llm: architecture patch (#5316)
This commit is contained in:
parent
cb42e607c5
commit
4d311eb731
1 changed files with 305 additions and 0 deletions
305
llm/patches/07-gemma.diff
Normal file
305
llm/patches/07-gemma.diff
Normal file
|
@ -0,0 +1,305 @@
|
|||
From 5cadb45f39d001ffbad95b690d6cf0abcb4a6d96 Mon Sep 17 00:00:00 2001
|
||||
From: Ollama maintainers <hello@ollama.com>
|
||||
Date: Wed, 26 Jun 2024 16:18:09 -0700
|
||||
Subject: [PATCH] Architecture support
|
||||
|
||||
---
|
||||
llama.cpp | 194 +++++++++++++++++++++++++++++++++++++++++++++++++++++-
|
||||
1 file changed, 193 insertions(+), 1 deletion(-)
|
||||
|
||||
diff --git a/llama.cpp b/llama.cpp
|
||||
index 61948751..3b4196f5 100644
|
||||
--- a/llama.cpp
|
||||
+++ b/llama.cpp
|
||||
@@ -217,6 +217,7 @@ enum llm_arch {
|
||||
LLM_ARCH_INTERNLM2,
|
||||
LLM_ARCH_MINICPM,
|
||||
LLM_ARCH_GEMMA,
|
||||
+ LLM_ARCH_GEMMA2,
|
||||
LLM_ARCH_STARCODER2,
|
||||
LLM_ARCH_MAMBA,
|
||||
LLM_ARCH_XVERSE,
|
||||
@@ -255,6 +256,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_INTERNLM2, "internlm2" },
|
||||
{ LLM_ARCH_MINICPM, "minicpm" },
|
||||
{ LLM_ARCH_GEMMA, "gemma" },
|
||||
+ { LLM_ARCH_GEMMA2, "gemma2" },
|
||||
{ LLM_ARCH_STARCODER2, "starcoder2" },
|
||||
{ LLM_ARCH_MAMBA, "mamba" },
|
||||
{ LLM_ARCH_XVERSE, "xverse" },
|
||||
@@ -464,10 +466,12 @@ enum llm_tensor {
|
||||
LLM_TENSOR_ATTN_NORM,
|
||||
LLM_TENSOR_ATTN_NORM_2,
|
||||
LLM_TENSOR_ATTN_OUT_NORM,
|
||||
+ LLM_TENSOR_ATTN_POST_NORM,
|
||||
LLM_TENSOR_ATTN_ROT_EMBD,
|
||||
LLM_TENSOR_FFN_GATE_INP,
|
||||
LLM_TENSOR_FFN_GATE_INP_SHEXP,
|
||||
LLM_TENSOR_FFN_NORM,
|
||||
+ LLM_TENSOR_FFN_POST_NORM,
|
||||
LLM_TENSOR_FFN_GATE,
|
||||
LLM_TENSOR_FFN_DOWN,
|
||||
LLM_TENSOR_FFN_UP,
|
||||
@@ -960,6 +964,24 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
+ {
|
||||
+ LLM_ARCH_GEMMA2,
|
||||
+ {
|
||||
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
+ { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
|
||||
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
+ { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
|
||||
+ },
|
||||
+ },
|
||||
{
|
||||
LLM_ARCH_STARCODER2,
|
||||
{
|
||||
@@ -1941,6 +1963,8 @@ enum e_model {
|
||||
MODEL_8x22B,
|
||||
MODEL_16x12B,
|
||||
MODEL_10B_128x3_66B,
|
||||
+ MODEL_9B,
|
||||
+ MODEL_27B,
|
||||
};
|
||||
|
||||
static const size_t kiB = 1024;
|
||||
@@ -2114,6 +2138,7 @@ struct llama_layer {
|
||||
struct ggml_tensor * attn_out_norm_b;
|
||||
struct ggml_tensor * attn_q_a_norm;
|
||||
struct ggml_tensor * attn_kv_a_norm;
|
||||
+ struct ggml_tensor * attn_post_norm;
|
||||
|
||||
// attention
|
||||
struct ggml_tensor * wq;
|
||||
@@ -2136,6 +2161,7 @@ struct llama_layer {
|
||||
// normalization
|
||||
struct ggml_tensor * ffn_norm;
|
||||
struct ggml_tensor * ffn_norm_b;
|
||||
+ struct ggml_tensor * ffn_post_norm;
|
||||
struct ggml_tensor * layer_out_norm;
|
||||
struct ggml_tensor * layer_out_norm_b;
|
||||
struct ggml_tensor * ffn_norm_exps;
|
||||
@@ -4529,6 +4555,16 @@ static void llm_load_hparams(
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_GEMMA:
|
||||
+ {
|
||||
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
+
|
||||
+ switch (hparams.n_layer) {
|
||||
+ case 18: model.type = e_model::MODEL_9B; break;
|
||||
+ case 28: model.type = e_model::MODEL_27B; break;
