2] : 1;
const int64_t ne13 = use_src1 ? src1->ne[3] : 1; const int64_t ne13 = use_src1 ? src1->ne[3] : 1;
const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
GGML_ASSERT(ne03 == ne13);
const int64_t ne0 = dst->ne[0]; const int64_t ne0 = dst->ne[0];
const int64_t ne1 = dst->ne[1]; const int64_t ne1 = dst->ne[1];
@ -3093,12 +3326,19 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT); GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
// strides for iteration over dims 3 and 2 // strides for iteration over dims 3 and 2
const int64_t num_iters = flatten_rows ? 1 : ne02 * ne03; const int64_t num_iters_0 = ne02 >= ne12 ? ne02*ne03 : ne12*ne13;
const int64_t stride_mod = flatten_rows ? ne02 * ne03 : 1; const int64_t num_iters = flatten_rows ? 1 : num_iters_0;
const int64_t stride_mod = flatten_rows ? num_iters_0 : 1;
const int64_t src0_stride = ne00 * ne01 * stride_mod; const int64_t src0_stride = ne00 * ne01 * stride_mod;
const int64_t src1_stride = ne10 * ne11 * stride_mod; const int64_t src1_stride = ne10 * ne11 * stride_mod;
const int64_t dst_stride = ne0 * ne1 * stride_mod; const int64_t dst_stride = ne0 * ne1 * stride_mod;
const int64_t rows_per_iter = flatten_rows ? nrows0 : ne01;
const int64_t i03_max = flatten_rows ? 1 : ne03;
const int64_t i02_max = flatten_rows ? 1 : (ne02 >= ne12 ? ne02 : ne12);
const int64_t i02_divisor = ne02 >= ne12 ? 1 : ne12 / ne02;
GGML_ASSERT(!(flatten_rows && ne02 < ne12));
const size_t src0_ts = ggml_type_size(src0->type); const size_t src0_ts = ggml_type_size(src0->type);
const size_t src0_bs = ggml_blck_size(src0->type); const size_t src0_bs = ggml_blck_size(src0->type);
@ -3115,6 +3355,7 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
dst->op == GGML_OP_SCALE || dst->op == GGML_OP_DIAG_MASK_INF || dst->op == GGML_OP_ROPE); dst->op == GGML_OP_SCALE || dst->op == GGML_OP_DIAG_MASK_INF || dst->op == GGML_OP_ROPE);
const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT; const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
GGML_ASSERT(!(split && ne02 < ne12));
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type); const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
@ -3151,7 +3392,7 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
row_high = id == g_device_count - 1 ? nrows0 : nrows0*g_tensor_split[id + 1]; row_high = id == g_device_count - 1 ? nrows0 : nrows0*g_tensor_split[id + 1];
} else { } else {
row_low = 0; row_low = 0;
row_high = nrows0; row_high = nrows0*i02_divisor;
} }
if (row_low == row_high) { if (row_low == row_high) {
continue; continue;
@ -3199,16 +3440,12 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
dst_ddf[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_asf[id]); dst_ddf[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_asf[id]);
} }
const int64_t i03_max = flatten_rows ? 1 : ne03;
const int64_t i02_max = flatten_rows ? 1 : ne02;
const int64_t rows_per_iter = flatten_rows ? nrows0 : ne01;
for (int64_t i03 = 0; i03 < i03_max; i03++) { for (int64_t i03 = 0; i03 < i03_max; i03++) {
const int64_t i13 = i03 % ne13; const int64_t i13 = i03 % ne13;
for (int64_t i02 = 0; i02 < i02_max; i02++) { for (int64_t i02 = 0; i02 < i02_max; i02++) {
const int64_t i12 = i02 % ne12; const int64_t i12 = i02 % ne12;
const int64_t i0 = i03*ne02 + i02; const int64_t i0 = i03*i02_max + i02;
// i0 values that contain the lower/upper rows for a split tensor when using multiple GPUs // i0 values that contain the lower/upper rows for a split tensor when using multiple GPUs
const int64_t i0_offset_low = row_low/rows_per_iter; const int64_t i0_offset_low = row_low/rows_per_iter;
@ -3242,8 +3479,8 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
const int64_t i11 = i13*ne12 + i12; const int64_t i11 = i13*ne12 + i12;
// for split tensors the data begins at i0 == i0_offset_low // for split tensors the data begins at i0 == i0_offset_low
char * src0_ddq_i = src0_ddq[id] + (i0 - i0_offset_low)*src0_stride*src0_ts/src0_bs; char * src0_ddq_i = src0_ddq[id] + (i0/i02_divisor - i0_offset_low)*src0_stride*src0_ts/src0_bs;
float * src0_ddf_i = src0_ddf[id] + (i0 - i0_offset_low)*src0_stride; float * src0_ddf_i = src0_ddf[id] + (i0/i02_divisor - i0_offset_low)*src0_stride;
float * src1_ddf_i = src1_ddf[id] + i11*src1_stride; float * src1_ddf_i = src1_ddf[id] + i11*src1_stride;
float * dst_ddf_i = dst_ddf[id] + (i0 - i0_offset_low)*dst_stride; float * dst_ddf_i = dst_ddf[id] + (i0 - i0_offset_low)*dst_stride;
@ -3284,11 +3521,11 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
} }
} }
if (!src0_on_device || !src0_is_contiguous) { if ((!src0_on_device || !src0_is_contiguous) && i02 % i02_divisor == 0) {
if (src0_is_f32) { if (src0_is_f32) {
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf_i, src0, i03, i02, i01_low, i01_high, cudaStream_main)); CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf_i, src0, i03, i02/i02_divisor, i01_low, i01_high, cudaStream_main));
} else { } else {
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddq_i, src0, i03, i02, i01_low, i01_high, cudaStream_main)); CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddq_i, src0, i03, i02/i02_divisor, i01_low, i01_high, cudaStream_main));
} }
} }
@ -3442,6 +3679,8 @@ void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * sr
const int64_t ne01 = src0->ne[1]; const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2]; const int64_t ne02 = src0->ne[2];
const int64_t ne12 = src1->ne[2];
CUDA_CHECK(cudaSetDevice(g_main_device)); CUDA_CHECK(cudaSetDevice(g_main_device));
cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device]; cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];
@ -3454,7 +3693,7 @@ void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * sr
struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
float * dst_ddf = (float *) dst_extra->data_device[g_main_device]; float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, cudaStream_main); ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, cudaStream_main);
} }
void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){ void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
@ -3468,6 +3707,8 @@ void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1
const int64_t ne01 = src0->ne[1]; const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2]; const int64_t ne02 = src0->ne[2];
const int64_t ne12 = src1->ne[2];
const int64_t nb01 = src0->nb[1]; const int64_t nb01 = src0->nb[1];
const int64_t nb02 = src0->nb[2]; const int64_t nb02 = src0->nb[2];
@ -3486,7 +3727,7 @@ void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1
const int row_stride_x = nb01 / sizeof(half); const int row_stride_x = nb01 / sizeof(half);
const int channel_stride_x = nb02 / sizeof(half); const int channel_stride_x = nb02 / sizeof(half);
ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, channel_stride_x, cudaStream_main); ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, cudaStream_main);
} }
void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@ -3627,7 +3868,7 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
size_t size = ggml_nbytes_split(tensor, nrows_split); size_t size = ggml_nbytes_split(tensor, nrows_split);
const size_t original_size = size; const size_t original_size = size;
// pad last row to a multiple of 256 elements to avoid out-of-bounds memory accesses // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
if (ne0 % MATRIX_ROW_PADDING != 0) { if (ne0 % MATRIX_ROW_PADDING != 0) {
size += (MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING) size += (MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING)
* ggml_type_size(tensor->type)/ggml_blck_size(tensor->type); * ggml_type_size(tensor->type)/ggml_blck_size(tensor->type);
@ -3643,7 +3884,7 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
} }
CUDA_CHECK(cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice)); CUDA_CHECK(cudaMemcpy(buf, buf_host, original_size, cudaMemcpyHostToDevice));
extra->data_device[id] = buf; extra->data_device[id] = buf;
@ -3723,7 +3964,7 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bo
char * src0_ddc = (char *) src0_extra->data_device[g_main_device]; char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
size_t offset = 0; size_t offset = 0;
if (tensor->op == GGML_OP_VIEW) { if (tensor->op == GGML_OP_VIEW) {
memcpy(&offset, tensor->src[2]->data, sizeof(size_t)); memcpy(&offset, tensor->op_params, sizeof(size_t));
} }
extra = ggml_cuda_alloc_temp_tensor_extra(); extra = ggml_cuda_alloc_temp_tensor_extra();
extra->data_device[g_main_device] = src0_ddc + offset; extra->data_device[g_main_device] = src0_ddc + offset;
@ -3825,18 +4066,23 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
} }
func = ggml_cuda_mul; func = ggml_cuda_mul;
break; break;
case GGML_OP_GELU: case GGML_OP_UNARY:
switch (ggml_get_unary_op(tensor)) {
case GGML_UNARY_OP_GELU:
if (!any_on_device) { if (!any_on_device) {
return false; return false;
} }
func = ggml_cuda_gelu; func = ggml_cuda_gelu;
break; break;
case GGML_OP_SILU: case GGML_UNARY_OP_SILU:
if (!any_on_device) { if (!any_on_device) {
return false; return false;
} }
func = ggml_cuda_silu; func = ggml_cuda_silu;
break; break;
default:
return false;
} break;
case GGML_OP_NORM: case GGML_OP_NORM:
if (!any_on_device) { if (!any_on_device) {
return false; return false;

View file

@ -1,5 +1,5 @@
/** /**
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc * llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
* *
* MIT License * MIT License
* *

View file

@ -1,7 +1,7 @@
//go:build darwin //go:build darwin
/** /**
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc * llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
* *
* MIT License * MIT License
* *
@ -89,6 +89,13 @@ void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor *
// get data from the device into host memory // get data from the device into host memory
void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t); void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
// try to find operations that can be run concurrently in the graph
// you should run it again if the topology of your graph changes
void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
// if the graph has been optimized for concurrently dispatch
bool ggml_metal_if_optimized(struct ggml_metal_context * ctx);
// same as ggml_graph_compute but uses Metal // same as ggml_graph_compute but uses Metal
// creates gf->n_threads command buffers in parallel // creates gf->n_threads command buffers in parallel
void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf); void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);

