Merge pull request #4517 from dhiltgen/gpu_incremental
Enhanced GPU discovery and multi-gpu support with concurrency
This commit is contained in:
commit
45cacbaf05
31 changed files with 1824 additions and 702 deletions
|
@ -53,6 +53,8 @@ var (
|
||||||
NumParallel int
|
NumParallel int
|
||||||
// Set via OLLAMA_RUNNERS_DIR in the environment
|
// Set via OLLAMA_RUNNERS_DIR in the environment
|
||||||
RunnersDir string
|
RunnersDir string
|
||||||
|
// Set via OLLAMA_SCHED_SPREAD in the environment
|
||||||
|
SchedSpread bool
|
||||||
// Set via OLLAMA_TMPDIR in the environment
|
// Set via OLLAMA_TMPDIR in the environment
|
||||||
TmpDir string
|
TmpDir string
|
||||||
)
|
)
|
||||||
|
@ -79,6 +81,7 @@ func AsMap() map[string]EnvVar {
|
||||||
"OLLAMA_NUM_PARALLEL": {"OLLAMA_NUM_PARALLEL", NumParallel, "Maximum number of parallel requests (default 1)"},
|
"OLLAMA_NUM_PARALLEL": {"OLLAMA_NUM_PARALLEL", NumParallel, "Maximum number of parallel requests (default 1)"},
|
||||||
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", AllowOrigins, "A comma separated list of allowed origins"},
|
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", AllowOrigins, "A comma separated list of allowed origins"},
|
||||||
"OLLAMA_RUNNERS_DIR": {"OLLAMA_RUNNERS_DIR", RunnersDir, "Location for runners"},
|
"OLLAMA_RUNNERS_DIR": {"OLLAMA_RUNNERS_DIR", RunnersDir, "Location for runners"},
|
||||||
|
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread, "Always schedule model across all GPUs"},
|
||||||
"OLLAMA_TMPDIR": {"OLLAMA_TMPDIR", TmpDir, "Location for temporary files"},
|
"OLLAMA_TMPDIR": {"OLLAMA_TMPDIR", TmpDir, "Location for temporary files"},
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -191,6 +194,15 @@ func LoadConfig() {
|
||||||
NoHistory = true
|
NoHistory = true
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if spread := clean("OLLAMA_SCHED_SPREAD"); spread != "" {
|
||||||
|
s, err := strconv.ParseBool(spread)
|
||||||
|
if err == nil {
|
||||||
|
SchedSpread = s
|
||||||
|
} else {
|
||||||
|
SchedSpread = true
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if noprune := clean("OLLAMA_NOPRUNE"); noprune != "" {
|
if noprune := clean("OLLAMA_NOPRUNE"); noprune != "" {
|
||||||
NoPrune = true
|
NoPrune = true
|
||||||
}
|
}
|
||||||
|
|
184
gpu/amd_linux.go
184
gpu/amd_linux.go
|
@ -25,7 +25,16 @@ const (
|
||||||
|
|
||||||
// Prefix with the node dir
|
// Prefix with the node dir
|
||||||
GPUTotalMemoryFileGlob = "mem_banks/*/properties" // size_in_bytes line
|
GPUTotalMemoryFileGlob = "mem_banks/*/properties" // size_in_bytes line
|
||||||
GPUUsedMemoryFileGlob = "mem_banks/*/used_memory"
|
|
||||||
|
// Direct Rendering Manager sysfs location
|
||||||
|
DRMDeviceDirGlob = "/sys/class/drm/card*/device"
|
||||||
|
DRMTotalMemoryFile = "mem_info_vram_total"
|
||||||
|
DRMUsedMemoryFile = "mem_info_vram_used"
|
||||||
|
|
||||||
|
// In hex; properties file is in decimal
|
||||||
|
DRMUniqueIDFile = "unique_id"
|
||||||
|
DRMVendorFile = "vendor"
|
||||||
|
DRMDeviceFile = "device"
|
||||||
)
|
)
|
||||||
|
|
||||||
var (
|
var (
|
||||||
|
@ -35,8 +44,8 @@ var (
|
||||||
)
|
)
|
||||||
|
|
||||||
// Gather GPU information from the amdgpu driver if any supported GPUs are detected
|
// Gather GPU information from the amdgpu driver if any supported GPUs are detected
|
||||||
func AMDGetGPUInfo() []GpuInfo {
|
func AMDGetGPUInfo() []RocmGPUInfo {
|
||||||
resp := []GpuInfo{}
|
resp := []RocmGPUInfo{}
|
||||||
if !AMDDetected() {
|
if !AMDDetected() {
|
||||||
return resp
|
return resp
|
||||||
}
|
}
|
||||||
|
@ -90,7 +99,7 @@ func AMDGetGPUInfo() []GpuInfo {
|
||||||
scanner := bufio.NewScanner(fp)
|
scanner := bufio.NewScanner(fp)
|
||||||
isCPU := false
|
isCPU := false
|
||||||
var major, minor, patch uint64
|
var major, minor, patch uint64
|
||||||
var vendor, device uint64
|
var vendor, device, uniqueID uint64
|
||||||
for scanner.Scan() {
|
for scanner.Scan() {
|
||||||
line := strings.TrimSpace(scanner.Text())
|
line := strings.TrimSpace(scanner.Text())
|
||||||
// Note: we could also use "cpu_cores_count X" where X is greater than zero to detect CPUs
|
// Note: we could also use "cpu_cores_count X" where X is greater than zero to detect CPUs
|
||||||
|
@ -121,30 +130,43 @@ func AMDGetGPUInfo() []GpuInfo {
|
||||||
} else if strings.HasPrefix(line, "vendor_id") {
|
} else if strings.HasPrefix(line, "vendor_id") {
|
||||||
ver := strings.Fields(line)
|
ver := strings.Fields(line)
|
||||||
if len(ver) != 2 {
|
if len(ver) != 2 {
|
||||||
slog.Debug("malformed vendor_id", "vendor_id", line)
|
slog.Debug("malformed", "vendor_id", line)
|
||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
vendor, err = strconv.ParseUint(ver[1], 10, 32)
|
vendor, err = strconv.ParseUint(ver[1], 10, 64)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
slog.Debug("malformed vendor_id" + line)
|
slog.Debug("malformed", "vendor_id", line, "error", err)
|
||||||
}
|
}
|
||||||
} else if strings.HasPrefix(line, "device_id") {
|
} else if strings.HasPrefix(line, "device_id") {
|
||||||
ver := strings.Fields(line)
|
ver := strings.Fields(line)
|
||||||
if len(ver) != 2 {
|
if len(ver) != 2 {
|
||||||
slog.Debug("malformed device_id", "device_id", line)
|
slog.Debug("malformed", "device_id", line)
|
||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
device, err = strconv.ParseUint(ver[1], 10, 32)
|
device, err = strconv.ParseUint(ver[1], 10, 64)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
slog.Debug("malformed device_id" + line)
|
slog.Debug("malformed", "device_id", line, "error", err)
|
||||||
|
}
|
||||||
|
} else if strings.HasPrefix(line, "unique_id") {
|
||||||
|
ver := strings.Fields(line)
|
||||||
|
if len(ver) != 2 {
|
||||||
|
slog.Debug("malformed", "unique_id", line)
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
uniqueID, err = strconv.ParseUint(ver[1], 10, 64)
|
||||||
|
if err != nil {
|
||||||
|
slog.Debug("malformed", "unique_id", line, "error", err)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// TODO - any other properties we want to extract and record?
|
// TODO - any other properties we want to extract and record?
|
||||||
// vendor_id + device_id -> pci lookup for "Name"
|
// vendor_id + device_id -> pci lookup for "Name"
|
||||||
// Other metrics that may help us understand relative performance between multiple GPUs
|
// Other metrics that may help us understand relative performance between multiple GPUs
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Note: while ./mem_banks/*/used_memory exists, it doesn't appear to take other VRAM consumers
|
||||||
|
// into consideration, so we instead map the device over to the DRM driver sysfs nodes which
|
||||||
|
// do reliably report VRAM usage.
|
||||||
|
|
||||||
if isCPU {
|
if isCPU {
|
||||||
cpuCount++
|
cpuCount++
|
||||||
continue
|
continue
|
||||||
|
@ -156,7 +178,7 @@ func AMDGetGPUInfo() []GpuInfo {
|
||||||
// Shouldn't happen, but just in case...
|
// Shouldn't happen, but just in case...