|
||||
+ default: model.type = e_model::MODEL_UNKNOWN;
|
||||
+ }
|
||||
+ } break;
|
||||
+ case LLM_ARCH_GEMMA2:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
||||
@@ -6305,6 +6341,40 @@ static bool llm_load_tensors(
|
||||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||||
}
|
||||
} break;
|
||||
+ case LLM_ARCH_GEMMA2:
|
||||
+ {
|
||||
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||
+
|
||||
+ // output
|
||||
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||||
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
|
||||
+
|
||||
+ const int64_t n_ff = hparams.n_ff;
|
||||
+ const int64_t n_embd_head_k = hparams.n_embd_head_k;
|
||||
+ const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
|
||||
+ const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
|
||||
+
|
||||
+ for (uint32_t i = 0; i < n_layer; ++i) {
|
||||
+ ggml_context * ctx_layer = ctx_for_layer(i);
|
||||
+ ggml_context * ctx_split = ctx_for_layer_split(i);
|
||||
+
|
||||
+ auto & layer = model.layers[i];
|
||||
+
|
||||
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||
+
|
||||
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
|
||||
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
||||
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
|
||||
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
|
||||
+ layer.attn_post_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd});
|
||||
+
|
||||
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||||
+ layer.ffn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd});
|
||||
+ }
|
||||
+ } break;
|
||||
case LLM_ARCH_STARCODER2:
|
||||
{
|
||||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||
@@ -10614,6 +10684,123 @@ struct llm_build_context {
|
||||
return gf;
|
||||
}
|
||||
|
||||
+ struct ggml_cgraph * build_gemma2() {
|
||||
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
+
|
||||
+ const int64_t n_embd_head_k = hparams.n_embd_head_k;
|
||||
+
|
||||
+ struct ggml_tensor * cur;
|
||||
+ struct ggml_tensor * inpL;
|
||||
+
|
||||
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||
+
|
||||
+ inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
|
||||
+ cb(inpL, "inp_scaled", -1);
|
||||
+
|
||||
+ // inp_pos - contains the positions
|
||||
+ struct ggml_tensor * inp_pos = build_inp_pos();
|
||||
+
|
||||
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||
+
|
||||
+ for (int il = 0; il < n_layer; ++il) {
|
||||
+ // norm
|
||||
+ cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
+ model.layers[il].attn_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, il);
|
||||
+ cb(cur, "attn_norm", il);
|
||||
+
|
||||
+ // self-attention
|
||||
+ {
|
||||
+ // compute Q and K and RoPE them
|
||||
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+
|
||||
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+
|
||||
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
|
||||
+ cb(Vcur, "Vcur", il);
|
||||
+
|
||||
+ Qcur = ggml_rope_ext(
|
||||
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
|
||||
+ n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
+ ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
+ cb(Qcur, "Qcur", il);
|
||||
+
|
||||
+ Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
|
||||
+ cb(Qcur, "Qcur_scaled", il);
|
||||
+
|