View file

@ -1,7 +1,7 @@
//go:build darwin //go:build darwin
/** /**
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc * llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
* *
* MIT License * MIT License
* *
@ -64,12 +64,16 @@ struct ggml_metal_context {
int n_buffers; int n_buffers;
struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS]; struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
int concur_list[GGML_MAX_NODES];
int concur_list_len;
// custom kernels // custom kernels
#define GGML_METAL_DECL_KERNEL(name) \ #define GGML_METAL_DECL_KERNEL(name) \
id<MTLFunction> function_##name; \ id<MTLFunction> function_##name; \
id<MTLComputePipelineState> pipeline_##name id<MTLComputePipelineState> pipeline_##name
GGML_METAL_DECL_KERNEL(add); GGML_METAL_DECL_KERNEL(add);
GGML_METAL_DECL_KERNEL(add_row); // TODO: avoid this extra kernel, instead extend the "add" kernel to support broadcast
GGML_METAL_DECL_KERNEL(mul); GGML_METAL_DECL_KERNEL(mul);
GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast
GGML_METAL_DECL_KERNEL(scale); GGML_METAL_DECL_KERNEL(scale);
@ -125,6 +129,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
ctx->device = MTLCreateSystemDefaultDevice(); ctx->device = MTLCreateSystemDefaultDevice();
ctx->queue = [ctx->device newCommandQueue]; ctx->queue = [ctx->device newCommandQueue];
ctx->n_buffers = 0; ctx->n_buffers = 0;
ctx->concur_list_len = 0;
// determine if we can use MPS // determine if we can use MPS
if (MPSSupportsMTLDevice(ctx->device)) { if (MPSSupportsMTLDevice(ctx->device)) {
@ -185,6 +190,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
fprintf(stderr, "%s: loaded %-32s %16p\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name); fprintf(stderr, "%s: loaded %-32s %16p\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name);
GGML_METAL_ADD_KERNEL(add); GGML_METAL_ADD_KERNEL(add);
GGML_METAL_ADD_KERNEL(add_row);
GGML_METAL_ADD_KERNEL(mul); GGML_METAL_ADD_KERNEL(mul);
GGML_METAL_ADD_KERNEL(mul_row); GGML_METAL_ADD_KERNEL(mul_row);
GGML_METAL_ADD_KERNEL(scale); GGML_METAL_ADD_KERNEL(scale);
@ -243,6 +249,13 @@ void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) {
ctx->n_cb = n_cb; ctx->n_cb = n_cb;
} }
bool ggml_metal_if_optimized(struct ggml_metal_context * ctx) {
if (ctx->concur_list_len) {
return true;
}
return false;
}
// finds the Metal buffer that contains the tensor data on the GPU device // finds the Metal buffer that contains the tensor data on the GPU device
// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the // the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
// Metal buffer based on the host memory pointer // Metal buffer based on the host memory pointer
@ -381,11 +394,98 @@ void ggml_metal_get_tensor(
memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t)); memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t));
} }
void ggml_metal_graph_find_concurrency(
struct ggml_metal_context * ctx,
struct ggml_cgraph * gf) {
int search_depth = gf->n_nodes; //we only find concurrency in this range to avoid wasting too much time
int nodes_unused[GGML_MAX_NODES];
for (int i = 0; i < GGML_MAX_NODES; i++) {ctx->concur_list[i] = 0;}
for (int i = 0; i < gf->n_nodes; i++) {nodes_unused[i] = 1;}
ctx->concur_list_len = 0;
int n_left = gf->n_nodes;
int n_start = 0; // all nodes before n_start at nodes_unused array have been sorted and store back to ctx->concur_list
int level_pos = 0; // at ctx->concur_list, the last layer (level) ends at level_pos
while (n_left > 0) {
// number of nodes at a layer (that can be issued concurrently)
int concurrency = 0;
for (int i = n_start; i < ((n_start + search_depth > gf->n_nodes) ? gf->n_nodes : n_start + search_depth); i++) {
if (nodes_unused[i]) {
// if the requirements for gf->nodes[i] are satisfied
int exe_flag=1;
// scan all srcs
for (int src_ind = 0; src_ind < GGML_MAX_SRC; src_ind++) {
struct ggml_tensor * src_cur = gf->nodes[i]->src[src_ind];
if (src_cur) {
// if is leaf nodes it's satisfied.
if (src_cur->op == GGML_OP_NONE && src_cur->grad == NULL) {continue;}
// otherwise this src should be the output from previous nodes.
int is_found = 0;
// scan 2*search_depth back because we inserted barrier.
for (int j = ((level_pos - 2*search_depth) < 0 ? 0 : (level_pos - 2*search_depth)); j < level_pos; j++) {
if (gf->nodes[ctx->concur_list[j]] == src_cur) {is_found = 1; break;}
}
if (is_found == 0) {exe_flag = 0; break;}
}
}
if (exe_flag) {
// check if nodes[i]'s data will be overwritten by a node before nodes[i].
// if node[5] and node[3] write to the same memory region, then we can't issue node[5] before node[3]
int64_t data_start = (int64_t) gf->nodes[i]->data;
int64_t length = (int64_t) ggml_nbytes(gf->nodes[i]);
for (int j = n_start; j < i; j++) {
if (nodes_unused[j] && gf->nodes[j]->op != GGML_OP_RESHAPE \
&& gf->nodes[j]->op != GGML_OP_VIEW \
&& gf->nodes[j]->op != GGML_OP_TRANSPOSE \
&& gf->nodes[j]->op != GGML_OP_PERMUTE) {
if (((int64_t)gf->nodes[j]->data) >= data_start + length || \
((int64_t)gf->nodes[j]->data) + (int64_t) ggml_nbytes(gf->nodes[j]) <= data_start) {
continue;
} else {
exe_flag = 0;
}
}
}
}
if (exe_flag) {
ctx->concur_list[level_pos + concurrency] = i;
nodes_unused[i] = 0;
concurrency++;
ctx->concur_list_len++;
}
}
}
n_left -= concurrency;
// adding a barrier different layer
ctx->concur_list[level_pos + concurrency] = -1;
ctx->concur_list_len++;
// jump all sorted nodes at nodes_bak
while (!nodes_unused[n_start]) {n_start++;}
level_pos += concurrency + 1;
}
if (ctx->concur_list_len > GGML_MAX_NODES) {
fprintf(stderr, "%s: too many elements for metal ctx->concur_list!\n", __func__);
}
}
void ggml_metal_graph_compute( void ggml_metal_graph_compute(
struct ggml_metal_context * ctx, struct ggml_metal_context * ctx,
struct ggml_cgraph * gf) { struct ggml_cgraph * gf) {
metal_printf("%s: evaluating graph\n", __func__); metal_printf("%s: evaluating graph\n", __func__);
// if there is ctx->concur_list, dispatch concurrently
// else fallback to serial dispatch
MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor;
const bool has_concur = ctx->concur_list_len && ctx->concur_list_len <= GGML_MAX_NODES;
const int n_nodes = has_concur ? ctx->concur_list_len : gf->n_nodes;
edesc.dispatchType = has_concur ? MTLDispatchTypeConcurrent : MTLDispatchTypeSerial;
// create multiple command buffers and enqueue them // create multiple command buffers and enqueue them
// then, we encode the graph into the command buffers in parallel // then, we encode the graph into the command buffers in parallel
@ -404,7 +504,7 @@ void ggml_metal_graph_compute(
dispatch_queue_t queue = dispatch_queue_create("llama.cpp", DISPATCH_QUEUE_CONCURRENT); dispatch_queue_t queue = dispatch_queue_create("llama.cpp", DISPATCH_QUEUE_CONCURRENT);
for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) { for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
const int n_nodes_per_cb = (gf->n_nodes + n_cb - 1) / n_cb; const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb;
dispatch_async(queue, ^{ dispatch_async(queue, ^{
size_t offs_src0 = 0; size_t offs_src0 = 0;
@ -416,9 +516,20 @@ void ggml_metal_graph_compute(
id<MTLComputeCommandEncoder> encoder = nil; id<MTLComputeCommandEncoder> encoder = nil;
const int node_start = (cb_idx + 0) * n_nodes_per_cb; const int node_start = (cb_idx + 0) * n_nodes_per_cb;
const int node_end = (cb_idx == n_cb - 1) ? gf->n_nodes : (cb_idx + 1) * n_nodes_per_cb; const int node_end = (cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb;
for (int ind = node_start; ind < node_end; ++ind) {
const int i = has_concur ? ctx->concur_list[ind] : ind;
if (i == -1) {
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
continue;
}
[encoder memoryBarrierWithScope:MTLBarrierScopeBuffers];
continue;
}
for (int i = node_start; i < node_end; ++i) {
metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op)); metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
struct ggml_tensor * src0 = gf->nodes[i]->src[0]; struct ggml_tensor * src0 = gf->nodes[i]->src[0];
@ -489,13 +600,19 @@ void ggml_metal_graph_compute(
case GGML_OP_ADD: case GGML_OP_ADD:
{ {
if (encoder == nil) { if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder]; encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
} }
if (ggml_nelements(src1) == ne10) {
// src1 is a row
[encoder setComputePipelineState:ctx->pipeline_add_row];
} else {
[encoder setComputePipelineState:ctx->pipeline_add]; [encoder setComputePipelineState:ctx->pipeline_add];
}
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
const int64_t n = ggml_nelements(dst); const int64_t n = ggml_nelements(dst);
@ -504,7 +621,7 @@ void ggml_metal_graph_compute(
case GGML_OP_MUL: case GGML_OP_MUL:
{ {
if (encoder == nil) { if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder]; encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
} }
if (ggml_nelements(src1) == ne10) { if (ggml_nelements(src1) == ne10) {
@ -525,7 +642,7 @@ void ggml_metal_graph_compute(
case GGML_OP_SCALE: case GGML_OP_SCALE:
{ {
if (encoder == nil) { if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder]; encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
} }
const float scale = *(const float *) src1->data; const float scale = *(const float *) src1->data;
@ -539,10 +656,12 @@ void ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;
case GGML_OP_SILU: case GGML_OP_UNARY:
switch (ggml_get_unary_op(gf->nodes[i])) {
case GGML_UNARY_OP_SILU:
{ {
if (encoder == nil) { if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder]; encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
} }
[encoder setComputePipelineState:ctx->pipeline_silu]; [encoder setComputePipelineState:ctx->pipeline_silu];
@ -553,10 +672,10 @@ void ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;
case GGML_OP_RELU: case GGML_UNARY_OP_RELU:
{ {
if (encoder == nil) { if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder]; encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
} }
[encoder setComputePipelineState:ctx->pipeline_relu]; [encoder setComputePipelineState:ctx->pipeline_relu];
@ -567,10 +686,10 @@ void ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;
case GGML_OP_GELU: case GGML_UNARY_OP_GELU:
{ {
if (encoder == nil) { if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder]; encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
} }
[encoder setComputePipelineState:ctx->pipeline_gelu]; [encoder setComputePipelineState:ctx->pipeline_gelu];
@ -581,10 +700,16 @@ void ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;
default:
{
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
GGML_ASSERT(false);
}
} break;
case GGML_OP_SOFT_MAX: case GGML_OP_SOFT_MAX:
{ {
if (encoder == nil) { if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder]; encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
} }
const int nth = 32; const int nth = 32;
@ -602,10 +727,10 @@ void ggml_metal_graph_compute(
case GGML_OP_DIAG_MASK_INF: case GGML_OP_DIAG_MASK_INF:
{ {
if (encoder == nil) { if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder]; encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
} }
const int n_past = ((int32_t *)(src1->data))[0]; const int n_past = ((int32_t *)(dst->op_params))[0];
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf]; [encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
@ -665,7 +790,7 @@ void ggml_metal_graph_compute(
} }
} else { } else {
if (encoder == nil) { if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder]; encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
} }
int nth0 = 32; int nth0 = 32;
@ -704,8 +829,8 @@ void ggml_metal_graph_compute(
GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne02 == 1);
GGML_ASSERT(ne12 == 1); GGML_ASSERT(ne12 == 1);
nth0 = 4; nth0 = 2;
nth1 = 16; nth1 = 32;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_K_f32]; [encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_K_f32];
} break; } break;
case GGML_TYPE_Q3_K: case GGML_TYPE_Q3_K:
@ -713,8 +838,8 @@ void ggml_metal_graph_compute(
GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne02 == 1);
GGML_ASSERT(ne12 == 1); GGML_ASSERT(ne12 == 1);
nth0 = 4; nth0 = 2;
nth1 = 16; nth1 = 32;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_K_f32]; [encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_K_f32];
} break; } break;
case GGML_TYPE_Q4_K: case GGML_TYPE_Q4_K:
@ -768,19 +893,21 @@ void ggml_metal_graph_compute(
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14];
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
src0t == GGML_TYPE_Q4_K) { src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_Q4_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7) / 8, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7) / 8, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} }
else if (src0t == GGML_TYPE_Q3_K) {
#ifdef GGML_QKK_64
[encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#else
[encoder dispatchThreadgroups:MTLSizeMake((ne01+3)/4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#endif
}
else if (src0t == GGML_TYPE_Q5_K) { else if (src0t == GGML_TYPE_Q5_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3) / 4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3) / 4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} }
else if (src0t == GGML_TYPE_Q6_K) { else if (src0t == GGML_TYPE_Q6_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q2_K ||
src0t == GGML_TYPE_Q3_K) {
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} else { } else {
[encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0]; [encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
@ -790,7 +917,7 @@ void ggml_metal_graph_compute(
case GGML_OP_GET_ROWS: case GGML_OP_GET_ROWS:
{ {
if (encoder == nil) { if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder]; encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
} }
switch (src0->type) { switch (src0->type) {
@ -819,10 +946,11 @@ void ggml_metal_graph_compute(
case GGML_OP_RMS_NORM: case GGML_OP_RMS_NORM:
{ {
if (encoder == nil) { if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder]; encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
} }
const float eps = 1e-6f; float eps;
memcpy(&eps, dst->op_params, sizeof(float));
const int nth = 512; const int nth = 512;
@ -841,7 +969,7 @@ void ggml_metal_graph_compute(
case GGML_OP_NORM: case GGML_OP_NORM:
{ {
if (encoder == nil) { if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder]; encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
} }
const float eps = 1e-5f; const float eps = 1e-5f;
@ -863,14 +991,15 @@ void ggml_metal_graph_compute(
case GGML_OP_ALIBI: case GGML_OP_ALIBI:
{ {
if (encoder == nil) { if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder]; encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
} }
GGML_ASSERT((src0t == GGML_TYPE_F32)); GGML_ASSERT((src0t == GGML_TYPE_F32));
const int n_past = ((int32_t *) src1->data)[0]; UNUSED(n_past); const int n_past = ((int32_t *) dst->op_params)[0]; UNUSED(n_past);
const int n_head = ((int32_t *) src1->data)[1]; const int n_head = ((int32_t *) dst->op_params)[1];
const float max_bias = ((float *) src1->data)[2]; float max_bias;
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
if (__builtin_popcount(n_head) != 1) { if (__builtin_popcount(n_head) != 1) {
GGML_ASSERT(false && "only power-of-two n_head implemented"); GGML_ASSERT(false && "only power-of-two n_head implemented");
@ -905,18 +1034,17 @@ void ggml_metal_graph_compute(
case GGML_OP_ROPE: case GGML_OP_ROPE:
{ {
if (encoder == nil) { if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder]; encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
} }
const int n_dims = ((int32_t *) src1->data)[1]; const int n_past = ((int32_t *) dst->op_params)[0];
const int mode = ((int32_t *) src1->data)[2]; const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
const int n_past = ((int32_t *)(src1->data))[0];
float freq_base; float freq_base;
float freq_scale; float freq_scale;
memcpy(&freq_base, (int32_t *) src1->data + 4, sizeof(float)); memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
memcpy(&freq_scale, (int32_t *) src1->data + 5, sizeof(float)); memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
[encoder setComputePipelineState:ctx->pipeline_rope]; [encoder setComputePipelineState:ctx->pipeline_rope];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
@ -945,10 +1073,12 @@ void ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;
case GGML_OP_DUP:
case GGML_OP_CPY: case GGML_OP_CPY:
case GGML_OP_CONT:
{ {
if (encoder == nil) { if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder]; encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
} }
const int nth = 32; const int nth = 32;
@ -995,10 +1125,12 @@ void ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break; } break;
default: default:
{
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
GGML_ASSERT(false); GGML_ASSERT(false);
} }
} }
}
if (encoder != nil) { if (encoder != nil) {
[encoder endEncoding]; [encoder endEncoding];