|
||||||
if gpuID < 0 {
|
if gpuID < 0 {
|
||||||
slog.Error("unexpected amdgpu sysfs data resulted in negative GPU ID, please set OLLAMA_DEBUG=1 and report an issue")
|
slog.Error("unexpected amdgpu sysfs data resulted in negative GPU ID, please set OLLAMA_DEBUG=1 and report an issue")
|
||||||
return []GpuInfo{}
|
return nil
|
||||||
}
|
}
|
||||||
|
|
||||||
if int(major) < RocmComputeMin {
|
if int(major) < RocmComputeMin {
|
||||||
|
@ -167,65 +189,68 @@ func AMDGetGPUInfo() []GpuInfo {
|
||||||
// Look up the memory for the current node
|
// Look up the memory for the current node
|
||||||
totalMemory := uint64(0)
|
totalMemory := uint64(0)
|
||||||
usedMemory := uint64(0)
|
usedMemory := uint64(0)
|
||||||
propGlob := filepath.Join(AMDNodesSysfsDir, strconv.Itoa(nodeID), GPUTotalMemoryFileGlob)
|
var usedFile string
|
||||||
propFiles, err := filepath.Glob(propGlob)
|
mapping := []struct {
|
||||||
|
id uint64
|
||||||
|
filename string
|
||||||
|
}{
|
||||||
|
{vendor, DRMVendorFile},
|
||||||
|
{device, DRMDeviceFile},
|
||||||
|
{uniqueID, DRMUniqueIDFile}, // Not all devices will report this
|
||||||
|
}
|
||||||
|
slog.Debug("mapping amdgpu to drm sysfs nodes", "amdgpu", match, "vendor", vendor, "device", device, "unique_id", uniqueID)
|
||||||
|
// Map over to DRM location to find the total/free memory
|
||||||
|
drmMatches, _ := filepath.Glob(DRMDeviceDirGlob)
|
||||||
|
for _, devDir := range drmMatches {
|
||||||
|
matched := true
|
||||||
|
for _, m := range mapping {
|
||||||
|
if m.id == 0 {
|
||||||
|
// Null ID means it didn't populate, so we can't use it to match
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
filename := filepath.Join(devDir, m.filename)
|
||||||
|
buf, err := os.ReadFile(filename)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
slog.Warn("error looking up total GPU memory", "glob", propGlob, "error", err)
|
slog.Debug("failed to read sysfs node", "file", filename, "error", err)
|
||||||
|
matched = false
|
||||||
|
break
|
||||||
}
|
}
|
||||||
// 1 or more memory banks - sum the values of all of them
|
// values here are in hex, strip off the lead 0x and parse so we can compare the numeric (decimal) values in amdgpu
|
||||||
for _, propFile := range propFiles {
|
cmp, err := strconv.ParseUint(strings.TrimPrefix(strings.TrimSpace(string(buf)), "0x"), 16, 64)
|
||||||
fp, err := os.Open(propFile)
|
|
||||||
if err != nil {
|
if err != nil {
|
||||||
slog.Warn("failed to open sysfs node", "file", propFile, "erroir", err)
|
slog.Debug("failed to parse sysfs node", "file", filename, "error", err)
|
||||||
|
matched = false
|
||||||
|
break
|
||||||
|
}
|
||||||
|
if cmp != m.id {
|
||||||
|
matched = false
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if !matched {
|
||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
defer fp.Close()
|
|
||||||
scanner := bufio.NewScanner(fp)
|
// Found the matching DRM directory
|
||||||
for scanner.Scan() {
|
slog.Debug("matched", "amdgpu", match, "drm", devDir)
|
||||||
line := strings.TrimSpace(scanner.Text())
|
totalFile := filepath.Join(devDir, DRMTotalMemoryFile)
|
||||||
if strings.HasPrefix(line, "size_in_bytes") {
|
buf, err := os.ReadFile(totalFile)
|
||||||
ver := strings.Fields(line)
|
|
||||||
if len(ver) != 2 {
|
|
||||||
slog.Warn("malformed " + line)
|
|
||||||
continue
|
|
||||||
}
|
|
||||||
bankSizeInBytes, err := strconv.ParseUint(ver[1], 10, 64)
|
|
||||||
if err != nil {
|
if err != nil {
|
||||||
slog.Warn("malformed int " + line)
|
slog.Debug("failed to read sysfs node", "file", totalFile, "error", err)
|
||||||
continue
|
break
|
||||||
}
|
}
|
||||||
totalMemory += bankSizeInBytes
|
totalMemory, err = strconv.ParseUint(strings.TrimSpace(string(buf)), 10, 64)
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if totalMemory == 0 {
|
|
||||||
slog.Warn("amdgpu reports zero total memory", "gpu", gpuID)
|
|
||||||
continue
|
|
||||||
}
|
|
||||||
usedGlob := filepath.Join(AMDNodesSysfsDir, strconv.Itoa(nodeID), GPUUsedMemoryFileGlob)
|
|
||||||
usedFiles, err := filepath.Glob(usedGlob)
|
|
||||||
if err != nil {
|
if err != nil {
|
||||||
slog.Warn("error looking up used GPU memory", "glob", usedGlob, "error", err)
|
slog.Debug("failed to parse sysfs node", "file", totalFile, "error", err)
|
||||||
continue
|
break
|
||||||
}
|
}
|
||||||
for _, usedFile := range usedFiles {
|
|
||||||
fp, err := os.Open(usedFile)
|
usedFile = filepath.Join(devDir, DRMUsedMemoryFile)
|
||||||
|
usedMemory, err = getFreeMemory(usedFile)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
slog.Warn("failed to open sysfs node", "file", usedFile, "error", err)
|
slog.Debug("failed to update used memory", "error", err)
|
||||||
continue
|
|
||||||
}
|
}
|
||||||
defer fp.Close()
|
break
|
||||||
data, err := io.ReadAll(fp)
|
|
||||||
if err != nil {
|
|
||||||
slog.Warn("failed to read sysfs node", "file", usedFile, "error", err)
|
|
||||||
continue
|
|
||||||
}
|
|
||||||
used, err := strconv.ParseUint(strings.TrimSpace(string(data)), 10, 64)
|
|
||||||
if err != nil {
|
|
||||||
slog.Warn("malformed used memory", "data", string(data), "error", err)
|
|
||||||
continue
|
|
||||||
}
|
|
||||||
usedMemory += used
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
|
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
|
||||||
|
@ -241,18 +266,21 @@ func AMDGetGPUInfo() []GpuInfo {
|
||||||
|
|
||||||
slog.Debug("amdgpu memory", "gpu", gpuID, "total", format.HumanBytes2(totalMemory))
|
slog.Debug("amdgpu memory", "gpu", gpuID, "total", format.HumanBytes2(totalMemory))
|
||||||
slog.Debug("amdgpu memory", "gpu", gpuID, "available", format.HumanBytes2(totalMemory-usedMemory))
|
slog.Debug("amdgpu memory", "gpu", gpuID, "available", format.HumanBytes2(totalMemory-usedMemory))
|
||||||
gpuInfo := GpuInfo{
|
gpuInfo := RocmGPUInfo{
|
||||||
|
GpuInfo: GpuInfo{
|
||||||
Library: "rocm",
|
Library: "rocm",
|
||||||
memInfo: memInfo{
|
memInfo: memInfo{
|
||||||
TotalMemory: totalMemory,
|
TotalMemory: totalMemory,
|
||||||
FreeMemory: (totalMemory - usedMemory),
|
FreeMemory: (totalMemory - usedMemory),
|
||||||
},
|
},
|
||||||
ID: fmt.Sprintf("%d", gpuID),
|
ID: strconv.Itoa(gpuID),
|
||||||
Name: name,
|
Name: name,
|
||||||
Compute: fmt.Sprintf("gfx%d%x%x", major, minor, patch),
|
Compute: fmt.Sprintf("gfx%d%x%x", major, minor, patch),
|
||||||
MinimumMemory: rocmMinimumMemory,
|
MinimumMemory: rocmMinimumMemory,
|
||||||
DriverMajor: driverMajor,
|
DriverMajor: driverMajor,
|
||||||
DriverMinor: driverMinor,
|
DriverMinor: driverMinor,
|
||||||
|
},
|
||||||
|
usedFilepath: usedFile,
|
||||||
}
|
}
|
||||||
|
|
||||||
// If the user wants to filter to a subset of devices, filter out if we aren't a match
|
// If the user wants to filter to a subset of devices, filter out if we aren't a match
|
||||||
|
@ -276,7 +304,7 @@ func AMDGetGPUInfo() []GpuInfo {