||||
+ Kcur = ggml_rope_ext(
|
||||
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
|
||||
+ n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
+ ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
+ cb(Kcur, "Kcur", il);
|
||||
+
|
||||
+ cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
|
||||
+ model.layers[il].wo, NULL,
|
||||
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
|
||||
+ }
|
||||
+
|
||||
+ if (il == n_layer - 1) {
|
||||
+ // skip computing output for unused tokens
|
||||
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||||
+ }
|
||||
+
|
||||
+ cur = llm_build_norm(ctx0, cur, hparams,
|
||||
+ model.layers[il].attn_post_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, il);
|
||||
+ cb(cur, "attn_post_norm", il);
|
||||
+
|
||||
+ struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
|
||||
+ cb(sa_out, "sa_out", il);
|
||||
+
|
||||
+ cur = llm_build_norm(ctx0, sa_out, hparams,
|
||||
+ model.layers[il].ffn_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, il);
|
||||
+ cb(cur, "ffn_norm", il);
|
||||
+
|
||||
+ // feed-forward network
|
||||
+ {
|
||||
+ cur = llm_build_ffn(ctx0, cur,
|
||||
+ model.layers[il].ffn_up, NULL,
|
||||
+ model.layers[il].ffn_gate, NULL,
|
||||
+ model.layers[il].ffn_down, NULL,
|
||||
+ NULL,
|
||||
+ LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
|
||||
+ cb(cur, "ffn_out", il);
|
||||
+ }
|
||||
+
|
||||
+ cur = llm_build_norm(ctx0, cur, hparams,
|
||||
+ model.layers[il].ffn_post_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, -1);
|
||||
+ cb(cur, "ffn_post_norm", -1);
|
||||
+
|
||||
+ cur = ggml_add(ctx0, cur, sa_out);
|
||||
+ cb(cur, "l_out", il);
|
||||
+
|
||||
+ // input for next layer
|
||||
+ inpL = cur;
|
||||
+ }
|
||||
+
|
||||
+ cur = inpL;
|
||||
+
|
||||
+ cur = llm_build_norm(ctx0, cur, hparams,
|
||||
+ model.output_norm, NULL,
|
||||
+ LLM_NORM_RMS, cb, -1);
|
||||
+ cb(cur, "result_norm", -1);
|
||||
+
|
||||
+ // lm_head
|
||||
+ cur = ggml_mul_mat(ctx0, model.output, cur);
|
||||
+ cb(cur, "result_output", -1);
|
||||
+
|
||||
+ ggml_build_forward_expand(gf, cur);
|
||||
+
|
||||
+ return gf;
|
||||
+ }
|
||||
+
|
||||
struct ggml_cgraph * build_starcoder2() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
@@ -11847,6 +12034,10 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
{
|
||||
result = llm.build_gemma();
|
||||
} break;
|
||||
+ case LLM_ARCH_GEMMA2:
|
||||
+ {
|
||||
+ result = llm.build_gemma2();
|
||||
+ } break;
|
||||
case LLM_ARCH_STARCODER2:
|
||||
{
|
||||
result = llm.build_starcoder2();
|
||||
@@ -16671,6 +16862,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
||||
case LLM_ARCH_PHI2:
|
||||
case LLM_ARCH_PHI3:
|
||||
case LLM_ARCH_GEMMA:
|
||||
+ case LLM_ARCH_GEMMA2:
|
||||
case LLM_ARCH_STARCODER2:
|
||||
case LLM_ARCH_GPTNEOX:
|
||||
return LLAMA_ROPE_TYPE_NEOX;
|
||||
@@ -18551,7 +18743,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "<s>assistant\n";
|
||||
}
|
||||
- } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
|
||||
+ } else if (tmpl == "gemma" || tmpl == "gemma2" || tmpl.find("<start_of_turn>") != std::string::npos) {
|
||||
// google/gemma-7b-it
|
||||
std::string system_prompt = "";
|
||||
for (auto message : chat) {
|
||||
--
|
||||
2.45.2
|
||||
|
Loading…
Reference in a new issue