View file

@ -1,7 +1,7 @@
//go:build darwin //go:build darwin
/** /**
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc * llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
* *
* MIT License * MIT License
* *
@ -95,6 +95,17 @@ kernel void kernel_add(
dst[tpig] = src0[tpig] + src1[tpig]; dst[tpig] = src0[tpig] + src1[tpig];
} }
// assumption: src1 is a row
// broadcast src1 into src0
kernel void kernel_add_row(
device const float * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] + src1[tpig % ne00];
}
kernel void kernel_mul( kernel void kernel_mul(
device const float * src0, device const float * src0,
device const float * src1, device const float * src1,
@ -379,7 +390,7 @@ kernel void kernel_rms_norm(
threadgroup_barrier(mem_flags::mem_threadgroup); threadgroup_barrier(mem_flags::mem_threadgroup);
// broadcast, simd group number is ntg / 32 // broadcast, simd group number is ntg / 32
for (int i = ntg / 32 / 2; i > 0; i /= 2) { for (uint i = ntg / 32 / 2; i > 0; i /= 2) {
if (tpitg < i) { if (tpitg < i) {
sum[tpitg] += sum[tpitg + i]; sum[tpitg] += sum[tpitg + i];
} }
@ -404,87 +415,90 @@ kernel void kernel_rms_norm(
} }
} }
// function for calculate inner product between a q4_0 block and 32 floats (yl), sumy is SUM(yl[i]) // function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i])
float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl) { // il indicates where the q4 quants begin (0 or QK4_0/4)
// we assume that the yl's have been multiplied with the appropriate scale factor
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl, int il) {
float d = qb_curr->d; float d = qb_curr->d;
float4 acc = 0.f; float2 acc = 0.f;
device uint16_t * qs = ((device uint16_t *)qb_curr + 1); device const uint16_t * qs = ((device const uint16_t *)qb_curr + 1 + il/2);
for (int i = 0; i < 16; i+=2) { for (int i = 0; i < 8; i+=2) {
acc[0] += yl[i] * (qs[i / 2] & 0x000F); acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
acc[1] += yl[i + 16] * (qs[i / 2] & 0x00F0); + yl[i + 1] * (qs[i / 2] & 0x0F00);
acc[2] += yl[i + 1] * (qs[i / 2] & 0x0F00); acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
acc[3] += yl[i + 17] * (qs[i / 2] & 0xF000); + yl[i + 9] * (qs[i / 2] & 0xF000);
} }
return d * (sumy * -8.f + acc[0] + acc[1]/16.f + acc[2]/256.f + acc[3]/4096.f); return d * (sumy * -8.f + acc[0] + acc[1]);
} }
// function for calculate inner product between a q4_1 block and 32 floats (yl), sumy is SUM(yl[i]) // function for calculate inner product between half a q4_1 block and 16 floats (yl), sumy is SUM(yl[i])
float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl) { // il indicates where the q4 quants begin (0 or QK4_0/4)
// we assume that the yl's have been multiplied with the appropriate scale factor
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl, int il) {
float d = qb_curr->d; float d = qb_curr->d;
float m = qb_curr->m; float m = qb_curr->m;
float4 acc = 0.f; device const uint16_t * qs = ((device const uint16_t *)qb_curr + 2 + il/2);
device uint16_t * qs = ((device uint16_t *)qb_curr + 2); float2 acc = 0.f;
for (int i = 0; i < 16; i+=2) { for (int i = 0; i < 8; i+=2) {
acc[0] += yl[i] * (qs[i / 2] & 0x000F); acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
acc[1] += yl[i + 16] * (qs[i / 2] & 0x00F0); + yl[i + 1] * (qs[i / 2] & 0x0F00);
acc[2] += yl[i + 1] * (qs[i / 2] & 0x0F00); acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
acc[3] += yl[i + 17] * (qs[i / 2] & 0xF000); + yl[i + 9] * (qs[i / 2] & 0xF000);
} }
return d * (acc[0] + acc[1]/16.f + acc[2]/256.f + acc[3]/4096.f) + sumy * m; return d * (acc[0] + acc[1]) + sumy * m;
} }
// putting them in the kernel cause a significant performance penalty // putting them in the kernel cause a significant performance penalty
#define N_DST 4 // each SIMD group works on 4 rows #define N_DST 4 // each SIMD group works on 4 rows
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group #define N_SIMDGROUP 2 // number of SIMD groups in a thread group
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32 #define N_SIMDWIDTH 32 // assuming SIMD group size is 32
template<typename block_q_type> //Note: This is a template, but strictly speaking it only applies to
// quantizations where the block size is 32. It also does not
// giard against the number of rows not being divisible by
// N_DST, so this is another explicit assumption of the implementation.
template<typename block_q_type, int nr, int nsg, int nw>
void mul_vec_q_n_f32(device const void * src0, device const float * src1, device float * dst, void mul_vec_q_n_f32(device const void * src0, device const float * src1, device float * dst,
int64_t ne00, int64_t ne10, int64_t ne0, int64_t ne01, int64_t ne00, int64_t ne10, int64_t ne0, int64_t ne01,
uint2 tgpig, uint tiisg, uint sgitg) { uint2 tgpig, uint tiisg, uint sgitg) {
const int nb = ne00/QK4_0; const int nb = ne00/QK4_0;
const int r0 = tgpig.x; const int r0 = tgpig.x;
const int r1 = tgpig.y; const int r1 = tgpig.y;
device const block_q_type * x = (device const block_q_type *) src0 + (r0 * N_SIMDGROUP + sgitg) * N_DST * nb; const int first_row = (r0 * nsg + sgitg) * nr;
device const block_q_type * x = (device const block_q_type *) src0 + first_row * nb;
device const float * y = (device const float *) src1 + r1*ne10; device const float * y = (device const float *) src1 + r1*ne10;
float4 y_curr[8]; // src1 vector cache float yl[16]; // src1 vector cache
float sumf[N_DST]={0.f}, all_sum; float sumf[nr]={0.f};
thread float * yl=(thread float *)y_curr;
// each thread in a SIMD group deals with 1 block. const int ix = tiisg/2;
for (int column = 0; column < nb / N_SIMDWIDTH; column++) { const int il = 8*(tiisg%2);
device const float * yb = y + ix * QK4_0 + il;
// each thread in a SIMD group deals with half a block.
for (int ib = ix; ib < nb; ib += nw/2) {
float sumy = 0; float sumy = 0;
for (int i = 0; i < QK4_0 / 4; i++) { for (int i = 0; i < 8; i += 2) {
y_curr[i] = *((device float4 *)(y + N_SIMDWIDTH * (tiisg + column * QK4_0)) + i); sumy += yb[i] + yb[i+1];
sumy += y_curr[i][0] + y_curr[i][1] + y_curr[i][2] + y_curr[i][3]; yl[i+0] = yb[i+ 0];
yl[i+1] = yb[i+ 1]/256.f;
sumy += yb[i+16] + yb[i+17];
yl[i+8] = yb[i+16]/16.f;
yl[i+9] = yb[i+17]/4096.f;
} }
for (int row = 0; row < N_DST; row++) { for (int row = 0; row < nr; row++) {
sumf[row] += block_q_n_dot_y(x+(tiisg + row * nb + column * N_SIMDWIDTH), sumy, yl); sumf[row] += block_q_n_dot_y(x+ib+row*nb, sumy, yl, il);
}
} }
// from now loads two rows every time and 16 blocks per row yb += QK4_0 * 16;
int ir = tiisg / (N_SIMDWIDTH / 2);
int ib = tiisg % (N_SIMDWIDTH / 2);
for (int ind = 0; ind < (nb % N_SIMDWIDTH + N_SIMDWIDTH / 2 - 1)/(N_SIMDWIDTH / 2); ind++) {
int nb_start = (nb / N_SIMDWIDTH) * N_SIMDWIDTH + ind * (N_SIMDWIDTH / 2); //where the left blocks start
float sumy = 0;
for (int i = 0; i < QK4_0 / 4; i++) {
y_curr[i] = *((device float4 *)(y + (nb_start + ib) * QK4_0) + i);
sumy += y_curr[i][0] + y_curr[i][1] + y_curr[i][2] + y_curr[i][3];
} }
for (int row = 0; row < N_DST; row+=2) { for (int row = 0; row < nr; ++row) {
if (nb_start + ib < nb) { const float tot = simd_sum(sumf[row]);
sumf[row + ir] += block_q_n_dot_y(x + (nb_start + ib + (row + ir) * nb), sumy, yl); if (tiisg == 0 && first_row + row < ne01) {
} dst[r1*ne0 + first_row + row] = tot;
}
}
for (int row = 0; row < N_DST; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0 && ((r0 * N_SIMDGROUP + sgitg) * N_DST + row) < ne01) {
dst[r1*ne0 + (r0 * N_SIMDGROUP + sgitg) * N_DST + row] = all_sum;
} }
} }
} }
@ -500,7 +514,7 @@ kernel void kernel_mul_mat_q4_0_f32(
uint2 tgpig[[threadgroup_position_in_grid]], uint2 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]], uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) { uint sgitg[[simdgroup_index_in_threadgroup]]) {
mul_vec_q_n_f32<block_q4_0>(src0,src1,dst,ne00,ne10,ne0,ne01,tgpig,tiisg,sgitg); mul_vec_q_n_f32<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne10,ne0,ne01,tgpig,tiisg,sgitg);
} }
kernel void kernel_mul_mat_q4_1_f32( kernel void kernel_mul_mat_q4_1_f32(
@ -514,7 +528,7 @@ kernel void kernel_mul_mat_q4_1_f32(
uint2 tgpig[[threadgroup_position_in_grid]], uint2 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]], uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) { uint sgitg[[simdgroup_index_in_threadgroup]]) {
mul_vec_q_n_f32<block_q4_1>(src0,src1,dst,ne00,ne10,ne0,ne01,tgpig,tiisg,sgitg); mul_vec_q_n_f32<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne10,ne0,ne01,tgpig,tiisg,sgitg);
} }
kernel void kernel_mul_mat_f16_f32( kernel void kernel_mul_mat_f16_f32(
@ -1237,111 +1251,137 @@ kernel void kernel_mul_mat_q2_K_f32(
constant int64_t & ne00, constant int64_t & ne00,
constant int64_t & ne10, constant int64_t & ne10,
constant int64_t & ne0, constant int64_t & ne0,
threadgroup float * sum [[threadgroup(0)]], constant int64_t & ne01[[buffer(4)]],
uint2 tgpig[[threadgroup_position_in_grid]], uint2 tgpig[[threadgroup_position_in_grid]],
uint2 tpitg[[thread_position_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]],
uint2 tptg[[threads_per_threadgroup]]) { uint sgitg[[simdgroup_index_in_threadgroup]]) {
const int nb = ne00/QK_K; const int nb = ne00/QK_K;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int64_t r0 = tgpig.x; const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
const int64_t r1 = tgpig.y; const int ib_row = first_row * nb;
device const block_q2_K * x = (device const block_q2_K *) src0 + ib_row;
device const float * y = (device const float *) src1 + r1*ne10;
float yl[32];
float sumf[N_DST]={0.f}, all_sum;
device const block_q2_K * x = (device const block_q2_K *) src0 + r0*nb; const int step = sizeof(block_q2_K) * nb;
device const float * yy = (device const float *) src1 + r1*ne10;
const int nth = tptg.x*tptg.y;
const int ith = tptg.y*tpitg.x + tpitg.y;
float sumf = 0;
#if QK_K == 256 #if QK_K == 256
const int tid = tpitg.y; // 0...16 const int ix = tiisg/8; // 0...3
const int il = tid/4; // 0...3 const int it = tiisg%8; // 0...7
const int ir = tid%4; // 0...3 const int im = it/4; // 0 or 1
const int ip = il/2; // 0 or 1 const int ir = it%4; // 0...3
const int shift1 = 4*(il%2);// 0 or 4 const int is = (8*ir)/16;// 0 or 1
const int shift2 = shift1+2;// 2 or 6
const int n = 8;
const int is = 4*il + (n*ir)/16;
const int y_offset = 64*il + n*ir; device const float * y4 = y + ix * QK_K + 128 * im + 8 * ir;
const int q_offset = 32*ip + n*ir;
for (int i = tpitg.x; i < nb; i += tptg.x) { for (int ib = ix; ib < nb; ib += 4) {
device const uint8_t * q = x[i].qs + q_offset; float4 sumy = {0.f, 0.f, 0.f, 0.f};
device const uint8_t * scales = x[i].scales + is; for (int i = 0; i < 8; ++i) {
yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
uint8_t d1 = scales[0] & 0xF; yl[i+ 8] = y4[i+32]; sumy[1] += yl[i+ 8];
uint8_t d2 = scales[2] & 0xF; yl[i+16] = y4[i+64]; sumy[2] += yl[i+16];
uint8_t m1 = scales[0] >> 4; yl[i+24] = y4[i+96]; sumy[3] += yl[i+24];
uint8_t m2 = scales[2] >> 4;
device const float * y = yy + i*QK_K + y_offset;
float2 s = {0.f, 0.f};
float smin = 0;
for (int l = 0; l < n; ++l) {
s[0] += y[l+ 0] * ((q[l] >> shift1) & 3);
s[1] += y[l+32] * ((q[l] >> shift2) & 3);
smin += y[l+ 0] * m1 + y[l+32] * m2;
} }
const float dall = (float)x[i].d; device const uint8_t * sc = (device const uint8_t *)x[ib].scales + 8*im + is;
const float dmin = (float)x[i].dmin; device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 16 * im + 4 * ir;
device const half * dh = &x[ib].d;
sumf += dall * (s[0] * d1 + s[1] * d2) - dmin * smin; for (int row = 0; row < N_DST; row++) {
float4 acc1 = {0.f, 0.f, 0.f, 0.f};
float4 acc2 = {0.f, 0.f, 0.f, 0.f};
for (int i = 0; i < 8; i += 2) {
acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
}
float dall = dh[0];
float dmin = dh[1] * 1.f/16.f;
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
(acc1[1] + 1.f/256.f * acc2[1]) * (sc[2] & 0xF) * 1.f/ 4.f +
(acc1[2] + 1.f/256.f * acc2[2]) * (sc[4] & 0xF) * 1.f/16.f +
(acc1[3] + 1.f/256.f * acc2[3]) * (sc[6] & 0xF) * 1.f/64.f) -
dmin * (sumy[0] * (sc[0] & 0xF0) + sumy[1] * (sc[2] & 0xF0) + sumy[2] * (sc[4] & 0xF0) + sumy[3] * (sc[6] & 0xF0));
qs += step/2;
sc += step;
dh += step/2;
}
y4 += 4 * QK_K;
} }
#else #else
const int il = 4 * tpitg.x; const int ix = tiisg/2; // 0...15
const int it = tiisg%2; // 0...1
uint32_t aux[2]; device const float * y4 = y + ix * QK_K + 8 * it;
thread const uint8_t * d = (thread const uint8_t *)aux;
thread const uint8_t * m = (thread const uint8_t *)aux + 4;
for (int i = tpitg.y; i < nb; i += tptg.y) { for (int ib = ix; ib < nb; ib += 16) {
device const uint8_t * q = x[i].qs + il; float4 sumy = {0.f, 0.f, 0.f, 0.f};
device const float * y = yy + i*QK_K + il; for (int i = 0; i < 8; ++i) {
yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
const float dall = (float)x[i].d; yl[i+ 8] = y4[i+16]; sumy[1] += yl[i+ 8];
const float dmin = (float)x[i].dmin; yl[i+16] = y4[i+32]; sumy[2] += yl[i+16];
yl[i+24] = y4[i+48]; sumy[3] += yl[i+24];
device const uint32_t * a = (device const uint32_t *)x[i].scales;
aux[0] = a[0] & 0x0f0f0f0f;
aux[1] = (a[0] >> 4) & 0x0f0f0f0f;
for (int l = 0; l < 4; ++l) {
sumf += y[l+ 0] * (dall * d[0] * ((q[l] >> 0) & 3) - dmin * m[0])
+ y[l+16] * (dall * d[1] * ((q[l] >> 2) & 3) - dmin * m[1])
+ y[l+32] * (dall * d[2] * ((q[l] >> 4) & 3) - dmin * m[2])
+ y[l+48] * (dall * d[3] * ((q[l] >> 6) & 3) - dmin * m[3]);
} }
device const uint8_t * sc = (device const uint8_t *)x[ib].scales;
device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
device const half * dh = &x[ib].d;
for (int row = 0; row < N_DST; row++) {
float4 acc1 = {0.f, 0.f, 0.f, 0.f};
float4 acc2 = {0.f, 0.f, 0.f, 0.f};
for (int i = 0; i < 8; i += 2) {
acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
}
float dall = dh[0];
float dmin = dh[1];
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
(acc1[1] + 1.f/256.f * acc2[1]) * (sc[1] & 0xF) * 1.f/ 4.f +
(acc1[2] + 1.f/256.f * acc2[2]) * (sc[2] & 0xF) * 1.f/16.f +
(acc1[3] + 1.f/256.f * acc2[3]) * (sc[3] & 0xF) * 1.f/64.f) -
dmin * (sumy[0] * (sc[0] >> 4) + sumy[1] * (sc[1] >> 4) + sumy[2] * (sc[2] >> 4) + sumy[3] * (sc[3] >> 4));
qs += step/2;
sc += step;
dh += step/2;
}
y4 += 16 * QK_K;
} }
#endif #endif
sum[ith] = sumf; for (int row = 0; row < N_DST; ++row) {
all_sum = simd_sum(sumf[row]);
// if (tiisg == 0) {
// Accumulate the sum from all threads in the threadgroup dst[r1*ne0 + first_row + row] = all_sum;
//
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%4 == 0) {
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
} }
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%16 == 0) {
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith == 0) {
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
dst[r1*ne0 + r0] = sum[0];
} }
} }
#if QK_K == 256
kernel void kernel_mul_mat_q3_K_f32( kernel void kernel_mul_mat_q3_K_f32(
device const void * src0, device const void * src0,
device const float * src1, device const float * src1,
@ -1350,40 +1390,41 @@ kernel void kernel_mul_mat_q3_K_f32(
constant int64_t & ne10, constant int64_t & ne10,
constant int64_t & ne0, constant int64_t & ne0,
constant int64_t & ne1, constant int64_t & ne1,
threadgroup float * sum [[threadgroup(0)]],
uint2 tgpig[[threadgroup_position_in_grid]], uint2 tgpig[[threadgroup_position_in_grid]],
uint2 tpitg[[thread_position_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]],
uint2 tptg[[threads_per_threadgroup]]) { uint sgitg[[simdgroup_index_in_threadgroup]]) {
const int nb = ne00/QK_K; const int nb = ne00/QK_K;
const int64_t r0 = tgpig.x; const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y; const int64_t r1 = tgpig.y;
device const block_q3_K * x = (device const block_q3_K *) src0 + r0*nb; const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
device const block_q3_K * x = (device const block_q3_K *) src0 + first_row*nb;
device const float * yy = (device const float *) src1 + r1*ne10; device const float * yy = (device const float *) src1 + r1*ne10;
const int nth = tptg.x*tptg.y; float yl[16];
const int ith = tptg.y*tpitg.x + tpitg.y;
#if QK_K == 256
const uint8_t m3 = 3;
const int8_t m4 = 4;
const uint16_t kmask1 = 0x0303; const uint16_t kmask1 = 0x0303;
const uint16_t kmask2 = 0x0f0f; const uint16_t kmask2 = 0x0f0f;
const int tid = tpitg.y; // expecting 16 const int tid = tiisg/2;
const int ix = tiisg%2;
const int ip = tid/8; // 0 or 1 const int ip = tid/8; // 0 or 1
const int il = tid/2 - 4*ip; // 0...3 const int il = tid/2 - 4*ip; // 0...3
const int ir = tid%2; const int ir = tid%2;
const int n = 8; const int n = 8;
const int l0 = n*ir; const int l0 = n*ir;
const uint8_t m = 1 << (4*ip + il); const uint16_t m1 = 1 << (4*ip + il);
const uint16_t m2 = m1 << 8;
const int shift = 2*il; const int shift = 2*il;
const uint16_t qm1 = 0x0003 << shift;
const uint16_t qm2 = 0x0300 << shift;
const int32_t v1 = 4 << shift;
const int32_t v2 = 1024 << shift;
const uint16_t s_shift1 = 4*ip; const uint16_t s_shift1 = 4*ip;
const uint16_t s_shift2 = s_shift1 + 2*(il/2); const uint16_t s_shift2 = s_shift1 + 2*(il/2);
@ -1392,94 +1433,133 @@ kernel void kernel_mul_mat_q3_K_f32(
const int q_offset = 32*ip + l0; const int q_offset = 32*ip + l0;
const int y_offset = 128*ip + 32*il + l0; const int y_offset = 128*ip + 32*il + l0;
//float sumf = 0; const int step = sizeof(block_q3_K) * nb / 2;
float sumf1 = 0, sumf2 = 0;
for (int i = tpitg.x; i < nb; i += tptg.x) {
const float d_all = (float)(x[i].d); device const float * y1 = yy + ix*QK_K + y_offset;
device const uint8_t * q = x[i].qs + q_offset; float sumf1[2] = {0.f}, sumf2[2] = {0.f};
device const uint8_t * h = x[i].hmask + l0; for (int i = ix; i < nb; i += 2) {
device const float * y = yy + i * QK_K + y_offset;
device const uint16_t * a = (device const uint16_t *)x[i].scales; for (int l = 0; l < 8; ++l) {
yl[l+0] = y1[l+ 0];
yl[l+8] = y1[l+16];
}
device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset);
device const uint16_t * h = (device const uint16_t *)(x[i].hmask + l0);
device const uint16_t * a = (device const uint16_t *)(x[i].scales);
device const half * dh = &x[i].d;
for (int row = 0; row < 2; ++row) {
const float d_all = (float)dh[0];
const char2 scales = as_type<char2>((uint16_t)(((a[il] >> s_shift1) & kmask2) | (((a[ik] >> s_shift2) & kmask1) << 4))); const char2 scales = as_type<char2>((uint16_t)(((a[il] >> s_shift1) & kmask2) | (((a[ik] >> s_shift2) & kmask1) << 4)));
float s = 0; float s1 = 0, s2 = 0;
for (int l = 0; l < n; ++l) { for (int l = 0; l < n; l += 2) {
s += y[l+ 0] * ((int8_t)((q[l+ 0] >> shift) & m3) - ((h[l+ 0] & m) ? 0 : m4)); const uint16_t qs = q[l/2];
s1 += yl[l+0] * ((int32_t)(qs & qm1) - ((h[l/2] & m1) ? 0 : v1));
s2 += yl[l+1] * ((int32_t)(qs & qm2) - ((h[l/2] & m2) ? 0 : v2));
} }
float d = d_all * s; float d = d_all * (s1 + 1.f/256.f * s2);
sumf1 += d * scales[0]; sumf1[row] += d * scales[0];
sumf2 += d; sumf2[row] += d;
//sumf += d_all * s * (scales[0] - 32);
s = 0; s1 = s2 = 0;
for (int l = 0; l < n; ++l) { for (int l = 0; l < n; l += 2) {
s += y[l+16] * ((int8_t)((q[l+16] >> shift) & m3) - ((h[l+16] & m) ? 0 : m4)); const uint16_t qs = q[l/2+8];
s1 += yl[l+8] * ((int32_t)(qs & qm1) - ((h[l/2+8] & m1) ? 0 : v1));
s2 += yl[l+9] * ((int32_t)(qs & qm2) - ((h[l/2+8] & m2) ? 0 : v2));
} }
d = d_all * s; d = d_all * (s1 + 1.f/256.f * s2);
sumf1 += d * scales[1]; sumf1[row] += d * scales[1];
sumf2 += d; sumf2[row] += d;
//sumf += d_all * s * (scales[1] - 32);
q += step;
h += step;
a += step;
dh += step;
} }
//sum[ith] = sumf; y1 += 2 * QK_K;
sum[ith] = sumf1 - 32.f*sumf2;
}
for (int row = 0; row < 2; ++row) {
const float sumf = (sumf1[row] - 32.f*sumf2[row]) / (1 << shift);
const float tot = simd_sum(sumf);
if (tiisg == 0) {
dst[r1*ne0 + first_row + row] = tot;
}
}
}
#else #else
const int il = 4 * tpitg.x; // 0, 4, 8, 12 kernel void kernel_mul_mat_q3_K_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne10,
constant int64_t & ne0,
constant int64_t & ne1,
uint2 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
const int nb = ne00/QK_K;
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
const int row = 2 * r0 + sgitg;
device const block_q3_K * x = (device const block_q3_K *) src0 + row*nb;
device const float * yy = (device const float *) src1 + r1*ne10;
const int ix = tiisg/4;
const int il = 4 * (tiisg%4);// 0, 4, 8, 12
const int im = il/8; // 0, 0, 1, 1 const int im = il/8; // 0, 0, 1, 1
const int in = il%8; // 0, 4, 0, 4 const int in = il%8; // 0, 4, 0, 4
float sumf = 0; float2 sum = {0.f, 0.f};
for (int i = tpitg.y; i < nb; i += tptg.y) { for (int i = ix; i < nb; i += 8) {
const float d_all = (float)(x[i].d); const float d_all = (float)(x[i].d);
device const uint8_t * q = x[i].qs + il; device const uint16_t * q = (device const uint16_t *)(x[i].qs + il);
device const uint8_t * h = x[i].hmask + in; device const uint16_t * h = (device const uint16_t *)(x[i].hmask + in);
device const uint16_t * s = (device const uint16_t *)(x[i].scales);
device const float * y = yy + i * QK_K + il; device const float * y = yy + i * QK_K + il;
const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8); const float d1 = d_all * ((int32_t)(s[0] & 0x000F) - 8);
const float d2 = d_all * ((x[i].scales[0] >> 4) - 8); const float d2 = d_all * ((int32_t)(s[0] & 0x00F0) - 128) * 1.f/64.f;
const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8); const float d3 = d_all * ((int32_t)(s[0] & 0x0F00) - 2048) * 1.f/4096.f;
const float d4 = d_all * ((x[i].scales[1] >> 4) - 8); const float d4 = d_all * ((int32_t)(s[0] & 0xF000) - 32768) * 1.f/262144.f;
for (int l = 0; l < 4; ++l) { for (int l = 0; l < 4; l += 2) {
const uint8_t hm = h[l] >> im; const uint16_t hm = h[l/2] >> im;
sumf += y[l+ 0] * d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((hm & 0x01) ? 0 : 4)) sum[0] += y[l+ 0] * d1 * ((int32_t)(q[l/2] & 0x0003) - ((hm & 0x0001) ? 0 : 4))
+ y[l+16] * d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((hm & 0x04) ? 0 : 4)) + y[l+16] * d2 * ((int32_t)(q[l/2] & 0x000c) - ((hm & 0x0004) ? 0 : 16))
+ y[l+32] * d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((hm & 0x10) ? 0 : 4)) + y[l+32] * d3 * ((int32_t)(q[l/2] & 0x0030) - ((hm & 0x0010) ? 0 : 64))
+ y[l+48] * d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((hm & 0x40) ? 0 : 4)); + y[l+48] * d4 * ((int32_t)(q[l/2] & 0x00c0) - ((hm & 0x0040) ? 0 : 256));
sum[1] += y[l+ 1] * d1 * ((int32_t)(q[l/2] & 0x0300) - ((hm & 0x0100) ? 0 : 1024))
+ y[l+17] * d2 * ((int32_t)(q[l/2] & 0x0c00) - ((hm & 0x0400) ? 0 : 4096))
+ y[l+33] * d3 * ((int32_t)(q[l/2] & 0x3000) - ((hm & 0x1000) ? 0 : 16384))
+ y[l+49] * d4 * ((int32_t)(q[l/2] & 0xc000) - ((hm & 0x4000) ? 0 : 65536));
} }
} }
const float sumf = sum[0] + sum[1] * 1.f/256.f;
sum[ith] = sumf; const float tot = simd_sum(sumf);
if (tiisg == 0) {
dst[r1*ne0 + row] = tot;
}
}
#endif #endif
//
// Accumulate the sum from all threads in the threadgroup
//
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%4 == 0) {
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%16 == 0) {
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith == 0) {
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
dst[r1*ne0 + r0] = sum[0];
}
}
#if QK_K == 256 #if QK_K == 256
kernel void kernel_mul_mat_q4_K_f32( kernel void kernel_mul_mat_q4_K_f32(
device const void * src0, device const void * src0,
@ -1776,7 +1856,6 @@ kernel void kernel_mul_mat_q5_K_f32(
for (int i = ix; i < nb; i += 8) { for (int i = ix; i < nb; i += 8) {
float4 sumy = {0.f, 0.f, 0.f, 0.f};
for (int l = 0; l < 4; ++l) { for (int l = 0; l < 4; ++l) {
yl[l+0] = y[l+ 0]; yl[l+0] = y[l+ 0];
yl[l+4] = y[l+16]; yl[l+4] = y[l+16];