|
||||||
libDir, err = AMDValidateLibDir()
|
libDir, err = AMDValidateLibDir()
|
||||||
if err != nil {
|
if err != nil {
|
||||||
slog.Warn("unable to verify rocm library, will use cpu", "error", err)
|
slog.Warn("unable to verify rocm library, will use cpu", "error", err)
|
||||||
return []GpuInfo{}
|
return nil
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
gpuInfo.DependencyPath = libDir
|
gpuInfo.DependencyPath = libDir
|
||||||
|
@ -287,7 +315,7 @@ func AMDGetGPUInfo() []GpuInfo {
|
||||||
supported, err = GetSupportedGFX(libDir)
|
supported, err = GetSupportedGFX(libDir)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
slog.Warn("failed to lookup supported GFX types, falling back to CPU mode", "error", err)
|
slog.Warn("failed to lookup supported GFX types, falling back to CPU mode", "error", err)
|
||||||
return []GpuInfo{}
|
return nil
|
||||||
}
|
}
|
||||||
slog.Debug("rocm supported GPUs", "types", supported)
|
slog.Debug("rocm supported GPUs", "types", supported)
|
||||||
}
|
}
|
||||||
|
@ -378,3 +406,31 @@ func AMDDriverVersion() (driverMajor, driverMinor int, err error) {
|
||||||
}
|
}
|
||||||
return driverMajor, driverMinor, nil
|
return driverMajor, driverMinor, nil
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func (gpus RocmGPUInfoList) RefreshFreeMemory() error {
|
||||||
|
if len(gpus) == 0 {
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
for i := range gpus {
|
||||||
|
usedMemory, err := getFreeMemory(gpus[i].usedFilepath)
|
||||||
|
if err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
slog.Debug("updating rocm free memory", "gpu", gpus[i].ID, "name", gpus[i].Name, "before", format.HumanBytes2(gpus[i].FreeMemory), "now", format.HumanBytes2(gpus[i].TotalMemory-usedMemory))
|
||||||
|
gpus[i].FreeMemory = gpus[i].TotalMemory - usedMemory
|
||||||
|
}
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
|
||||||
|
func getFreeMemory(usedFile string) (uint64, error) {
|
||||||
|
buf, err := os.ReadFile(usedFile)
|
||||||
|
if err != nil {
|
||||||
|
return 0, fmt.Errorf("failed to read sysfs node %s %w", usedFile, err)
|
||||||
|
}
|
||||||
|
usedMemory, err := strconv.ParseUint(strings.TrimSpace(string(buf)), 10, 64)
|
||||||
|
if err != nil {
|
||||||
|
slog.Debug("failed to parse sysfs node", "file", usedFile, "error", err)
|
||||||
|
return 0, fmt.Errorf("failed to parse sysfs node %s %w", usedFile, err)
|
||||||
|
}
|
||||||
|
return usedMemory, nil
|
||||||
|
}
|
||||||
|
|
|
@ -7,6 +7,7 @@ import (
|
||||||
"os"
|
"os"
|
||||||
"path/filepath"
|
"path/filepath"
|
||||||
"slices"
|
"slices"
|
||||||
|
"strconv"
|
||||||
"strings"
|
"strings"
|
||||||
|
|
||||||
"github.com/ollama/ollama/format"
|
"github.com/ollama/ollama/format"
|
||||||
|
@ -24,8 +25,8 @@ var (
|
||||||
RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\5.7\\bin"} // TODO glob?
|
RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\5.7\\bin"} // TODO glob?
|
||||||
)
|
)
|
||||||
|
|
||||||
func AMDGetGPUInfo() []GpuInfo {
|
func AMDGetGPUInfo() []RocmGPUInfo {
|
||||||
resp := []GpuInfo{}
|
resp := []RocmGPUInfo{}
|
||||||
hl, err := NewHipLib()
|
hl, err := NewHipLib()
|
||||||
if err != nil {
|
if err != nil {
|
||||||
slog.Debug(err.Error())
|
slog.Debug(err.Error())
|
||||||
|
@ -117,13 +118,14 @@ func AMDGetGPUInfo() []GpuInfo {
|
||||||
// v5.7 only reports VRAM used by this process, so it's completely wrong and unusable
|
// v5.7 only reports VRAM used by this process, so it's completely wrong and unusable
|
||||||
slog.Debug("amdgpu memory", "gpu", i, "total", format.HumanBytes2(totalMemory))
|
slog.Debug("amdgpu memory", "gpu", i, "total", format.HumanBytes2(totalMemory))
|
||||||
slog.Debug("amdgpu memory", "gpu", i, "available", format.HumanBytes2(freeMemory))
|
slog.Debug("amdgpu memory", "gpu", i, "available", format.HumanBytes2(freeMemory))
|
||||||
gpuInfo := GpuInfo{
|
gpuInfo := RocmGPUInfo{
|
||||||
|
GpuInfo: GpuInfo{
|
||||||
Library: "rocm",
|
Library: "rocm",
|
||||||
memInfo: memInfo{
|
memInfo: memInfo{
|
||||||
TotalMemory: totalMemory,
|
TotalMemory: totalMemory,
|
||||||
FreeMemory: freeMemory,
|
FreeMemory: freeMemory,
|
||||||
},
|
},
|
||||||
ID: fmt.Sprintf("%d", i), // TODO this is probably wrong if we specify visible devices
|
ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices
|
||||||
DependencyPath: libDir,
|
DependencyPath: libDir,
|
||||||
MinimumMemory: rocmMinimumMemory,
|
MinimumMemory: rocmMinimumMemory,
|
||||||
Name: name,
|
Name: name,
|
||||||
|
@ -132,6 +134,8 @@ func AMDGetGPUInfo() []GpuInfo {
|
||||||
// TODO - this information isn't accurate on windows, so don't report it until we find the right way to retrieve
|
// TODO - this information isn't accurate on windows, so don't report it until we find the right way to retrieve
|
||||||
// DriverMajor: driverMajor,
|
// DriverMajor: driverMajor,
|
||||||
// DriverMinor: driverMinor,
|
// DriverMinor: driverMinor,
|
||||||
|
},
|
||||||
|
index: i,
|
||||||
}
|
}
|
||||||
|
|
||||||
resp = append(resp, gpuInfo)
|
resp = append(resp, gpuInfo)
|
||||||
|
@ -159,3 +163,30 @@ func AMDValidateLibDir() (string, error) {
|
||||||
slog.Warn("amdgpu detected, but no compatible rocm library found. Please install ROCm")
|
slog.Warn("amdgpu detected, but no compatible rocm library found. Please install ROCm")
|
||||||
return "", fmt.Errorf("no suitable rocm found, falling back to CPU")
|
return "", fmt.Errorf("no suitable rocm found, falling back to CPU")
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func (gpus RocmGPUInfoList) RefreshFreeMemory() error {
|
||||||
|
if len(gpus) == 0 {
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
hl, err := NewHipLib()
|
||||||
|
if err != nil {
|
||||||
|
slog.Debug(err.Error())
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
defer hl.Release()
|
||||||
|
|
||||||
|
for i := range gpus {
|
||||||
|
err := hl.HipSetDevice(gpus[i].index)
|
||||||
|
if err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
freeMemory, _, err := hl.HipMemGetInfo()
|
||||||
|
if err != nil {
|
||||||
|
slog.Warn("get mem info", "id", i, "error", err)
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
slog.Debug("updating rocm free memory", "gpu", gpus[i].ID, "name", gpus[i].Name, "before", format.HumanBytes2(gpus[i].FreeMemory), "now", format.HumanBytes2(freeMemory))
|
||||||
|
gpus[i].FreeMemory = freeMemory
|
||||||
|
}
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
|
|
@ -1,21 +1,16 @@
|
||||||
package gpu
|
package gpu
|
||||||
|
|
||||||
import (
|
import (
|
||||||
"log/slog"
|
|
||||||
|
|
||||||
"golang.org/x/sys/cpu"
|
"golang.org/x/sys/cpu"
|
||||||
)
|
)
|
||||||
|
|
||||||
func GetCPUVariant() string {
|
func GetCPUCapability() CPUCapability {
|
||||||
if cpu.X86.HasAVX2 {
|
if cpu.X86.HasAVX2 {
|
||||||
slog.Debug("CPU has AVX2")
|
return CPUCapabilityAVX2
|