View file

@ -1,7 +1,7 @@
//go:build mpi //go:build mpi
/** /**
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc * llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
* *
* MIT License * MIT License
* *

View file

@ -1,7 +1,7 @@
//go:build mpi //go:build mpi
/** /**
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc * llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
* *
* MIT License * MIT License
* *

View file

@ -1,7 +1,7 @@
//go:build opencl //go:build opencl
/** /**
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc * llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
* *
* MIT License * MIT License
* *

View file

@ -1,7 +1,7 @@
//go:build opencl //go:build opencl
/** /**
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc * llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
* *
* MIT License * MIT License
* *

File diff suppressed because it is too large Load diff

View file

@ -1,5 +1,5 @@
/** /**
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc * llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
* *
* MIT License * MIT License
* *
@ -225,6 +225,7 @@
#define GGML_MAX_CONTEXTS 64 #define GGML_MAX_CONTEXTS 64
#define GGML_MAX_SRC 6 #define GGML_MAX_SRC 6
#define GGML_MAX_NAME 48 #define GGML_MAX_NAME 48
#define GGML_MAX_OP_PARAMS 32
#define GGML_DEFAULT_N_THREADS 4 #define GGML_DEFAULT_N_THREADS 4
@ -233,6 +234,7 @@
#define GGML_UNUSED(x) (void)(x) #define GGML_UNUSED(x) (void)(x)
#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
#define GGML_ASSERT(x) \ #define GGML_ASSERT(x) \
do { \ do { \
@ -355,16 +357,6 @@ extern "C" {
GGML_OP_ARGMAX, GGML_OP_ARGMAX,
GGML_OP_REPEAT, GGML_OP_REPEAT,
GGML_OP_REPEAT_BACK, GGML_OP_REPEAT_BACK,
GGML_OP_ABS,
GGML_OP_SGN,
GGML_OP_NEG,
GGML_OP_STEP,
GGML_OP_TANH,
GGML_OP_ELU,
GGML_OP_RELU,
GGML_OP_GELU,
GGML_OP_GELU_QUICK,
GGML_OP_SILU,
GGML_OP_SILU_BACK, GGML_OP_SILU_BACK,
GGML_OP_NORM, // normalize GGML_OP_NORM, // normalize
GGML_OP_RMS_NORM, GGML_OP_RMS_NORM,
@ -403,6 +395,8 @@ extern "C" {
GGML_OP_WIN_PART, GGML_OP_WIN_PART,
GGML_OP_WIN_UNPART, GGML_OP_WIN_UNPART,
GGML_OP_UNARY,
GGML_OP_MAP_UNARY, GGML_OP_MAP_UNARY,
GGML_OP_MAP_BINARY, GGML_OP_MAP_BINARY,
@ -416,6 +410,24 @@ extern "C" {
GGML_OP_COUNT, GGML_OP_COUNT,
}; };
enum ggml_unary_op {
GGML_UNARY_OP_ABS,
GGML_UNARY_OP_SGN,
GGML_UNARY_OP_NEG,
GGML_UNARY_OP_STEP,
GGML_UNARY_OP_TANH,
GGML_UNARY_OP_ELU,
GGML_UNARY_OP_RELU,
GGML_UNARY_OP_GELU,
GGML_UNARY_OP_GELU_QUICK,
GGML_UNARY_OP_SILU,
};
enum ggml_object_type {
GGML_OBJECT_TENSOR,
GGML_OBJECT_GRAPH,
GGML_OBJECT_WORK_BUFFER
};
// ggml object // ggml object
struct ggml_object { struct ggml_object {
@ -424,7 +436,9 @@ extern "C" {
struct ggml_object * next; struct ggml_object * next;
char padding[8]; enum ggml_object_type type;
char padding[4];
}; };
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object); static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
@ -444,6 +458,9 @@ extern "C" {
// compute data // compute data
enum ggml_op op; enum ggml_op op;
// op params - allocated as int32_t for alignment
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
bool is_param; bool is_param;
struct ggml_tensor * grad; struct ggml_tensor * grad;
@ -460,7 +477,7 @@ extern "C" {
void * extra; // extra things e.g. for ggml-cuda.cu void * extra; // extra things e.g. for ggml-cuda.cu
char padding[8]; char padding[4];
}; };
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor); static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
@ -481,6 +498,11 @@ extern "C" {
void * abort_callback_data; void * abort_callback_data;
}; };
// next prime after GGML_MAX_NODES
// #define GGML_GRAPH_HASHTABLE_SIZE 4099
// next prime after GGML_MAX_NODES * 2 (nodes + leafs)
#define GGML_GRAPH_HASHTABLE_SIZE 8273
// computation graph // computation graph
struct ggml_cgraph { struct ggml_cgraph {
int n_nodes; int n_nodes;
@ -490,12 +512,16 @@ extern "C" {
struct ggml_tensor * grads[GGML_MAX_NODES]; struct ggml_tensor * grads[GGML_MAX_NODES];
struct ggml_tensor * leafs[GGML_MAX_NODES]; struct ggml_tensor * leafs[GGML_MAX_NODES];
void * visited_hash_table[GGML_GRAPH_HASHTABLE_SIZE];
// performance // performance
int perf_runs; int perf_runs;
int64_t perf_cycles; int64_t perf_cycles;
int64_t perf_time_us; int64_t perf_time_us;
}; };
static const size_t GGML_GRAPH_SIZE = sizeof(struct ggml_cgraph);
// scratch buffer // scratch buffer
struct ggml_scratch { struct ggml_scratch {
size_t offs; size_t offs;
@ -557,6 +583,7 @@ extern "C" {
GGML_API const char * ggml_type_name(enum ggml_type type); GGML_API const char * ggml_type_name(enum ggml_type type);
GGML_API const char * ggml_op_name (enum ggml_op op); GGML_API const char * ggml_op_name (enum ggml_op op);
GGML_API const char * ggml_op_symbol(enum ggml_op op);
GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor); GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
@ -580,6 +607,7 @@ extern "C" {
GGML_API size_t ggml_used_mem(const struct ggml_context * ctx); GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch); GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc); GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx); GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
@ -639,6 +667,8 @@ extern "C" {
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor); GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor); GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor); GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name); GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...); GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
@ -651,6 +681,11 @@ extern "C" {
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a); struct ggml_tensor * a);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_dup_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_add( GGML_API struct ggml_tensor * ggml_add(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a, struct ggml_tensor * a,
@ -875,14 +910,17 @@ extern "C" {
GGML_API struct ggml_tensor * ggml_rms_norm( GGML_API struct ggml_tensor * ggml_rms_norm(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a); struct ggml_tensor * a,
float eps);
GGML_API struct ggml_tensor * ggml_rms_norm_inplace( GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a); struct ggml_tensor * a,
float eps);
// a - x // a - x
// b - dy // b - dy
// TODO: update with configurable eps
GGML_API struct ggml_tensor * ggml_rms_norm_back( GGML_API struct ggml_tensor * ggml_rms_norm_back(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a, struct ggml_tensor * a,
@ -974,11 +1012,22 @@ extern "C" {
struct ggml_tensor * a, struct ggml_tensor * a,
struct ggml_tensor * b); struct ggml_tensor * b);
// a -> b, in-place, return view(b)
GGML_API struct ggml_tensor * ggml_cpy_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// make contiguous // make contiguous
GGML_API struct ggml_tensor * ggml_cont( GGML_API struct ggml_tensor * ggml_cont(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a); struct ggml_tensor * a);
// make contiguous, in-place
GGML_API struct ggml_tensor * ggml_cont_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
// return view(a), b specifies the new shape // return view(a), b specifies the new shape
// TODO: when we start computing gradient, make a copy instead of view // TODO: when we start computing gradient, make a copy instead of view
GGML_API struct ggml_tensor * ggml_reshape( GGML_API struct ggml_tensor * ggml_reshape(
@ -1154,9 +1203,9 @@ extern "C" {
int n_past, int n_past,
int n_dims, int n_dims,
int mode, int mode,
int n_ctx,
float freq_base, float freq_base,
float freq_scale, float freq_scale);
int n_ctx);
// rotary position embedding backward, i.e compute dx from dy // rotary position embedding backward, i.e compute dx from dy
// a - dy // a - dy
@ -1165,7 +1214,8 @@ extern "C" {
struct ggml_tensor * a, struct ggml_tensor * a,
int n_past, int n_past,
int n_dims, int n_dims,
int mode); int mode,
int n_ctx);
// alibi position embedding // alibi position embedding
// in-place, returns view(a) // in-place, returns view(a)
@ -1289,6 +1339,16 @@ extern "C" {
typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *); typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *); typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
GGML_API struct ggml_tensor * ggml_unary(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_unary_op op);
GGML_API struct ggml_tensor * ggml_unary_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_unary_op op);
GGML_API struct ggml_tensor * ggml_map_unary_f32( GGML_API struct ggml_tensor * ggml_map_unary_f32(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a, struct ggml_tensor * a,
@ -1368,11 +1428,17 @@ extern "C" {
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * tensor); struct ggml_tensor * tensor);
GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor); GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor); GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep); GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
// graph allocation in a context
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx);
GGML_API struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor);
GGML_API size_t ggml_graph_overhead(void);
// ggml_graph_plan() has to be called before ggml_graph_compute() // ggml_graph_plan() has to be called before ggml_graph_compute()
// when plan.work_size > 0, caller must allocate memory for plan.work_data // when plan.work_size > 0, caller must allocate memory for plan.work_data
GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/); GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);