||||||
return "avx2"
|
|
||||||
}
|
}
|
||||||
if cpu.X86.HasAVX {
|
if cpu.X86.HasAVX {
|
||||||
slog.Debug("CPU has AVX")
|
return CPUCapabilityAVX
|
||||||
return "avx"
|
|
||||||
}
|
}
|
||||||
slog.Debug("CPU does not have vector extensions")
|
|
||||||
// else LCD
|
// else LCD
|
||||||
return ""
|
return CPUCapabilityNone
|
||||||
}
|
}
|
||||||
|
|
442
gpu/gpu.go
442
gpu/gpu.go
|
@ -24,19 +24,37 @@ import (
|
||||||
"github.com/ollama/ollama/format"
|
"github.com/ollama/ollama/format"
|
||||||
)
|
)
|
||||||
|
|
||||||
type handles struct {
|
type cudaHandles struct {
|
||||||
deviceCount int
|
deviceCount int
|
||||||
cudart *C.cudart_handle_t
|
cudart *C.cudart_handle_t
|
||||||
nvcuda *C.nvcuda_handle_t
|
nvcuda *C.nvcuda_handle_t
|
||||||
|
nvml *C.nvml_handle_t
|
||||||
|
}
|
||||||
|
|
||||||
|
type oneapiHandles struct {
|
||||||
oneapi *C.oneapi_handle_t
|
oneapi *C.oneapi_handle_t
|
||||||
|
deviceCount int
|
||||||
}
|
}
|
||||||
|
|
||||||
const (
|
const (
|
||||||
cudaMinimumMemory = 457 * format.MebiByte
|
cudaMinimumMemory = 457 * format.MebiByte
|
||||||
rocmMinimumMemory = 457 * format.MebiByte
|
rocmMinimumMemory = 457 * format.MebiByte
|
||||||
|
// TODO OneAPI minimum memory
|
||||||
)
|
)
|
||||||
|
|
||||||
var gpuMutex sync.Mutex
|
var (
|
||||||
|
gpuMutex sync.Mutex
|
||||||
|
bootstrapped bool
|
||||||
|
cpuCapability CPUCapability
|
||||||
|
cpus []CPUInfo
|
||||||
|
cudaGPUs []CudaGPUInfo
|
||||||
|
nvcudaLibPath string
|
||||||
|
cudartLibPath string
|
||||||
|
oneapiLibPath string
|
||||||
|
nvmlLibPath string
|
||||||
|
rocmGPUs []RocmGPUInfo
|
||||||
|
oneapiGPUs []OneapiGPUInfo
|
||||||
|
)
|
||||||
|
|
||||||
// With our current CUDA compile flags, older than 5.0 will not work properly
|
// With our current CUDA compile flags, older than 5.0 will not work properly
|
||||||
var CudaComputeMin = [2]C.int{5, 0}
|
var CudaComputeMin = [2]C.int{5, 0}
|
||||||
|
@ -46,113 +64,113 @@ var RocmComputeMin = 9
|
||||||
// TODO find a better way to detect iGPU instead of minimum memory
|
// TODO find a better way to detect iGPU instead of minimum memory
|
||||||
const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU
|
const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU
|
||||||
|
|
||||||
var CudartLinuxGlobs = []string{
|
|
||||||
"/usr/local/cuda/lib64/libcudart.so*",
|
|
||||||
"/usr/lib/x86_64-linux-gnu/nvidia/current/libcudart.so*",
|
|
||||||
"/usr/lib/x86_64-linux-gnu/libcudart.so*",
|
|
||||||
"/usr/lib/wsl/lib/libcudart.so*",
|
|
||||||
"/usr/lib/wsl/drivers/*/libcudart.so*",
|
|
||||||
"/opt/cuda/lib64/libcudart.so*",
|
|
||||||
"/usr/local/cuda*/targets/aarch64-linux/lib/libcudart.so*",
|
|
||||||
"/usr/lib/aarch64-linux-gnu/nvidia/current/libcudart.so*",
|
|
||||||
"/usr/lib/aarch64-linux-gnu/libcudart.so*",
|
|
||||||
"/usr/local/cuda/lib*/libcudart.so*",
|
|
||||||
"/usr/lib*/libcudart.so*",
|
|
||||||
"/usr/local/lib*/libcudart.so*",
|
|
||||||
}
|
|
||||||
|
|
||||||
var CudartWindowsGlobs = []string{
|
|
||||||
"c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll",
|
|
||||||
}
|
|
||||||
|
|
||||||
var NvcudaLinuxGlobs = []string{
|
|
||||||
"/usr/local/cuda*/targets/*/lib/libcuda.so*",
|
|
||||||
"/usr/lib/*-linux-gnu/nvidia/current/libcuda.so*",
|
|
||||||
"/usr/lib/*-linux-gnu/libcuda.so*",
|
|
||||||
"/usr/lib/wsl/lib/libcuda.so*",
|
|
||||||
"/usr/lib/wsl/drivers/*/libcuda.so*",
|
|
||||||
"/opt/cuda/lib*/libcuda.so*",
|
|
||||||
"/usr/local/cuda/lib*/libcuda.so*",
|
|
||||||
"/usr/lib*/libcuda.so*",
|
|
||||||
"/usr/local/lib*/libcuda.so*",
|
|
||||||
}
|
|
||||||
|
|
||||||
var NvcudaWindowsGlobs = []string{
|
|
||||||
"c:\\windows\\system*\\nvcuda.dll",
|
|
||||||
}
|
|
||||||
|
|
||||||
var OneapiWindowsGlobs = []string{
|
|
||||||
"c:\\Windows\\System32\\DriverStore\\FileRepository\\*\\ze_intel_gpu64.dll",
|
|
||||||
}
|
|
||||||
|
|
||||||
var OneapiLinuxGlobs = []string{
|
|
||||||
"/usr/lib/x86_64-linux-gnu/libze_intel_gpu.so*",
|
|
||||||
"/usr/lib*/libze_intel_gpu.so*",
|
|
||||||
}
|
|
||||||
|
|
||||||
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
|
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
|
||||||
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
|
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
|
||||||
var CudaTegra string = os.Getenv("JETSON_JETPACK")
|
var CudaTegra string = os.Getenv("JETSON_JETPACK")
|
||||||
|
|
||||||
// Note: gpuMutex must already be held
|
// Note: gpuMutex must already be held
|
||||||
func initGPUHandles() *handles {
|
func initCudaHandles() *cudaHandles {
|
||||||
|
|
||||||
// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing
|
// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing
|
||||||
|
|
||||||
gpuHandles := &handles{}
|
cHandles := &cudaHandles{}
|
||||||
var cudartMgmtName string
|
// Short Circuit if we already know which library to use
|
||||||
var cudartMgmtPatterns []string
|
if nvmlLibPath != "" {
|
||||||
var nvcudaMgmtName string
|
cHandles.nvml, _ = LoadNVMLMgmt([]string{nvmlLibPath})
|
||||||
var nvcudaMgmtPatterns []string
|
return cHandles
|
||||||
|
}
|
||||||
|
if nvcudaLibPath != "" {
|
||||||
|
cHandles.deviceCount, cHandles.nvcuda, _ = LoadNVCUDAMgmt([]string{nvcudaLibPath})
|
||||||
|
return cHandles
|
||||||
|
}
|
||||||
|
if cudartLibPath != "" {
|
||||||
|
cHandles.deviceCount, cHandles.cudart, _ = LoadCUDARTMgmt([]string{cudartLibPath})
|
||||||
|
return cHandles
|
||||||
|
}
|
||||||
|
|
||||||
|
slog.Debug("searching for GPU discovery libraries for NVIDIA")
|
||||||
|
var cudartMgmtPatterns []string
|
||||||
|
|
||||||
tmpDir, _ := PayloadsDir()
|
|
||||||
switch runtime.GOOS {
|
|
||||||
case "windows":
|
|
||||||
cudartMgmtName = "cudart64_*.dll"
|
|
||||||
localAppData := os.Getenv("LOCALAPPDATA")
|
|
||||||
cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", cudartMgmtName)}
|
|
||||||
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartWindowsGlobs...)
|
|
||||||
// Aligned with driver, we can't carry as payloads
|
// Aligned with driver, we can't carry as payloads
|
||||||
nvcudaMgmtName = "nvcuda.dll"
|
nvcudaMgmtPatterns := NvcudaGlobs
|
||||||
nvcudaMgmtPatterns = NvcudaWindowsGlobs
|
|
||||||
case "linux":
|
if runtime.GOOS == "windows" {
|
||||||
cudartMgmtName = "libcudart.so*"
|
localAppData := os.Getenv("LOCALAPPDATA")
|
||||||
|
cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", CudartMgmtName)}
|
||||||
|
}
|
||||||
|
tmpDir, _ := PayloadsDir()
|
||||||
if tmpDir != "" {
|
if tmpDir != "" {
|
||||||
// TODO - add "payloads" for subprocess
|
// TODO - add "payloads" for subprocess
|
||||||
cudartMgmtPatterns = []string{filepath.Join(tmpDir, "cuda*", cudartMgmtName)}
|
cudartMgmtPatterns = []string{filepath.Join(tmpDir, "cuda*", CudartMgmtName)}
|
||||||
|
}
|
||||||
|
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartGlobs...)