View file

@ -1,5 +1,5 @@
/** /**
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc * llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
* *
* MIT License * MIT License
* *
@ -1692,6 +1692,62 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
*s = hsum_float_8(acc) + summs; *s = hsum_float_8(acc) + summs;
#elif defined __AVX__
const __m128i m3 = _mm_set1_epi8(3);
__m256 acc = _mm256_setzero_ps();
uint32_t ud, um;
const uint8_t * restrict db = (const uint8_t *)&ud;
const uint8_t * restrict mb = (const uint8_t *)&um;
float summs = 0;
// TODO: optimize this
for (int i = 0; i < nb; ++i) {
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
const uint8_t * restrict q2 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
ud = (sc[0] >> 0) & 0x0f0f0f0f;
um = (sc[0] >> 4) & 0x0f0f0f0f;
int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
summs += dmin * smin;
const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
const __m128i q2_0 = _mm_and_si128(q2bits, m3);
const __m128i q2_1 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
const __m128i p0 = _mm_maddubs_epi16(q2_0, _mm256_extractf128_si256(q8_0, 0));
const __m128i p1 = _mm_maddubs_epi16(q2_1, _mm256_extractf128_si256(q8_0, 1));
const __m128i p2 = _mm_maddubs_epi16(q2_2, _mm256_extractf128_si256(q8_1, 0));
const __m128i p3 = _mm_maddubs_epi16(q2_3, _mm256_extractf128_si256(q8_1, 1));
const __m256i p_0 = _mm256_set_m128i(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0));
const __m256i p_1 = _mm256_set_m128i(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1));
const __m256i p_2 = _mm256_set_m128i(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2));
const __m256i p_3 = _mm256_set_m128i(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3));
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0)), acc);
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1)), acc);
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2)), acc);
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3)), acc);
}
*s = hsum_float_8(acc) + summs;
#else #else
float sumf = 0; float sumf = 0;
@ -2321,6 +2377,93 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
*s = hsum_float_8(acc); *s = hsum_float_8(acc);
#elif defined __AVX__
const __m128i m3 = _mm_set1_epi8(3);
const __m128i m1 = _mm_set1_epi8(1);
__m256 acc = _mm256_setzero_ps();
uint64_t aux64;
uint16_t aux16[2];
const int8_t * aux8 = (const int8_t *)aux16;
for (int i = 0; i < nb; ++i) {
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
const uint8_t * restrict q3 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
const uint16_t a = *(const uint16_t *)x[i].scales;
aux16[0] = a & 0x0f0f;
aux16[1] = (a >> 4) & 0x0f0f;
const __m128i scale_0 = _mm_set1_epi16(aux8[0] - 8);
const __m128i scale_1 = _mm_set1_epi16(aux8[2] - 8);
const __m128i scale_2 = _mm_set1_epi16(aux8[1] - 8);
const __m128i scale_3 = _mm_set1_epi16(aux8[3] - 8);
memcpy(&aux64, x[i].hmask, 8);
__m128i q3h_0 = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
__m128i q3h_1 = _mm_srli_epi16(q3h_0, 2);
__m128i q3h_2 = _mm_srli_epi16(q3h_0, 4);
__m128i q3h_3 = _mm_srli_epi16(q3h_0, 6);
q3h_0 = _mm_slli_epi16(_mm_andnot_si128(q3h_0, m1), 2);
q3h_1 = _mm_slli_epi16(_mm_andnot_si128(q3h_1, m1), 2);
q3h_2 = _mm_slli_epi16(_mm_andnot_si128(q3h_2, m1), 2);
q3h_3 = _mm_slli_epi16(_mm_andnot_si128(q3h_3, m1), 2);
// load low 2 bits
const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
// prepare low and high bits
const __m128i q3l_0 = _mm_and_si128(q3bits, m3);
const __m128i q3l_1 = _mm_and_si128(_mm_srli_epi16(q3bits, 2), m3);
const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits, 4), m3);
const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits, 6), m3);
// load Q8 quants
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
// Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm_maddubs_epi16,
// and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
// and 2 if the high bit was set)
const __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, _mm256_extractf128_si256(q8_0, 0));
const __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, _mm256_extractf128_si256(q8_0, 1));
const __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, _mm256_extractf128_si256(q8_1, 0));
const __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, _mm256_extractf128_si256(q8_1, 1));
__m128i p16_0 = _mm_maddubs_epi16(q3l_0, _mm256_extractf128_si256(q8_0, 0));
__m128i p16_1 = _mm_maddubs_epi16(q3l_1, _mm256_extractf128_si256(q8_0, 1));
__m128i p16_2 = _mm_maddubs_epi16(q3l_2, _mm256_extractf128_si256(q8_1, 0));
__m128i p16_3 = _mm_maddubs_epi16(q3l_3, _mm256_extractf128_si256(q8_1, 1));
p16_0 = _mm_sub_epi16(p16_0, q8s_0);
p16_1 = _mm_sub_epi16(p16_1, q8s_1);
p16_2 = _mm_sub_epi16(p16_2, q8s_2);
p16_3 = _mm_sub_epi16(p16_3, q8s_3);
// multiply with scales
p16_0 = _mm_madd_epi16(scale_0, p16_0);
p16_1 = _mm_madd_epi16(scale_1, p16_1);
p16_2 = _mm_madd_epi16(scale_2, p16_2);
p16_3 = _mm_madd_epi16(scale_3, p16_3);
p16_0 = _mm_add_epi32(p16_0, p16_2);
p16_1 = _mm_add_epi32(p16_1, p16_3);
__m256i p16 = _mm256_set_m128i(p16_1, p16_0);
// multiply with block scale and accumulate
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16)), acc);
}
*s = hsum_float_8(acc);
#else #else
int8_t aux8[QK_K]; int8_t aux8[QK_K];
@ -2807,6 +2950,60 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
*s = hsum_float_8(acc) - summs; *s = hsum_float_8(acc) - summs;
#elif defined __AVX__
const __m128i m4 = _mm_set1_epi8(0xF);
__m256 acc = _mm256_setzero_ps();
float summs = 0;
uint16_t aux16[2];
const uint8_t * scales = (const uint8_t *)aux16;
for (int i = 0; i < nb; ++i) {
const float d = ggml_fp16_to_fp32(x[i].d[0]) * y[i].d;
const float m = ggml_fp16_to_fp32(x[i].d[1]) * y[i].d;
const __m256 vd = _mm256_set1_ps(d);
const uint16_t * a = (const uint16_t *)x[i].scales;
aux16[0] = a[0] & 0x0f0f;
aux16[1] = (a[0] >> 4) & 0x0f0f;
summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
const uint8_t * restrict q4 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
const __m128i q4bits_0 = _mm256_extractf128_si256(q4bits, 0);
const __m128i q4bits_1 = _mm256_extractf128_si256(q4bits, 1);
const __m128i q4_0 = _mm_and_si128(q4bits_0, m4);
const __m128i q4_1 = _mm_and_si128(q4bits_1, m4);
const __m128i q4_2 = _mm_and_si128(_mm_srli_epi16(q4bits_0, 4), m4);
const __m128i q4_3 = _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4);
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
const __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
const __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
const __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
const __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
const __m128i p32_0 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_0);
const __m128i p32_1 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_1);
acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(_mm256_set_m128i(p32_1, p32_0))), acc);
const __m128i p32_2 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_2);
const __m128i p32_3 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_3);
acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(_mm256_set_m128i(p32_3, p32_2))), acc);
}
*s = hsum_float_8(acc) - summs;
#else #else
uint8_t aux8[QK_K]; uint8_t aux8[QK_K];
@ -3321,10 +3518,66 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
*s = hsum_float_8(acc); *s = hsum_float_8(acc);
#elif defined __AVX__
const __m128i m4 = _mm_set1_epi8(0xF);
const __m128i mone = _mm_set1_epi8(1);
__m256 acc = _mm256_setzero_ps();
for (int i = 0; i < nb; ++i) {
const uint8_t * restrict q5 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
const __m128i scale_0 = _mm_set1_epi16(x[i].scales[0]);
const __m128i scale_1 = _mm_set1_epi16(x[i].scales[1]);
const __m128i scale_2 = _mm_set1_epi16(x[i].scales[2]);
const __m128i scale_3 = _mm_set1_epi16(x[i].scales[3]);
int64_t aux64;
memcpy(&aux64, x[i].qh, 8);
const __m128i haux128_0 = _mm_set_epi64x(aux64 >> 1, aux64);
const __m128i haux128_1 = _mm_srli_epi16(haux128_0, 2);
const __m128i q5h_0 = _mm_slli_epi16(_mm_andnot_si128(haux128_0, mone), 4);
const __m128i q5h_1 = _mm_slli_epi16(_mm_andnot_si128(haux128_1, mone), 4);
const __m128i q5h_2 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_0, 4), mone), 4);
const __m128i q5h_3 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_1, 4), mone), 4);
const __m128i q5l_0 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 0), m4);
const __m128i q5l_1 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 1), m4);
const __m128i q5l_2 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 0), 4), m4);
const __m128i q5l_3 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 1), 4), m4);
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
const __m128i p16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5l_0, _mm256_extractf128_si256(q8_0, 0)));
const __m128i p16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5l_1, _mm256_extractf128_si256(q8_0, 1)));
const __m128i p16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5l_2, _mm256_extractf128_si256(q8_1, 0)));
const __m128i p16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5l_3, _mm256_extractf128_si256(q8_1, 1)));
const __m128i s16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5h_0, _mm256_extractf128_si256(q8_0, 0)));
const __m128i s16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5h_1, _mm256_extractf128_si256(q8_0, 1)));
const __m128i s16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5h_2, _mm256_extractf128_si256(q8_1, 0)));
const __m128i s16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5h_3, _mm256_extractf128_si256(q8_1, 1)));
const __m128i dot_0 = _mm_sub_epi32(_mm_add_epi32(p16_0, p16_2), _mm_add_epi32(s16_0, s16_2));
const __m128i dot_1 = _mm_sub_epi32(_mm_add_epi32(p16_1, p16_3), _mm_add_epi32(s16_1, s16_3));
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_set_m128i(dot_1, dot_0))), acc);
}
*s = hsum_float_8(acc);
#else #else
int8_t aux8[QK_K];
uint8_t aux8[QK_K];
int16_t aux16[16]; int16_t aux16[16];
float sums [8]; float sums [8];
memset(sums, 0, 8*sizeof(float)); memset(sums, 0, 8*sizeof(float));
@ -3334,7 +3587,7 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
const uint8_t * restrict q4 = x[i].qs; const uint8_t * restrict q4 = x[i].qs;
const uint8_t * restrict hm = x[i].qh; const uint8_t * restrict hm = x[i].qh;
const int8_t * restrict q8 = y[i].qs; const int8_t * restrict q8 = y[i].qs;
uint8_t * restrict a = aux8; int8_t * restrict a = aux8;
for (int l = 0; l < 32; ++l) { for (int l = 0; l < 32; ++l) {
a[l+ 0] = q4[l] & 0xF; a[l+ 0] = q4[l] & 0xF;
a[l+32] = q4[l] >> 4; a[l+32] = q4[l] >> 4;
@ -3884,6 +4137,77 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
*s = hsum_float_8(acc); *s = hsum_float_8(acc);
#elif defined __AVX__
const __m128i m4 = _mm_set1_epi8(0xF);
const __m128i m2 = _mm_set1_epi8(3);
const __m128i m32s = _mm_set1_epi8(32);
__m256 acc = _mm256_setzero_ps();
for (int i = 0; i < nb; ++i) {
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
const uint8_t * restrict q4 = x[i].ql;
const uint8_t * restrict qh = x[i].qh;
const int8_t * restrict q8 = y[i].qs;
const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
__m128i sumi_0 = _mm_setzero_si128();
__m128i sumi_1 = _mm_setzero_si128();
const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH, m2), 4);
const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 2), m2), 4);
const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 4), m2), 4);
const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 6), m2), 4);
const __m128i q4_0 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 0), m4), q4h_0);
const __m128i q4_1 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 1), m4), q4h_1);
const __m128i q4_2 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 0), 4), m4), q4h_2);
const __m128i q4_3 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 1), 4), m4), q4h_3);
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
__m128i q8s_0 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 0));
__m128i q8s_1 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 1));
__m128i q8s_2 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 0));
__m128i q8s_3 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 1));
__m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
__m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
__m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
__m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
p16_0 = _mm_sub_epi16(p16_0, q8s_0);
p16_1 = _mm_sub_epi16(p16_1, q8s_1);
p16_2 = _mm_sub_epi16(p16_2, q8s_2);
p16_3 = _mm_sub_epi16(p16_3, q8s_3);
p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(_mm256_set_m128i(sumi_1, sumi_0))), acc);
}
*s = hsum_float_8(acc);
#else #else
int8_t aux8[QK_K]; int8_t aux8[QK_K];

View file

@ -1,5 +1,5 @@
/** /**
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc * llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
* *
* MIT License * MIT License
* *

View file

@ -1,5 +1,5 @@
/** /**
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc * llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
* *
* MIT License * MIT License
* *

View file

@ -1,5 +1,5 @@
/** /**
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc * llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
* *
* MIT License * MIT License
* *
@ -93,6 +93,7 @@ enum e_model {
MODEL_13B, MODEL_13B,
MODEL_30B, MODEL_30B,
MODEL_65B, MODEL_65B,
MODEL_70B,
}; };
static const size_t kB = 1024; static const size_t kB = 1024;
@ -124,18 +125,18 @@ static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph *
} }
// //
// memory sizes // memory sizes (calculated for n_batch == 512)
// //
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0(int n_ctx) static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0(int n_ctx)
{ {
static std::map<e_model, size_t> k_sizes = { static std::map<e_model, size_t> k_sizes = {
/* empirical scaling, still a guess */ { MODEL_3B, ((size_t) n_ctx / 16ull + 92ull) * MB },
{ MODEL_3B, ((size_t) n_ctx / 16ull + 128ull) * MB }, { MODEL_7B, ((size_t) n_ctx / 16ull + 100ull) * MB },
{ MODEL_7B, ((size_t) n_ctx / 16ull + 256ull) * MB }, { MODEL_13B, ((size_t) n_ctx / 12ull + 120ull) * MB },
{ MODEL_13B, ((size_t) n_ctx / 12ull + 256ull) * MB }, { MODEL_30B, ((size_t) n_ctx / 9ull + 160ull) * MB },
{ MODEL_30B, ((size_t) n_ctx / 10ull + 256ull) * MB }, { MODEL_65B, ((size_t) n_ctx / 6ull + 256ull) * MB }, // guess
{ MODEL_65B, ((size_t) n_ctx / 8ull + 512ull) * MB }, { MODEL_70B, ((size_t) n_ctx / 7ull + 164ull) * MB },
}; };
return k_sizes; return k_sizes;
} }
@ -143,38 +144,26 @@ static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0(int n_ctx)
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1() static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
{ {
static std::map<e_model, size_t> k_sizes = { static std::map<e_model, size_t> k_sizes = {
{ MODEL_3B, 256ull * MB }, { MODEL_3B, 128ull * MB },
{ MODEL_7B, 512ull * MB }, { MODEL_7B, 160ull * MB },
{ MODEL_13B, 512ull * MB }, { MODEL_13B, 192ull * MB },
{ MODEL_30B, 512ull * MB }, { MODEL_30B, 256ull * MB },
{ MODEL_65B, 1024ull * MB }, { MODEL_65B, 384ull * MB }, // guess
{ MODEL_70B, 304ull * MB },
}; };
return k_sizes; return k_sizes;
} }
// 2*n_embd*n_ctx*n_layer*sizeof(float16) // used to store the compute graph tensors + non-scratch data
static const std::map<e_model, size_t> & MEM_REQ_KV_SELF() static const std::map<e_model, size_t> & MEM_REQ_EVAL()
{ {
static std::map<e_model, size_t> k_sizes = { static std::map<e_model, size_t> k_sizes = {
{ MODEL_3B, 682ull * MB }, { MODEL_3B, 8ull * MB },
{ MODEL_7B, 1026ull * MB }, { MODEL_7B, 10ull * MB },
{ MODEL_13B, 1608ull * MB }, { MODEL_13B, 12ull * MB },
{ MODEL_30B, 3124ull * MB }, { MODEL_30B, 16ull * MB },
{ MODEL_65B, 5120ull * MB }, { MODEL_65B, 24ull * MB }, // guess
}; { MODEL_70B, 24ull * MB },
return k_sizes;
}
// this is mostly needed for temporary mul_mat buffers to dequantize the data
// not actually needed if BLAS is disabled
static const std::map<e_model, size_t> & MEM_REQ_EVAL(int n_ctx)
{
static std::map<e_model, size_t> k_sizes = {
{ MODEL_3B, ((size_t) n_ctx / 256ull + 512ull) * MB },
{ MODEL_7B, ((size_t) n_ctx / 256ull + 768ull) * MB },
{ MODEL_13B, ((size_t) n_ctx / 256ull + 1024ull) * MB },
{ MODEL_30B, ((size_t) n_ctx / 256ull + 1280ull) * MB },
{ MODEL_65B, ((size_t) n_ctx / 256ull + 1536ull) * MB },
}; };
return k_sizes; return k_sizes;
} }
@ -189,6 +178,7 @@ static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_BASE()
{ MODEL_13B, 640ull * kB }, { MODEL_13B, 640ull * kB },
{ MODEL_30B, 768ull * kB }, { MODEL_30B, 768ull * kB },
{ MODEL_65B, 1536ull * kB }, { MODEL_65B, 1536ull * kB },
{ MODEL_70B, 1536ull * kB }, // TODO (likely can be reduced)
}; };
return k_sizes; return k_sizes;
} }
@ -203,6 +193,7 @@ static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_PER_CONTEXT()
{ MODEL_13B, 160ull }, { MODEL_13B, 160ull },
{ MODEL_30B, 208ull }, { MODEL_30B, 208ull },
{ MODEL_65B, 416ull }, { MODEL_65B, 416ull },
{ MODEL_70B, 416ull }, // TODO (likely can be reduced)
}; };
return k_sizes; return k_sizes;
} }
@ -214,16 +205,43 @@ struct llama_hparams {
uint32_t n_embd = 4096; uint32_t n_embd = 4096;
uint32_t n_mult = 256; uint32_t n_mult = 256;
uint32_t n_head = 32; uint32_t n_head = 32;
uint32_t n_head_kv = 32;
uint32_t n_layer = 32; uint32_t n_layer = 32;
uint32_t n_rot = 64; uint32_t n_rot = 64;
// LLaMAv2
// TODO: load from model data hparams
float f_ffn_mult = 1.0f;
float f_rms_norm_eps = LLAMA_DEFAULT_RMS_EPS;
float rope_freq_base = 10000.0f; float rope_freq_base = 10000.0f;
float rope_freq_scale = 1.0f; float rope_freq_scale = 1.0f;
enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16; enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
bool operator!=(const llama_hparams & other) const { bool operator!=(const llama_hparams & other) const {
return static_cast<bool>(memcmp(this, &other, sizeof(llama_hparams))); return static_cast<bool>(memcmp(this, &other, sizeof(llama_hparams))); // NOLINT
}
uint32_t n_gqa() const {
return n_head/n_head_kv;
}
uint32_t n_embd_head() const {
return n_embd/n_head;
}
uint32_t n_embd_gqa() const {
return n_embd/n_gqa();
}
size_t kv_size() const {
size_t result = 2ull;
result *= (size_t) n_embd_gqa();
result *= (size_t) n_ctx;
result *= (size_t) n_layer;
result *= sizeof(ggml_fp16_t);
return result;
} }
}; };
@ -531,6 +549,10 @@ struct llama_file_loader {
hparams.n_layer = file.read_u32(); hparams.n_layer = file.read_u32();
hparams.n_rot = file.read_u32(); hparams.n_rot = file.read_u32();
hparams.ftype = (enum llama_ftype) file.read_u32(); hparams.ftype = (enum llama_ftype) file.read_u32();
// LLaMAv2
// TODO: read from header
hparams.n_head_kv = hparams.n_head;
} }
void read_vocab() { void read_vocab() {
vocab.id_to_token.resize(hparams.n_vocab); vocab.id_to_token.resize(hparams.n_vocab);
@ -829,7 +851,7 @@ static bool kv_cache_init(
ggml_type wtype, ggml_type wtype,
int n_ctx, int n_ctx,
int n_gpu_layers) { int n_gpu_layers) {
const int n_embd = hparams.n_embd; const int n_embd = hparams.n_embd_gqa();
const int n_layer = hparams.n_layer; const int n_layer = hparams.n_layer;
const int64_t n_mem = n_layer*n_ctx; const int64_t n_mem = n_layer*n_ctx;
@ -873,9 +895,11 @@ struct llama_context_params llama_context_default_params() {
/*.seed =*/ LLAMA_DEFAULT_SEED, /*.seed =*/ LLAMA_DEFAULT_SEED,
/*.n_ctx =*/ 512, /*.n_ctx =*/ 512,
/*.n_batch =*/ 512, /*.n_batch =*/ 512,
/*.n_gqa =*/ 1,
/*.rms_norm_eps =*/ LLAMA_DEFAULT_RMS_EPS,
/*.gpu_layers =*/ 0, /*.gpu_layers =*/ 0,
/*.main_gpu =*/ 0, /*.main_gpu =*/ 0,
/*.tensor_split =*/ {0}, /*.tensor_split =*/ nullptr,
/*.rope_freq_base =*/ 10000.0f, /*.rope_freq_base =*/ 10000.0f,
/*.rope_freq_scale =*/ 1.0f, /*.rope_freq_scale =*/ 1.0f,
/*.progress_callback =*/ nullptr, /*.progress_callback =*/ nullptr,
@ -992,6 +1016,7 @@ static const char *llama_model_type_name(e_model type) {
case MODEL_13B: return "13B"; case MODEL_13B: return "13B";
case MODEL_30B: return "30B"; case MODEL_30B: return "30B";
case MODEL_65B: return "65B"; case MODEL_65B: return "65B";
case MODEL_70B: return "70B";
default: LLAMA_ASSERT(false); default: LLAMA_ASSERT(false);
} }
} }
@ -1002,6 +1027,8 @@ static void llama_model_load_internal(
llama_vocab & vocab, llama_vocab & vocab,
int n_ctx, int n_ctx,
int n_batch, int n_batch,
int n_gqa,
float rms_norm_eps,
int n_gpu_layers, int n_gpu_layers,
int main_gpu, int main_gpu,
const float * tensor_split, const float * tensor_split,
@ -1023,8 +1050,12 @@ static void llama_model_load_internal(
model.hparams = ml->file_loader->hparams; model.hparams = ml->file_loader->hparams;
model.n_gpu_layers = n_gpu_layers; model.n_gpu_layers = n_gpu_layers;
llama_file_version file_version = ml->file_loader->file_version; llama_file_version file_version = ml->file_loader->file_version;
auto & hparams = model.hparams; auto & hparams = model.hparams;
// TODO: read from file
hparams.f_rms_norm_eps = rms_norm_eps;
{ {
switch (hparams.n_layer) { switch (hparams.n_layer) {
case 26: model.type = e_model::MODEL_3B; break; case 26: model.type = e_model::MODEL_3B; break;
@ -1042,11 +1073,25 @@ static void llama_model_load_internal(
hparams.n_ctx = n_ctx; hparams.n_ctx = n_ctx;
// LLaMAv2
// TODO: temporary until GGUF
LLAMA_ASSERT(hparams.n_head % n_gqa == 0);
hparams.n_head_kv = hparams.n_head / n_gqa;
if (model.type == e_model::MODEL_65B && n_gqa == 8) {
fprintf(stderr, "%s: warning: assuming 70B model based on GQA == %d\n", __func__, n_gqa);
model.type = e_model::MODEL_70B;
hparams.f_ffn_mult = 1.3f; // from the params.json of the 70B model
}
hparams.rope_freq_base = rope_freq_base; hparams.rope_freq_base = rope_freq_base;
hparams.rope_freq_scale = rope_freq_scale; hparams.rope_freq_scale = rope_freq_scale;
} }
const uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult; // ref: https://github.com/facebookresearch/llama/blob/6c7fe276574e78057f917549435a2554000a876d/llama/model.py#L194-L199
const uint32_t n_ff_raw = 2*(4*hparams.n_embd)/3;
const uint32_t n_ff_mult = hparams.f_ffn_mult*n_ff_raw;
const uint32_t n_ff = ((n_ff_mult + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
//const uint32_t n_ff = 28672;
{ {
fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version)); fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version));
@ -1055,12 +1100,15 @@ static void llama_model_load_internal(
fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd); fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd);
fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult); fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult);
fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head); fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
fprintf(stderr, "%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer); fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot); fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim
fprintf(stderr, "%s: n_gqa = %u\n", __func__, hparams.n_gqa());
fprintf(stderr, "%s: rnorm_eps = %.1e\n", __func__, hparams.f_rms_norm_eps);
fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
fprintf(stderr, "%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base); fprintf(stderr, "%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base);
fprintf(stderr, "%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale); fprintf(stderr, "%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale);
fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype)); fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type)); fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
} }
@ -1131,6 +1179,7 @@ static void llama_model_load_internal(
size_t vram_scratch = 0; size_t vram_scratch = 0;
{ {
const uint32_t n_embd = hparams.n_embd; const uint32_t n_embd = hparams.n_embd;
const uint32_t n_embd_gqa = hparams.n_embd_gqa();
const uint32_t n_layer = hparams.n_layer; const uint32_t n_layer = hparams.n_layer;
const uint32_t n_vocab = hparams.n_vocab; const uint32_t n_vocab = hparams.n_vocab;
@ -1181,8 +1230,8 @@ static void llama_model_load_internal(
layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}, backend); layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}, backend);
layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}, backend_split); layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}, backend_split);
layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd}, backend_split); layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd_gqa}, backend_split);
layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd}, backend_split); layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd_gqa}, backend_split);
layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}, backend_split); layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}, backend_split);
layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend); layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend);
@ -1212,11 +1261,11 @@ static void llama_model_load_internal(
mmapped_size - vram_weights + // weights in VRAM not in memory mmapped_size - vram_weights + // weights in VRAM not in memory
MEM_REQ_SCRATCH0(hparams.n_ctx).at(model.type) + MEM_REQ_SCRATCH0(hparams.n_ctx).at(model.type) +
MEM_REQ_SCRATCH1().at(model.type) + MEM_REQ_SCRATCH1().at(model.type) +
MEM_REQ_EVAL(hparams.n_ctx).at(model.type); MEM_REQ_EVAL().at(model.type);
// this is the memory required by one llama_state // this is the memory required by one llama_state
const size_t mem_required_state = const size_t mem_required_state =
scale*MEM_REQ_KV_SELF().at(model.type); scale*hparams.kv_size();
fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__, fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0); mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
@ -1257,7 +1306,7 @@ static void llama_model_load_internal(
fprintf(stderr, "%s: cannot offload v cache to GPU due to low VRAM option\n", __func__); fprintf(stderr, "%s: cannot offload v cache to GPU due to low VRAM option\n", __func__);
} else { } else {
fprintf(stderr, "%s: offloading v cache to GPU\n", __func__); fprintf(stderr, "%s: offloading v cache to GPU\n", __func__);
vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2; vram_kv_cache += hparams.kv_size() / 2;
} }
} }
if (n_gpu_layers > (int) hparams.n_layer + 2) { if (n_gpu_layers > (int) hparams.n_layer + 2) {
@ -1265,7 +1314,7 @@ static void llama_model_load_internal(
fprintf(stderr, "%s: cannot offload k cache to GPU due to low VRAM option\n", __func__); fprintf(stderr, "%s: cannot offload k cache to GPU due to low VRAM option\n", __func__);
} else { } else {
fprintf(stderr, "%s: offloading k cache to GPU\n", __func__); fprintf(stderr, "%s: offloading k cache to GPU\n", __func__);
vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2; vram_kv_cache += hparams.kv_size() / 2;
} }
} }
#elif defined(GGML_USE_CLBLAST) #elif defined(GGML_USE_CLBLAST)
@ -1313,9 +1362,11 @@ static bool llama_model_load(
llama_vocab & vocab, llama_vocab & vocab,
int n_ctx, int n_ctx,
int n_batch, int n_batch,
int n_gqa,
float rms_norm_eps,
int n_gpu_layers, int n_gpu_layers,
int main_gpu, int main_gpu,
float * tensor_split, const float * tensor_split,
float rope_freq_base, float rope_freq_base,
float rope_freq_scale, float rope_freq_scale,
bool low_vram, bool low_vram,
@ -1326,7 +1377,7 @@ static bool llama_model_load(
llama_progress_callback progress_callback, llama_progress_callback progress_callback,
void *progress_callback_user_data) { void *progress_callback_user_data) {
try { try {
llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, rope_freq_base, rope_freq_scale, low_vram, memory_type, llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gqa, rms_norm_eps, n_gpu_layers, main_gpu, tensor_split, rope_freq_base, rope_freq_scale, low_vram, memory_type,
use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data); use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
return true; return true;
} catch (const std::exception & err) { } catch (const std::exception & err) {
@ -1370,16 +1421,23 @@ static bool llama_eval_internal(
LLAMA_ASSERT(!!kv_self.ctx); LLAMA_ASSERT(!!kv_self.ctx);
const int n_embd = hparams.n_embd; const int64_t n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer; const int64_t n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx; const int64_t n_ctx = hparams.n_ctx;
const int n_head = hparams.n_head; const int64_t n_head = hparams.n_head;
const int n_vocab = hparams.n_vocab; const int64_t n_head_kv = hparams.n_head_kv;
const int n_rot = hparams.n_embd/hparams.n_head; const int64_t n_embd_head = hparams.n_embd_head();
const int n_gpu_layers = model.n_gpu_layers; const int64_t n_vocab = hparams.n_vocab;
const int64_t n_embd_gqa = hparams.n_embd_gqa();
LLAMA_ASSERT(n_embd_head == hparams.n_rot);
const float freq_base = hparams.rope_freq_base; const float freq_base = hparams.rope_freq_base;
const float freq_scale = hparams.rope_freq_scale; const float freq_scale = hparams.rope_freq_scale;
const float rms_norm_eps = hparams.f_rms_norm_eps;
const int n_gpu_layers = model.n_gpu_layers;
auto & mem_per_token = lctx.mem_per_token; auto & mem_per_token = lctx.mem_per_token;
auto & buf_compute = lctx.buf_compute; auto & buf_compute = lctx.buf_compute;
@ -1392,7 +1450,7 @@ static bool llama_eval_internal(
struct ggml_context * ctx0 = ggml_init(params); struct ggml_context * ctx0 = ggml_init(params);
ggml_cgraph gf = {}; ggml_cgraph * gf = ggml_new_graph(ctx0);
// for big prompts, if BLAS is enabled, it is better to use only one thread // for big prompts, if BLAS is enabled, it is better to use only one thread
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
@ -1457,7 +1515,7 @@ static bool llama_eval_internal(
// norm // norm
{ {
cur = ggml_rms_norm(ctx0, inpL); cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
offload_func(cur); offload_func(cur);
ggml_set_name(cur, "rms_norm_0"); ggml_set_name(cur, "rms_norm_0");
@ -1478,11 +1536,11 @@ static bool llama_eval_internal(
offload_func_kq(tmpq); offload_func_kq(tmpq);
ggml_set_name(tmpq, "tmpq"); ggml_set_name(tmpq, "tmpq");
struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0, freq_base, freq_scale, 0); struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale);
offload_func_kq(Kcur); offload_func_kq(Kcur);
ggml_set_name(Kcur, "Kcur"); ggml_set_name(Kcur, "Kcur");
struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0, freq_base, freq_scale, 0); struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale);
offload_func_kq(Qcur); offload_func_kq(Qcur);
ggml_set_name(Qcur, "Qcur"); ggml_set_name(Qcur, "Qcur");
@ -1494,23 +1552,23 @@ static bool llama_eval_internal(
offload_func_v(tmpv); offload_func_v(tmpv);
ggml_set_name(tmpv, "tmpv"); ggml_set_name(tmpv, "tmpv");
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd, N)); struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, N));
offload_func_v(Vcur); offload_func_v(Vcur);
ggml_set_name(Vcur, "Vcur"); ggml_set_name(Vcur, "Vcur");
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past));
offload_func_kq(k); offload_func_kq(k);
ggml_set_name(k, "k"); ggml_set_name(k, "k");
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd, struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa,
( n_ctx)*ggml_element_size(kv_self.v), ( n_ctx)*ggml_element_size(kv_self.v),
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v));
offload_func_v(v); offload_func_v(v);
ggml_set_name(v, "v"); ggml_set_name(v, "v");
// important: storing RoPE-ed version of K in the KV cache! // important: storing RoPE-ed version of K in the KV cache!
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
} }
struct ggml_tensor * Q = struct ggml_tensor * Q =
@ -1523,8 +1581,8 @@ static bool llama_eval_internal(
struct ggml_tensor * K = struct ggml_tensor * K =
ggml_permute(ctx0, ggml_permute(ctx0,
ggml_reshape_3d(ctx0, ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd), ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd_gqa, il*n_ctx*ggml_element_size(kv_self.k)*n_embd_gqa),
n_embd/n_head, n_head, n_past + N), n_embd_head, n_head_kv, n_past + N),
0, 2, 1, 3); 0, 2, 1, 3);
offload_func_kq(K); offload_func_kq(K);
ggml_set_name(K, "K"); ggml_set_name(K, "K");
@ -1534,9 +1592,9 @@ static bool llama_eval_internal(
offload_func_kq(KQ); offload_func_kq(KQ);
ggml_set_name(KQ, "KQ"); ggml_set_name(KQ, "KQ");
// KQ_scaled = KQ / sqrt(n_embd/n_head) // KQ_scaled = KQ / sqrt(n_embd_head)
struct ggml_tensor * KQ_scale = ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)); struct ggml_tensor * KQ_scale = ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head));
ggml_set_name(KQ_scale, "1/sqrt(n_embd/n_head)"); ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