|
||||||
|
|
||||||
|
if len(NvmlGlobs) > 0 {
|
||||||
|
nvmlLibPaths := FindGPULibs(NvmlMgmtName, NvmlGlobs)
|
||||||
|
if len(nvmlLibPaths) > 0 {
|
||||||
|
nvml, libPath := LoadNVMLMgmt(nvmlLibPaths)
|
||||||
|
if nvml != nil {
|
||||||
|
slog.Debug("nvidia-ml loaded", "library", libPath)
|
||||||
|
cHandles.nvml = nvml
|
||||||
|
nvmlLibPath = libPath
|
||||||
|
}
|
||||||
}
|
}
|
||||||
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartLinuxGlobs...)
|
|
||||||
// Aligned with driver, we can't carry as payloads
|
|
||||||
nvcudaMgmtName = "libcuda.so*"
|
|
||||||
nvcudaMgmtPatterns = NvcudaLinuxGlobs
|
|
||||||
default:
|
|
||||||
return gpuHandles
|
|
||||||
}
|
}
|
||||||
|
|
||||||
slog.Debug("Detecting GPUs")
|
nvcudaLibPaths := FindGPULibs(NvcudaMgmtName, nvcudaMgmtPatterns)
|
||||||
nvcudaLibPaths := FindGPULibs(nvcudaMgmtName, nvcudaMgmtPatterns)
|
|
||||||
if len(nvcudaLibPaths) > 0 {
|
if len(nvcudaLibPaths) > 0 {
|
||||||
deviceCount, nvcuda, libPath := LoadNVCUDAMgmt(nvcudaLibPaths)
|
deviceCount, nvcuda, libPath := LoadNVCUDAMgmt(nvcudaLibPaths)
|
||||||
if nvcuda != nil {
|
if nvcuda != nil {
|
||||||
slog.Debug("detected GPUs", "count", deviceCount, "library", libPath)
|
slog.Debug("detected GPUs", "count", deviceCount, "library", libPath)
|
||||||
gpuHandles.nvcuda = nvcuda
|
cHandles.nvcuda = nvcuda
|
||||||
gpuHandles.deviceCount = deviceCount
|
cHandles.deviceCount = deviceCount
|
||||||
return gpuHandles
|
nvcudaLibPath = libPath
|
||||||
|
return cHandles
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
cudartLibPaths := FindGPULibs(cudartMgmtName, cudartMgmtPatterns)
|
cudartLibPaths := FindGPULibs(CudartMgmtName, cudartMgmtPatterns)
|
||||||
if len(cudartLibPaths) > 0 {
|
if len(cudartLibPaths) > 0 {
|
||||||
deviceCount, cudart, libPath := LoadCUDARTMgmt(cudartLibPaths)
|
deviceCount, cudart, libPath := LoadCUDARTMgmt(cudartLibPaths)
|
||||||
if cudart != nil {
|
if cudart != nil {
|
||||||
slog.Debug("detected GPUs", "library", libPath, "count", deviceCount)
|
slog.Debug("detected GPUs", "library", libPath, "count", deviceCount)
|
||||||
gpuHandles.cudart = cudart
|
cHandles.cudart = cudart
|
||||||
gpuHandles.deviceCount = deviceCount
|
cHandles.deviceCount = deviceCount
|
||||||
return gpuHandles
|
cudartLibPath = libPath
|
||||||
|
return cHandles
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
return gpuHandles
|
return cHandles
|
||||||
|
}
|
||||||
|
|
||||||
|
// Note: gpuMutex must already be held
|
||||||
|
func initOneAPIHandles() *oneapiHandles {
|
||||||
|
oHandles := &oneapiHandles{}
|
||||||
|
|
||||||
|
// Short Circuit if we already know which library to use
|
||||||
|
if oneapiLibPath != "" {
|
||||||
|
oHandles.deviceCount, oHandles.oneapi, _ = LoadOneapiMgmt([]string{oneapiLibPath})
|
||||||
|
return oHandles
|
||||||
|
}
|
||||||
|
|
||||||
|
oneapiLibPaths := FindGPULibs(OneapiMgmtName, OneapiGlobs)
|
||||||
|
if len(oneapiLibPaths) > 0 {
|
||||||
|
oHandles.deviceCount, oHandles.oneapi, oneapiLibPath = LoadOneapiMgmt(oneapiLibPaths)
|
||||||
|
}
|
||||||
|
|
||||||
|
return oHandles
|
||||||
|
}
|
||||||
|
|
||||||
|
func GetCPUInfo() GpuInfoList {
|
||||||
|
gpuMutex.Lock()
|
||||||
|
if !bootstrapped {
|
||||||
|
gpuMutex.Unlock()
|
||||||
|
GetGPUInfo()
|
||||||
|
} else {
|
||||||
|
gpuMutex.Unlock()
|
||||||
|
}
|
||||||
|
return GpuInfoList{cpus[0].GpuInfo}
|
||||||
}
|
}
|
||||||
|
|
||||||
func GetGPUInfo() GpuInfoList {
|
func GetGPUInfo() GpuInfoList {
|
||||||
|
@ -160,21 +178,54 @@ func GetGPUInfo() GpuInfoList {
|
||||||
// GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries
|
// GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries
|
||||||
gpuMutex.Lock()
|
gpuMutex.Lock()
|
||||||
defer gpuMutex.Unlock()
|
defer gpuMutex.Unlock()
|
||||||
|
needRefresh := true
|
||||||
gpuHandles := initGPUHandles()
|
var cHandles *cudaHandles
|
||||||
|
var oHandles *oneapiHandles
|
||||||
defer func() {
|
defer func() {
|
||||||
if gpuHandles.cudart != nil {
|
if cHandles != nil {
|
||||||
C.cudart_release(*gpuHandles.cudart)
|
if cHandles.cudart != nil {
|
||||||
|
C.cudart_release(*cHandles.cudart)
|
||||||
|
}
|
||||||
|
if cHandles.nvcuda != nil {
|
||||||
|
C.nvcuda_release(*cHandles.nvcuda)
|
||||||
|
}
|
||||||
|
if cHandles.nvml != nil {
|
||||||
|
C.nvml_release(*cHandles.nvml)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if oHandles != nil {
|
||||||
|
if oHandles.oneapi != nil {
|
||||||
|
// TODO - is this needed?
|
||||||
|
C.oneapi_release(*oHandles.oneapi)
|
||||||
}
|
}
|
||||||
if gpuHandles.nvcuda != nil {
|
|
||||||
C.nvcuda_release(*gpuHandles.nvcuda)
|
|
||||||
}
|
}
|
||||||
}()
|
}()
|
||||||
|
|
||||||
// All our GPU builds on x86 have AVX enabled, so fallback to CPU if we don't detect at least AVX
|
if !bootstrapped {
|
||||||
cpuVariant := GetCPUVariant()
|
slog.Debug("Detecting GPUs")
|
||||||
if cpuVariant == "" && runtime.GOARCH == "amd64" {
|
needRefresh = false
|
||||||
slog.Warn("CPU does not have AVX or AVX2, disabling GPU support.")
|
cpuCapability = GetCPUCapability()
|
||||||
|
var memInfo C.mem_info_t
|
||||||
|
|
||||||
|
mem, err := GetCPUMem()
|
||||||
|
if err != nil {
|
||||||
|
slog.Warn("error looking up system memory", "error", err)
|
||||||
|
}
|
||||||
|
cpus = []CPUInfo{CPUInfo{
|
||||||
|
GpuInfo: GpuInfo{
|
||||||
|
memInfo: mem,
|
||||||
|
Library: "cpu",
|
||||||
|
Variant: cpuCapability,
|
||||||
|
ID: "0",
|
||||||
|
},
|
||||||
|
}}
|
||||||
|
|
||||||
|
// Fallback to CPU mode if we're lacking required vector extensions on x86
|
||||||
|
if cpuCapability < GPURunnerCPUCapability && runtime.GOARCH == "amd64" {
|
||||||
|
slog.Warn("CPU does not have minimum vector extensions, GPU inference disabled", "required", GPURunnerCPUCapability, "detected", cpuCapability)
|
||||||
|
bootstrapped = true
|
||||||
|
// No need to do any GPU discovery, since we can't run on them
|
||||||
|
return GpuInfoList{cpus[0].GpuInfo}
|
||||||
}
|
}
|
||||||
|
|
||||||
// On windows we bundle the nvidia library one level above the runner dir
|
// On windows we bundle the nvidia library one level above the runner dir
|
||||||
|
@ -183,27 +234,26 @@ func GetGPUInfo() GpuInfoList {
|
||||||
depPath = filepath.Dir(envconfig.RunnersDir)
|
depPath = filepath.Dir(envconfig.RunnersDir)
|
||||||
}
|
}
|
||||||
|
|
||||||
var memInfo C.mem_info_t
|
// Load ALL libraries
|
||||||
resp := []GpuInfo{}
|
cHandles = initCudaHandles()
|
||||||
|
|
||||||
// NVIDIA first
|
// NVIDIA
|
||||||
for i := range gpuHandles.deviceCount {
|
for i := range cHandles.deviceCount {
|
||||||
// TODO once we support CPU compilation variants of GPU libraries refine this...
|
if cHandles.cudart != nil || cHandles.nvcuda != nil {
|
||||||
if cpuVariant == "" && runtime.GOARCH == "amd64" {
|
gpuInfo := CudaGPUInfo{
|
||||||
continue
|
GpuInfo: GpuInfo{
|
||||||
}
|
|
||||||
if gpuHandles.cudart != nil || gpuHandles.nvcuda != nil {
|
|
||||||
gpuInfo := GpuInfo{
|
|
||||||
Library: "cuda",
|
Library: "cuda",
|
||||||
|
},
|
||||||
|
index: i,
|
||||||
}
|
}
|
||||||
var driverMajor int
|
var driverMajor int
|
||||||
var driverMinor int
|
var driverMinor int
|
||||||
if gpuHandles.cudart != nil {
|
if cHandles.cudart != nil {
|
||||||
C.cudart_check_vram(*gpuHandles.cudart, C.int(i), &memInfo)
|
C.cudart_bootstrap(*cHandles.cudart, C.int(i), &memInfo)
|
||||||
} else {
|
} else {
|
||||||
C.nvcuda_check_vram(*gpuHandles.nvcuda, C.int(i), &memInfo)
|
C.nvcuda_bootstrap(*cHandles.nvcuda, C.int(i), &memInfo)
|
||||||
driverMajor = int(gpuHandles.nvcuda.driver_major)
|
driverMajor = int(cHandles.nvcuda.driver_major)
|
||||||
driverMinor = int(gpuHandles.nvcuda.driver_minor)
|
driverMinor = int(cHandles.nvcuda.driver_minor)
|
||||||
}
|
}
|
||||||
if memInfo.err != nil {
|
if memInfo.err != nil {
|
||||||
slog.Info("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
|
slog.Info("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
|
||||||
|
@ -225,47 +275,150 @@ func GetGPUInfo() GpuInfoList {
|
||||||
gpuInfo.DriverMinor = driverMinor
|
gpuInfo.DriverMinor = driverMinor
|
||||||
|
|
||||||
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
|
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
|
||||||
resp = append(resp, gpuInfo)
|
cudaGPUs = append(cudaGPUs, gpuInfo)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Then AMD
|
// Intel
|
||||||
resp = append(resp, AMDGetGPUInfo()...)
|
oHandles = initOneAPIHandles()
|
||||||
|
for d := 0; oHandles.oneapi != nil && d < int(oHandles.oneapi.num_drivers); d++ {
|
||||||
if len(resp) == 0 {
|
if oHandles.oneapi == nil {
|
||||||
C.cpu_check_ram(&memInfo)
|
// shouldn't happen
|
||||||
if memInfo.err != nil {
|
slog.Warn("nil oneapi handle with driver count", "count", int(oHandles.oneapi.num_drivers))
|
||||||
slog.Info("error looking up CPU memory", "error", C.GoString(memInfo.err))
|
continue
|
||||||
C.free(unsafe.Pointer(memInfo.err))
|
|
||||||
return resp
|
|
||||||
}
|
}
|
||||||
gpuInfo := GpuInfo{
|
devCount := C.oneapi_get_device_count(*oHandles.oneapi, C.int(d))
|
||||||
Library: "cpu",
|
for i := range devCount {
|
||||||
Variant: cpuVariant,
|
gpuInfo := OneapiGPUInfo{
|
||||||
|
GpuInfo: GpuInfo{
|
||||||
|
Library: "oneapi",
|
||||||
|
},
|
||||||
|
driverIndex: d,
|
||||||
|
gpuIndex: int(i),
|
||||||
}
|
}
|
||||||
|
// TODO - split bootstrapping from updating free memory
|
||||||
|
C.oneapi_check_vram(*oHandles.oneapi, C.int(d), i, &memInfo)
|
||||||
|
// TODO - convert this to MinimumMemory based on testing...
|
||||||
|
var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend.
|
||||||
|
memInfo.free = C.uint64_t(totalFreeMem)
|
||||||
gpuInfo.TotalMemory = uint64(memInfo.total)
|
gpuInfo.TotalMemory = uint64(memInfo.total)
|
||||||
gpuInfo.FreeMemory = uint64(memInfo.free)
|
gpuInfo.FreeMemory = uint64(memInfo.free)
|
||||||
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
|
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
|
||||||
|
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
|
||||||
resp = append(resp, gpuInfo)
|
// TODO dependency path?
|
||||||
|
oneapiGPUs = append(oneapiGPUs, gpuInfo)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
rocmGPUs = AMDGetGPUInfo()
|
||||||
|
bootstrapped = true
|
||||||
|
}
|
||||||
|
|
||||||
|
// For detected GPUs, load library if not loaded
|
||||||
|
|
||||||
|
// Refresh free memory usage
|
||||||
|
if needRefresh {
|
||||||
|
mem, err := GetCPUMem()
|
||||||
|
if err != nil {
|
||||||
|
slog.Warn("error looking up system memory", "error", err)
|
||||||
|
} else {
|
||||||
|
slog.Debug("updating system memory data",
|
||||||
|
slog.Group(
|
||||||
|
"before",
|
||||||
|
"total", format.HumanBytes2(cpus[0].TotalMemory),
|
||||||
|
"free", format.HumanBytes2(cpus[0].FreeMemory),
|
||||||
|
),
|
||||||
|
slog.Group(
|
||||||
|
"now",
|
||||||
|
"total", format.HumanBytes2(mem.TotalMemory),
|
||||||
|
"free", format.HumanBytes2(mem.FreeMemory),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
cpus[0].FreeMemory = mem.FreeMemory
|
||||||
|
}
|
||||||
|
|
||||||
|
var memInfo C.mem_info_t
|
||||||
|
if cHandles == nil && len(cudaGPUs) > 0 {
|
||||||
|
cHandles = initCudaHandles()
|
||||||
|
}
|
||||||
|
for i, gpu := range cudaGPUs {
|
||||||
|
if cHandles.nvml != nil {
|
||||||
|
C.nvml_get_free(*cHandles.nvml, C.int(gpu.index), &memInfo.free, &memInfo.total, &memInfo.used)
|
||||||
|
} else if cHandles.cudart != nil {
|
||||||
|
C.cudart_bootstrap(*cHandles.cudart, C.int(gpu.index), &memInfo)
|
||||||
|
} else if cHandles.nvcuda != nil {
|
||||||
|
C.nvcuda_get_free(*cHandles.nvcuda, C.int(gpu.index), &memInfo.free, &memInfo.total)
|
||||||
|
memInfo.used = memInfo.total - memInfo.free
|
||||||
|
} else {
|
||||||
|
// shouldn't happen
|
||||||
|
slog.Warn("no valid cuda library loaded to refresh vram usage")
|
||||||
|
break
|
||||||
|
}
|
||||||
|
if memInfo.err != nil {
|
||||||
|
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
|
||||||
|
C.free(unsafe.Pointer(memInfo.err))
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
if memInfo.free == 0 {
|
||||||
|
slog.Warn("error looking up nvidia GPU memory")
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
slog.Debug("updating cuda memory data",
|
||||||
|
"gpu", gpu.ID,
|
||||||
|
"name", gpu.Name,
|
||||||
|
slog.Group(
|
||||||
|
"before",
|
||||||
|
"total", format.HumanBytes2(gpu.TotalMemory),
|
||||||
|
"free", format.HumanBytes2(gpu.FreeMemory),
|
||||||
|
),
|
||||||
|
slog.Group(
|
||||||
|
"now",
|
||||||
|
"total", format.HumanBytes2(uint64(memInfo.total)),
|
||||||
|
"free", format.HumanBytes2(uint64(memInfo.free)),
|
||||||
|
"used", format.HumanBytes2(uint64(memInfo.used)),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
cudaGPUs[i].FreeMemory = uint64(memInfo.free)
|
||||||
|
}
|
||||||
|
|
||||||
|
if oHandles == nil && len(oneapiGPUs) > 0 {
|
||||||
|
oHandles = initOneAPIHandles()
|
||||||
|
}
|
||||||
|
for i, gpu := range oneapiGPUs {
|
||||||
|
if oHandles.oneapi == nil {
|
||||||
|
// shouldn't happen
|
||||||
|
slog.Warn("nil oneapi handle with device count", "count", oHandles.deviceCount)
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
C.oneapi_check_vram(*oHandles.oneapi, C.int(gpu.driverIndex), C.int(gpu.gpuIndex), &memInfo)
|
||||||
|
// TODO - convert this to MinimumMemory based on testing...