// KQ_scaled shape [n_past + N, N, n_head, 1] // KQ_scaled shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale); struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
@ -1556,10 +1614,10 @@ static bool llama_eval_internal(
// split cached V into n_head heads // split cached V into n_head heads
struct ggml_tensor * V = struct ggml_tensor * V =
ggml_view_3d(ctx0, kv_self.v, ggml_view_3d(ctx0, kv_self.v,
n_past + N, n_embd/n_head, n_head, n_past + N, n_embd_head, n_head_kv,
n_ctx*ggml_element_size(kv_self.v), n_ctx*ggml_element_size(kv_self.v),
n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head, n_ctx*ggml_element_size(kv_self.v)*n_embd_head,
il*n_ctx*ggml_element_size(kv_self.v)*n_embd); n_ctx*ggml_element_size(kv_self.v)*n_embd_gqa*il);
offload_func_v(V); offload_func_v(V);
ggml_set_name(V, "V"); ggml_set_name(V, "V");
@ -1571,7 +1629,7 @@ static bool llama_eval_internal(
// make V contiguous in memory to speed up the matmul, however we waste time on the copy // make V contiguous in memory to speed up the matmul, however we waste time on the copy
// on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
// is there a better way? // is there a better way?
struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head)); struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd_head, n_head));
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
#endif #endif
@ -1605,7 +1663,7 @@ static bool llama_eval_internal(
{ {
// norm // norm
{ {
cur = ggml_rms_norm(ctx0, inpFF); cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
offload_func(cur); offload_func(cur);
ggml_set_name(cur, "rms_norm_1"); ggml_set_name(cur, "rms_norm_1");
@ -1658,7 +1716,7 @@ static bool llama_eval_internal(
// norm // norm
{ {
cur = ggml_rms_norm(ctx0, inpL); cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
offload_func_nr(cur); offload_func_nr(cur);
ggml_set_name(cur, "rms_norm_2"); ggml_set_name(cur, "rms_norm_2");
@ -1680,16 +1738,22 @@ static bool llama_eval_internal(
//cur = ggml_soft_max_inplace(ctx0, cur); //cur = ggml_soft_max_inplace(ctx0, cur);
// run the computation // run the computation
ggml_build_forward_expand(&gf, cur); ggml_build_forward_expand(gf, cur);
// fprintf(stderr, "graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf.n_nodes, gf.n_leafs);
#if GGML_USE_MPI #if GGML_USE_MPI
ggml_mpi_graph_compute_pre(lctx.ctx_mpi, &gf, n_layer); ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
#endif #endif
#ifdef GGML_USE_METAL #ifdef GGML_USE_METAL
if (lctx.ctx_metal && N == 1) { if (lctx.ctx_metal && N == 1) {
// TODO: disabled until #2413 is resolved
//if (!ggml_metal_if_optimized(lctx.ctx_metal)) {
// ggml_metal_graph_find_concurrency(lctx.ctx_metal, gf);
//}
ggml_metal_set_n_cb (lctx.ctx_metal, n_threads); ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
ggml_metal_graph_compute(lctx.ctx_metal, &gf); ggml_metal_graph_compute(lctx.ctx_metal, gf);
ggml_metal_get_tensor (lctx.ctx_metal, cur); ggml_metal_get_tensor (lctx.ctx_metal, cur);
} else { } else {
// IMPORTANT: // IMPORTANT:
@ -1708,34 +1772,34 @@ static bool llama_eval_internal(
ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v); ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v);
} }
ggml_graph_compute_helper(lctx.work_buffer, &gf, n_threads); ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
} }
#else #else
ggml_graph_compute_helper(lctx.work_buffer, &gf, n_threads); ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
#endif #endif
#if GGML_USE_MPI #if GGML_USE_MPI
ggml_mpi_graph_compute_post(lctx.ctx_mpi, &gf, n_layer); ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
#endif #endif
// update kv token count // update kv token count
lctx.kv_self.n = n_past + N; lctx.kv_self.n = n_past + N;
struct ggml_tensor * res = gf.nodes[gf.n_nodes - 1]; struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
if (cgraph_fname) { if (cgraph_fname) {
ggml_graph_export(&gf, cgraph_fname); ggml_graph_export(gf, cgraph_fname);
} }
#ifdef GGML_PERF #ifdef GGML_PERF
// print timing information per ggml operation (for debugging purposes) // print timing information per ggml operation (for debugging purposes)
// requires GGML_PERF to be defined // requires GGML_PERF to be defined
ggml_graph_print(&gf); ggml_graph_print(gf);
#endif #endif
// plot the computation graph in dot format (for debugging purposes) // plot the computation graph in dot format (for debugging purposes)
//if (n_past%100 == 0) { //if (n_past%100 == 0) {
// ggml_graph_dump_dot(&gf, NULL, "llama.dot"); // ggml_graph_dump_dot(gf, NULL, "llama.dot");
//} //}
// extract logits // extract logits
@ -1765,10 +1829,12 @@ static bool llama_eval_internal(
} }
#if 0 #if 0
printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__, printf("\n%s: used_mem: eval ctx %.3f MB, scratch %.3f MB %.3f MB, work buf %.3f MB, n_past = %d, N = %d\n", __func__,
ggml_used_mem(ctx0)/1024.0/1024.0, ggml_used_mem(ctx0)/1024.0/1024.0,
lctx.get_buf_max_mem(0)/1024.0/1024.0, lctx.get_buf_max_mem(0)/1024.0/1024.0,
lctx.get_buf_max_mem(1)/1024.0/1024.0); lctx.get_buf_max_mem(1)/1024.0/1024.0,
lctx.work_buffer.size()/1024.0/1024.0,
n_past, N);
#endif #endif
ggml_free(ctx0); ggml_free(ctx0);
@ -1941,6 +2007,279 @@ static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, co
return output; return output;
} }
//
// grammar - internal
//
struct llama_grammar {
const std::vector<std::vector<llama_grammar_element>> rules;
std::vector<std::vector<const llama_grammar_element *>> stacks;
};
struct llama_grammar_candidate {
size_t index;
const uint32_t * code_points;
};
// NOTE: assumes valid utf8 (but checks for overrun)
// adds a terminating 0 for use as pointer
std::vector<uint32_t> decode_utf8(const char * src) {
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
const char * pos = src;
std::vector<uint32_t> code_points;
while (*pos != 0) {
uint8_t first_byte = static_cast<uint8_t>(*pos);
uint8_t highbits = first_byte >> 4;
int len = lookup[highbits];
uint8_t mask = (1 << (8 - len)) - 1;
uint32_t value = first_byte & mask;
const char * end = pos + len; // may overrun!
++pos;
for ( ; pos < end && *pos != 0; ++pos) {
value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
}
code_points.push_back(value);
}
code_points.push_back(0);
return code_points;
}
// returns true iff pos points to the end of one of the definitions of a rule
static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
switch (pos->type) {
case LLAMA_GRETYPE_END: return true;
case LLAMA_GRETYPE_ALT: return true;
default: return false;
}
}
// returns true iff chr satisfies the char range at pos (regular or inverse range)
// asserts that pos is pointing to a char range element
static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
const llama_grammar_element * pos,
const uint32_t chr) {
bool found = false;
bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
LLAMA_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
do {
if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
// inclusive range, e.g. [a-z]
found = found || (pos->value <= chr && chr <= pos[1].value);
pos += 2;
} else {
// exact char match, e.g. [a] or "a"
found = found || pos->value == chr;
pos += 1;
}
} while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
return std::make_pair(found == is_positive_char, pos);
}
// transforms a grammar pushdown stack into N possible stacks, all ending
// at a character range (terminal element)
static void llama_grammar_advance_stack(
const std::vector<std::vector<llama_grammar_element>> & rules,
const std::vector<const llama_grammar_element *> & stack,
std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
if (stack.empty()) {
new_stacks.push_back(stack);
return;
}
const llama_grammar_element * pos = stack.back();
switch (pos->type) {
case LLAMA_GRETYPE_RULE_REF: {
const size_t rule_id = static_cast<size_t>(pos->value);
const llama_grammar_element * subpos = rules[rule_id].data();
do {
// init new stack without the top (pos)
std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
if (!llama_grammar_is_end_of_sequence(pos + 1)) {
// if this rule ref is followed by another element, add that to stack
new_stack.push_back(pos + 1);
}
if (!llama_grammar_is_end_of_sequence(subpos)) {
// if alternate is nonempty, add to stack
new_stack.push_back(subpos);
}
llama_grammar_advance_stack(rules, new_stack, new_stacks);
while (!llama_grammar_is_end_of_sequence(subpos)) {
// scan to end of alternate def
subpos++;
}
if (subpos->type == LLAMA_GRETYPE_ALT) {
// there's another alternate def of this rule to process
subpos++;
} else {
break;
}
} while (true);
break;
}
case LLAMA_GRETYPE_CHAR:
case LLAMA_GRETYPE_CHAR_NOT:
new_stacks.push_back(stack);
break;
default:
// end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
// (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
// those
LLAMA_ASSERT(false);
}
}
// takes a set of possible pushdown stacks on a grammar, which are required to
// be positioned at a character range (see `llama_grammar_advance_stack`), and
// produces the N possible stacks if the given char is accepted at those
// positions
static std::vector<std::vector<const llama_grammar_element *>> llama_grammar_accept(
const std::vector<std::vector<llama_grammar_element>> & rules,
const std::vector<std::vector<const llama_grammar_element *>> & stacks,
const uint32_t chr) {
std::vector<std::vector<const llama_grammar_element *>> new_stacks;
for (const auto & stack : stacks) {
if (stack.empty()) {
continue;
}
auto match = llama_grammar_match_char(stack.back(), chr);
if (match.first) {
const llama_grammar_element * pos = match.second;
// update top of stack to next element, if any
std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
if (!llama_grammar_is_end_of_sequence(pos)) {
new_stack.push_back(pos);
}
llama_grammar_advance_stack(rules, new_stack, new_stacks);
}
}
return new_stacks;
}
static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
const std::vector<std::vector<llama_grammar_element>> & rules,
const std::vector<std::vector<const llama_grammar_element *>> & stacks,
const std::vector<llama_grammar_candidate> & candidates);
static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
const std::vector<std::vector<llama_grammar_element>> & rules,
const std::vector<const llama_grammar_element *> & stack,
const std::vector<llama_grammar_candidate> & candidates) {
std::vector<llama_grammar_candidate> rejects;
if (stack.empty()) {
// accept nothing; EOS is handled elsewhere
rejects.insert(rejects.end(), candidates.begin(), candidates.end());
return rejects;
}
const llama_grammar_element * stack_pos = stack.back();
std::vector<llama_grammar_candidate> next_candidates;
for (auto tok : candidates) {
if (llama_grammar_match_char(stack_pos, tok.code_points[0]).first) {
if (tok.code_points[1] != 0) {
next_candidates.push_back({ tok.index, tok.code_points + 1 });
}
} else {
rejects.push_back(tok);
}
}
auto stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
// update top of stack to next element, if any
std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
stack_after.push_back(stack_pos_after);
}
std::vector<std::vector<const llama_grammar_element *>> next_stacks;
llama_grammar_advance_stack(rules, stack_after, next_stacks);
auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
for (auto tok : next_rejects) {
rejects.push_back({ tok.index, tok.code_points - 1 });
}
return rejects;
}
static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
const std::vector<std::vector<llama_grammar_element>> & rules,
const std::vector<std::vector<const llama_grammar_element *>> & stacks,
const std::vector<llama_grammar_candidate> & candidates) {
LLAMA_ASSERT(!stacks.empty()); // REVIEW
if (candidates.empty()) {
return std::vector<llama_grammar_candidate>();
}
auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
for (size_t i = 1, size = stacks.size(); i < size; ++i) {
rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
}
return rejects;
}
//
// grammar - external
//
struct llama_grammar * llama_grammar_init(
const llama_grammar_element ** rules,
size_t n_rules,
size_t start_rule_index) {
const llama_grammar_element * pos;
// copy rule definitions into vectors
std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
for (size_t i = 0; i < n_rules; i++) {
for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
vec_rules[i].push_back(*pos);
}
vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
}
// loop over alternates of start rule to build initial stacks
std::vector<std::vector<const llama_grammar_element *>> stacks;
pos = rules[start_rule_index];
do {
std::vector<const llama_grammar_element *> stack;
if (!llama_grammar_is_end_of_sequence(pos)) {
// if alternate is nonempty, add to stack
stack.push_back(pos);
}
llama_grammar_advance_stack(vec_rules, stack, stacks);
while (!llama_grammar_is_end_of_sequence(pos)) {
// scan to end of alternate def
pos++;
}
if (pos->type == LLAMA_GRETYPE_ALT) {
// there's another alternate def of this rule to process
pos++;
} else {
break;
}
} while (true);
return new llama_grammar{ std::move(vec_rules), std::move(stacks) };
}
void llama_grammar_free(struct llama_grammar * grammar) {
delete grammar;
}
// //
// sampling // sampling
// //
@ -2226,6 +2565,47 @@ void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, l
} }
} }
void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
assert(ctx);
const int64_t t_start_sample_us = ggml_time_us();
bool allow_eos = false;
for (const auto & stack : grammar->stacks) {
if (stack.empty()) {
allow_eos = true;
break;
}
}
const llama_token eos = llama_token_eos();
std::vector<std::vector<uint32_t>> candidates_decoded;
std::vector<llama_grammar_candidate> candidates_grammar;
for (size_t i = 0; i < candidates->size; ++i) {
const llama_token id = candidates->data[i].id;
const char * str = llama_token_to_str(ctx, id);
if (id == eos) {
if (!allow_eos) {
candidates->data[i].logit = -INFINITY;
}
} else if (*str == 0) {
candidates->data[i].logit = -INFINITY;
} else {
candidates_decoded.push_back(decode_utf8(str));
candidates_grammar.push_back({ i, candidates_decoded.back().data() });
}
}
const auto rejects =
llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
for (auto & reject : rejects) {
candidates->data[reject.index].logit = -INFINITY;
}
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
static void llama_log_softmax(float * array, size_t size) { static void llama_log_softmax(float * array, size_t size) {
float max_l = *std::max_element(array, array + size); float max_l = *std::max_element(array, array + size);
float sum = 0.f; float sum = 0.f;
@ -2244,8 +2624,7 @@ void llama_sample_classifier_free_guidance(
struct llama_context * ctx, struct llama_context * ctx,
llama_token_data_array * candidates, llama_token_data_array * candidates,
struct llama_context * guidance_ctx, struct llama_context * guidance_ctx,
float scale, float scale) {
float smooth_factor) {
int64_t t_start_sample_us = ggml_time_us(); int64_t t_start_sample_us = ggml_time_us();
assert(ctx); assert(ctx);
@ -2266,16 +2645,7 @@ void llama_sample_classifier_free_guidance(
for (int i = 0; i < n_vocab; ++i) { for (int i = 0; i < n_vocab; ++i) {
float logit_guidance = logits_guidance[i]; float logit_guidance = logits_guidance[i];
float logit_base = logits_base[i]; float logit_base = logits_base[i];
logits_guidance[i] = scale * (logit_base - logit_guidance) + logit_guidance; candidates->data[i].logit = scale * (logit_base - logit_guidance) + logit_guidance;
}
llama_log_softmax(logits_guidance, n_vocab);
for (int i = 0; i < n_vocab; ++i) {
float logit_base = logits_base[i];
float logit_guidance = logits_guidance[i];
candidates->data[i].logit = smooth_factor * logit_guidance + (1.f - smooth_factor) * logit_base;
} }
if (ctx) { if (ctx) {
@ -2411,6 +2781,29 @@ llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_arra
return result; return result;
} }
void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
const int64_t t_start_sample_us = ggml_time_us();
if (token == llama_token_eos()) {
for (const auto & stack : grammar->stacks) {
if (stack.empty()) {
return;
}
}
LLAMA_ASSERT(false);
}
const char * str = llama_token_to_str(ctx, token);
// Note terminating 0 in decoded string
auto code_points = decode_utf8(str);
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it);
}
LLAMA_ASSERT(!grammar->stacks.empty());
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
// //
// quantization // quantization
// //
@ -2569,16 +2962,6 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
} else { } else {
new_type = quantized_type; new_type = quantized_type;
#ifdef GGML_USE_K_QUANTS #ifdef GGML_USE_K_QUANTS
bool convert_incompatible_tensor = false;
if (quantized_type == GGML_TYPE_Q2_K || quantized_type == GGML_TYPE_Q3_K || quantized_type == GGML_TYPE_Q4_K ||
quantized_type == GGML_TYPE_Q5_K || quantized_type == GGML_TYPE_Q6_K) {
int nx = tensor.ne.at(0);
int ny = tensor.ne.at(1);
if (nx % QK_K != 0 || ny % QK_K != 0) {
fprintf(stderr, "\n\nTensor sizes %d x %d are not divisible by %d, required for k-quants.\n",nx,ny,QK_K);
convert_incompatible_tensor = true;
}
}
if (tensor.name == "output.weight") { if (tensor.name == "output.weight") {
int nx = tensor.ne.at(0); int nx = tensor.ne.at(0);
int ny = tensor.ne.at(1); int ny = tensor.ne.at(1);
@ -2604,6 +2987,16 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
} }
bool convert_incompatible_tensor = false;
if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) {
int nx = tensor.ne.at(0);
int ny = tensor.ne.at(1);
if (nx % QK_K != 0 || ny % QK_K != 0) {
fprintf(stderr, "\n\nTensor sizes %d x %d are not divisible by %d, required for k-quants.\n",nx,ny,QK_K);
convert_incompatible_tensor = true;
}
}
if (convert_incompatible_tensor) { if (convert_incompatible_tensor) {
if (tensor.name == "output.weight") { if (tensor.name == "output.weight") {
new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing. new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
@ -2630,7 +3023,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
f32_data = (float *) f32_conv_buf.addr; f32_data = (float *) f32_conv_buf.addr;
} }
printf("quantizing .. "); printf("quantizing to %s .. ", ggml_type_name(new_type));
fflush(stdout); fflush(stdout);
work.resize(nelements * 4); // upper bound on size work.resize(nelements * 4); // upper bound on size
@ -2733,7 +3126,7 @@ struct llama_model * llama_load_model_from_file(
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32; ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gpu_layers, if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gqa, params.rms_norm_eps, params.n_gpu_layers,
params.main_gpu, params.tensor_split, params.rope_freq_base, params.rope_freq_scale,params.low_vram, params.main_gpu, params.tensor_split, params.rope_freq_base, params.rope_freq_scale,params.low_vram,
memory_type, params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback, memory_type, params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback,
params.progress_callback_user_data)) { params.progress_callback_user_data)) {
@ -2811,7 +3204,7 @@ struct llama_context * llama_new_context_with_model(
ctx->embedding.resize(hparams.n_embd); ctx->embedding.resize(hparams.n_embd);
} }
ctx->buf_compute.resize(MEM_REQ_EVAL(hparams.n_ctx).at(ctx->model.type)); ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type) + ggml_graph_overhead());
ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type)); ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type));
ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type)); ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
@ -2835,7 +3228,7 @@ struct llama_context * llama_new_context_with_model(
const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx); const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
printf("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0); fprintf(stderr, "%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
#define LLAMA_METAL_CHECK_BUF(result) \ #define LLAMA_METAL_CHECK_BUF(result) \
if (!(result)) { \ if (!(result)) { \