|
||||||
|
var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend.
|
||||||
|
memInfo.free = C.uint64_t(totalFreeMem)
|
||||||
|
oneapiGPUs[i].FreeMemory = uint64(memInfo.free)
|
||||||
|
}
|
||||||
|
|
||||||
|
err = RocmGPUInfoList(rocmGPUs).RefreshFreeMemory()
|
||||||
|
if err != nil {
|
||||||
|
slog.Debug("problem refreshing ROCm free memory", "error", err)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
resp := []GpuInfo{}
|
||||||
|
for _, gpu := range cudaGPUs {
|
||||||
|
resp = append(resp, gpu.GpuInfo)
|
||||||
|
}
|
||||||
|
for _, gpu := range rocmGPUs {
|
||||||
|
resp = append(resp, gpu.GpuInfo)
|
||||||
|
}
|
||||||
|
for _, gpu := range oneapiGPUs {
|
||||||
|
resp = append(resp, gpu.GpuInfo)
|
||||||
|
}
|
||||||
|
if len(resp) == 0 {
|
||||||
|
resp = append(resp, cpus[0].GpuInfo)
|
||||||
|
}
|
||||||
return resp
|
return resp
|
||||||
}
|
}
|
||||||
|
|
||||||
func GetCPUMem() (memInfo, error) {
|
|
||||||
var ret memInfo
|
|
||||||
var info C.mem_info_t
|
|
||||||
C.cpu_check_ram(&info)
|
|
||||||
if info.err != nil {
|
|
||||||
defer C.free(unsafe.Pointer(info.err))
|
|
||||||
return ret, fmt.Errorf(C.GoString(info.err))
|
|
||||||
}
|
|
||||||
ret.FreeMemory = uint64(info.free)
|
|
||||||
ret.TotalMemory = uint64(info.total)
|
|
||||||
return ret, nil
|
|
||||||
}
|
|
||||||
|
|
||||||
func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
|
func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
|
||||||
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
|
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
|
||||||
var ldPaths []string
|
var ldPaths []string
|
||||||
|
@ -362,8 +515,26 @@ func LoadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string) {
|
||||||
return 0, nil, ""
|
return 0, nil, ""
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func LoadNVMLMgmt(nvmlLibPaths []string) (*C.nvml_handle_t, string) {
|
||||||
|
var resp C.nvml_init_resp_t
|
||||||
|
resp.ch.verbose = getVerboseState()
|
||||||
|
for _, libPath := range nvmlLibPaths {
|
||||||
|
lib := C.CString(libPath)
|
||||||
|
defer C.free(unsafe.Pointer(lib))
|
||||||
|
C.nvml_init(lib, &resp)
|
||||||
|
if resp.err != nil {
|
||||||
|
slog.Info(fmt.Sprintf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err)))
|
||||||
|
C.free(unsafe.Pointer(resp.err))
|
||||||
|
} else {
|
||||||
|
return &resp.ch, libPath
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return nil, ""
|
||||||
|
}
|
||||||
|
|
||||||
func LoadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string) {
|
func LoadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string) {
|
||||||
var resp C.oneapi_init_resp_t
|
var resp C.oneapi_init_resp_t
|
||||||
|
num_devices := 0
|
||||||
resp.oh.verbose = getVerboseState()
|
resp.oh.verbose = getVerboseState()
|
||||||
for _, libPath := range oneapiLibPaths {
|
for _, libPath := range oneapiLibPaths {
|
||||||
lib := C.CString(libPath)
|
lib := C.CString(libPath)
|
||||||
|
@ -373,7 +544,10 @@ func LoadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string) {
|
||||||
slog.Debug("Unable to load oneAPI management library", "library", libPath, "error", C.GoString(resp.err))
|
slog.Debug("Unable to load oneAPI management library", "library", libPath, "error", C.GoString(resp.err))
|
||||||
C.free(unsafe.Pointer(resp.err))
|
C.free(unsafe.Pointer(resp.err))
|
||||||
} else {
|
} else {
|
||||||
return int(resp.num_devices), &resp.oh, libPath
|
for i := range resp.oh.num_drivers {
|
||||||
|
num_devices += int(C.oneapi_get_device_count(resp.oh, C.int(i)))
|
||||||
|
}
|
||||||
|
return num_devices, &resp.oh, libPath
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return 0, nil, ""
|
return 0, nil, ""
|
||||||
|
|
|
@ -24,7 +24,7 @@ func GetGPUInfo() GpuInfoList {
|
||||||
return []GpuInfo{
|
return []GpuInfo{
|
||||||
{
|
{
|
||||||
Library: "cpu",
|
Library: "cpu",
|
||||||
Variant: GetCPUVariant(),
|
Variant: GetCPUCapability(),
|
||||||
memInfo: mem,
|
memInfo: mem,
|
||||||
},
|
},
|
||||||
}
|
}
|
||||||
|
@ -42,6 +42,17 @@ func GetGPUInfo() GpuInfoList {
|
||||||
return []GpuInfo{info}
|
return []GpuInfo{info}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func GetCPUInfo() GpuInfoList {
|
||||||
|
mem, _ := GetCPUMem()
|
||||||
|
return []GpuInfo{
|
||||||
|
{
|
||||||
|
Library: "cpu",
|
||||||
|
Variant: GetCPUCapability(),
|
||||||
|
memInfo: mem,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
func GetCPUMem() (memInfo, error) {
|
func GetCPUMem() (memInfo, error) {
|
||||||
return memInfo{
|
return memInfo{
|
||||||
TotalMemory: uint64(C.getPhysicalMemory()),
|
TotalMemory: uint64(C.getPhysicalMemory()),
|
||||||
|
|
|
@ -47,6 +47,7 @@ typedef struct mem_info {
|
||||||
char gpu_name[GPU_NAME_LEN];
|
char gpu_name[GPU_NAME_LEN];
|
||||||
uint64_t total;
|
uint64_t total;
|
||||||
uint64_t free;
|
uint64_t free;
|
||||||
|
uint64_t used;
|
||||||
|
|
||||||
// Compute Capability
|
// Compute Capability
|
||||||
int major;
|
int major;
|
||||||
|
@ -62,6 +63,7 @@ void cpu_check_ram(mem_info_t *resp);
|
||||||
|
|
||||||
#include "gpu_info_cudart.h"
|
#include "gpu_info_cudart.h"
|
||||||
#include "gpu_info_nvcuda.h"
|
#include "gpu_info_nvcuda.h"
|
||||||
|
#include "gpu_info_nvml.h"
|
||||||
#include "gpu_info_oneapi.h"
|
#include "gpu_info_oneapi.h"
|
||||||
|
|
||||||
#endif // __GPU_INFO_H__
|
#endif // __GPU_INFO_H__
|
||||||
|
|
|
@ -1,45 +0,0 @@
|
||||||
#include "gpu_info.h"
|
|
||||||
// Fallbacks for CPU mode
|
|
||||||
|
|
||||||
#ifdef _WIN32
|
|
||||||
#include <sysinfoapi.h>
|
|
||||||
void cpu_check_ram(mem_info_t *resp) {
|
|
||||||
resp->err = NULL;
|
|
||||||
MEMORYSTATUSEX info;
|
|
||||||
info.dwLength = sizeof(info);
|
|
||||||
if (GlobalMemoryStatusEx(&info) != 0) {
|
|
||||||
resp->total = info.ullTotalPhys;
|
|
||||||
resp->free = info.ullAvailPhys;
|
|
||||||
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "0");
|
|
||||||
} else {
|
|
||||||
resp->err = LOAD_ERR();
|
|
||||||
}
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
#elif __linux__
|
|
||||||
#include <errno.h>
|
|
||||||
#include <string.h>
|
|
||||||
#include <sys/sysinfo.h>
|
|
||||||
void cpu_check_ram(mem_info_t *resp) {
|
|
||||||
struct sysinfo info;
|
|
||||||
resp->err = NULL;
|
|
||||||
if (sysinfo(&info) != 0) {
|
|
||||||
resp->err = strdup(strerror(errno));
|
|
||||||
} else {
|
|
||||||
resp->total = info.totalram * info.mem_unit;
|
|
||||||
resp->free = info.freeram * info.mem_unit;