View file

@ -127,6 +127,7 @@ func New(model string, opts api.Options) (*LLM, error) {
params.seed = C.uint(llm.Seed) params.seed = C.uint(llm.Seed)
params.n_ctx = C.int(llm.NumCtx) params.n_ctx = C.int(llm.NumCtx)
params.n_batch = C.int(llm.NumBatch) params.n_batch = C.int(llm.NumBatch)
params.n_gqa = C.int(llm.NumGQA)
params.n_gpu_layers = C.int(llm.NumGPU) params.n_gpu_layers = C.int(llm.NumGPU)
params.main_gpu = C.int(llm.MainGPU) params.main_gpu = C.int(llm.MainGPU)
params.low_vram = C.bool(llm.LowVRAM) params.low_vram = C.bool(llm.LowVRAM)

View file

@ -1,5 +1,5 @@
/** /**
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc * llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
* *
* MIT License * MIT License
* *
@ -79,6 +79,10 @@
#define LLAMA_SUPPORTS_GPU_OFFLOAD #define LLAMA_SUPPORTS_GPU_OFFLOAD
#endif #endif
#ifndef LLAMA_DEFAULT_RMS_EPS
#define LLAMA_DEFAULT_RMS_EPS 5e-6f
#endif
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif #endif
@ -112,9 +116,12 @@ extern "C" {
uint32_t seed; // RNG seed, -1 for random uint32_t seed; // RNG seed, -1 for random
int32_t n_ctx; // text context int32_t n_ctx; // text context
int32_t n_batch; // prompt processing batch size int32_t n_batch; // prompt processing batch size
int32_t n_gqa; // grouped-query attention (TEMP - will be moved to model hparams)
float rms_norm_eps; // rms norm epsilon (TEMP - will be moved to model hparams)
int32_t n_gpu_layers; // number of layers to store in VRAM int32_t n_gpu_layers; // number of layers to store in VRAM
int32_t main_gpu; // the GPU that is used for scratch and small tensors int32_t main_gpu; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs
const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
// ref: https://github.com/ggerganov/llama.cpp/pull/2054 // ref: https://github.com/ggerganov/llama.cpp/pull/2054
float rope_freq_base; // RoPE base frequency float rope_freq_base; // RoPE base frequency
@ -165,6 +172,40 @@ extern "C" {
bool quantize_output_tensor; // quantize output.weight bool quantize_output_tensor; // quantize output.weight
} llama_model_quantize_params; } llama_model_quantize_params;
// grammar types
struct llama_grammar;
// grammar element type
enum llama_gretype {
// end of rule definition
LLAMA_GRETYPE_END = 0,
// start of alternate definition for rule
LLAMA_GRETYPE_ALT = 1,
// non-terminal element: reference to rule
LLAMA_GRETYPE_RULE_REF = 2,
// terminal element: character (code point)
LLAMA_GRETYPE_CHAR = 3,
// inverse char(s) ([^a], [^a-b] [^abc])
LLAMA_GRETYPE_CHAR_NOT = 4,
// modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
// be an inclusive range ([a-z])
LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
// modifies a preceding LLAMA_GRETYPE_CHAR or
// LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
LLAMA_GRETYPE_CHAR_ALT = 6,
};
typedef struct llama_grammar_element {
enum llama_gretype type;
uint32_t value; // Unicode code point or rule ID
} llama_grammar_element;
// performance timing information // performance timing information
struct llama_timings { struct llama_timings {
double t_start_ms; double t_start_ms;
@ -357,6 +398,15 @@ extern "C" {
LLAMA_API llama_token llama_token_eos(); // end-of-sentence LLAMA_API llama_token llama_token_eos(); // end-of-sentence
LLAMA_API llama_token llama_token_nl(); // next-line LLAMA_API llama_token llama_token_nl(); // next-line
// Grammar
//
LLAMA_API struct llama_grammar * llama_grammar_init(
const llama_grammar_element ** rules,
size_t n_rules,
size_t start_rule_index);
LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
// Sampling functions // Sampling functions
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
@ -369,13 +419,11 @@ extern "C" {
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
/// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context. /// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
/// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance. /// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
/// @params smooth_factor Smooth factor between guidance logits and original logits. 1.0f means only use guidance logits. 0.0f means only original logits.
LLAMA_API void llama_sample_classifier_free_guidance( LLAMA_API void llama_sample_classifier_free_guidance(
struct llama_context * ctx, struct llama_context * ctx,
llama_token_data_array * candidates, llama_token_data_array * candidates,
struct llama_context * guidance_ctx, struct llama_context * guidance_ctx,
float scale, float scale);
float smooth_factor);
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates); LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
@ -393,6 +441,9 @@ extern "C" {
LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep); LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp); LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
/// @details Apply constraints from grammar
LLAMA_API void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar);
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
@ -414,6 +465,9 @@ extern "C" {
/// @details Randomly selects a token from the candidates based on their probabilities. /// @details Randomly selects a token from the candidates based on their probabilities.
LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates); LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
/// @details Accepts the sampled token into the grammar
LLAMA_API void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token);
// Performance information // Performance information
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx); LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
LLAMA_API void llama_print_timings(struct llama_context * ctx); LLAMA_API void llama_print_timings(struct llama_context * ctx);