|
|
||||||
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "0");
|
|
||||||
}
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
#elif __APPLE__
|
|
||||||
// TODO consider an Apple implementation that does something useful
|
|
||||||
// mem_info_t cpu_check_ram() {
|
|
||||||
// mem_info_t resp = {0, 0, NULL};
|
|
||||||
// return resp;
|
|
||||||
// }
|
|
||||||
#else
|
|
||||||
#error "Unsupported platform"
|
|
||||||
#endif
|
|
|
@ -94,7 +94,7 @@ void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
void cudart_check_vram(cudart_handle_t h, int i, mem_info_t *resp) {
|
void cudart_bootstrap(cudart_handle_t h, int i, mem_info_t *resp) {
|
||||||
resp->err = NULL;
|
resp->err = NULL;
|
||||||
cudartMemory_t memInfo = {0,0,0};
|
cudartMemory_t memInfo = {0,0,0};
|
||||||
cudartReturn_t ret;
|
cudartReturn_t ret;
|
||||||
|
@ -166,9 +166,11 @@ void cudart_check_vram(cudart_handle_t h, int i, mem_info_t *resp) {
|
||||||
|
|
||||||
resp->total = memInfo.total;
|
resp->total = memInfo.total;
|
||||||
resp->free = memInfo.free;
|
resp->free = memInfo.free;
|
||||||
|
resp->used = memInfo.used;
|
||||||
|
|
||||||
LOG(h.verbose, "[%s] CUDA totalMem %lu\n", resp->gpu_id, resp->total);
|
LOG(h.verbose, "[%s] CUDA totalMem %lu\n", resp->gpu_id, resp->total);
|
||||||
LOG(h.verbose, "[%s] CUDA freeMem %lu\n", resp->gpu_id, resp->free);
|
LOG(h.verbose, "[%s] CUDA freeMem %lu\n", resp->gpu_id, resp->free);
|
||||||
|
LOG(h.verbose, "[%s] CUDA usedMem %lu\n", resp->gpu_id, resp->used);
|
||||||
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
|
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -140,7 +140,8 @@ typedef struct cudart_init_resp {
|
||||||
} cudart_init_resp_t;
|
} cudart_init_resp_t;
|
||||||
|
|
||||||
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp);
|
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp);
|
||||||
void cudart_check_vram(cudart_handle_t ch, int device_id, mem_info_t *resp);
|
void cudart_bootstrap(cudart_handle_t ch, int device_id, mem_info_t *resp);
|
||||||
|
// TODO - if we keep this library longer term, add cudart_get_free
|
||||||
void cudart_release(cudart_handle_t ch);
|
void cudart_release(cudart_handle_t ch);
|
||||||
|
|
||||||
#endif // __GPU_INFO_CUDART_H__
|
#endif // __GPU_INFO_CUDART_H__
|
||||||
|
|
|
@ -96,7 +96,7 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
|
||||||
}
|
}
|
||||||
|
|
||||||
const int buflen = 256;
|
const int buflen = 256;
|
||||||
void nvcuda_check_vram(nvcuda_handle_t h, int i, mem_info_t *resp) {
|
void nvcuda_bootstrap(nvcuda_handle_t h, int i, mem_info_t *resp) {
|
||||||
resp->err = NULL;
|
resp->err = NULL;
|
||||||
nvcudaMemory_t memInfo = {0,0};
|
nvcudaMemory_t memInfo = {0,0};
|
||||||
CUresult ret;
|
CUresult ret;
|
||||||
|
@ -168,7 +168,7 @@ void nvcuda_check_vram(nvcuda_handle_t h, int i, mem_info_t *resp) {
|
||||||
// To get memory we have to set (and release) a context
|
// To get memory we have to set (and release) a context
|
||||||
ret = (*h.cuCtxCreate_v3)(&ctx, NULL, 0, 0, device);
|
ret = (*h.cuCtxCreate_v3)(&ctx, NULL, 0, 0, device);
|
||||||
if (ret != CUDA_SUCCESS) {
|
if (ret != CUDA_SUCCESS) {
|
||||||
snprintf(buf, buflen, "nvcuda failed to get primary device context %d", ret);
|
snprintf(buf, buflen, "nvcuda failed to get device context %d", ret);
|
||||||
resp->err = strdup(buf);
|
resp->err = strdup(buf);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
@ -193,7 +193,42 @@ void nvcuda_check_vram(nvcuda_handle_t h, int i, mem_info_t *resp) {
|
||||||
|
|
||||||
ret = (*h.cuCtxDestroy)(ctx);
|
ret = (*h.cuCtxDestroy)(ctx);
|
||||||
if (ret != CUDA_SUCCESS) {
|
if (ret != CUDA_SUCCESS) {
|
||||||
LOG(1, "nvcuda failed to release primary device context %d", ret);
|
LOG(1, "nvcuda failed to release device context %d", ret);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void nvcuda_get_free(nvcuda_handle_t h, int i, uint64_t *free, uint64_t *total) {
|
||||||
|
CUresult ret;
|
||||||
|
CUcontext ctx = NULL;
|
||||||
|
CUdevice device = -1;
|
||||||
|
*free = 0;
|
||||||
|
*total = 0;
|
||||||
|
|
||||||
|
ret = (*h.cuDeviceGet)(&device, i);
|
||||||
|
if (ret != CUDA_SUCCESS) {
|
||||||
|
LOG(1, "nvcuda device failed to initialize");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
// To get memory we have to set (and release) a context
|
||||||
|
ret = (*h.cuCtxCreate_v3)(&ctx, NULL, 0, 0, device);
|
||||||
|
if (ret != CUDA_SUCCESS) {
|
||||||
|
LOG(1, "nvcuda failed to get device context %d", ret);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
ret = (*h.cuMemGetInfo_v2)(free, total);
|
||||||
|
if (ret != CUDA_SUCCESS) {
|
||||||
|
LOG(1, "nvcuda device memory info lookup failure %d", ret);
|
||||||
|
// Best effort on failure...
|
||||||
|
(*h.cuCtxDestroy)(ctx);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
ret = (*h.cuCtxDestroy)(ctx);
|
||||||
|
if (ret != CUDA_SUCCESS) {
|
||||||
|
LOG(1, "nvcuda failed to release device context %d", ret);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -67,7 +67,8 @@ typedef struct nvcuda_init_resp {
|
||||||
} nvcuda_init_resp_t;
|
} nvcuda_init_resp_t;
|
||||||
|
|
||||||
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp);
|
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp);
|
||||||
void nvcuda_check_vram(nvcuda_handle_t ch, int device_id, mem_info_t *resp);
|
void nvcuda_bootstrap(nvcuda_handle_t ch, int device_id, mem_info_t *resp);
|
||||||
|
void nvcuda_get_free(nvcuda_handle_t ch, int device_id, uint64_t *free, uint64_t *total);
|
||||||
void nvcuda_release(nvcuda_handle_t ch);
|
void nvcuda_release(nvcuda_handle_t ch);
|
||||||
|
|
||||||
#endif // __GPU_INFO_NVCUDA_H__
|
#endif // __GPU_INFO_NVCUDA_H__
|
||||||
|
|
104
gpu/gpu_info_nvml.c
Normal file
104
gpu/gpu_info_nvml.c
Normal file
|
@ -0,0 +1,104 @@
|
||||||
|
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
|
||||||
|
|
||||||
|
#include <string.h>
|
||||||
|
|
||||||
|
#include "gpu_info_nvml.h"
|
||||||
|
|
||||||
|
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp) {
|
||||||
|
nvmlReturn_t ret;
|
||||||
|
resp->err = NULL;
|
||||||
|
const int buflen = 256;
|
||||||
|
char buf[buflen + 1];
|
||||||
|
int i;
|
||||||
|
|
||||||
|
struct lookup {
|
||||||
|
char *s;
|
||||||
|
void **p;
|
||||||
|
} l[] = {
|
||||||
|
{"nvmlInit_v2", (void *)&resp->ch.nvmlInit_v2},
|
||||||
|
{"nvmlShutdown", (void *)&resp->ch.nvmlShutdown},
|
||||||
|
{"nvmlDeviceGetHandleByIndex", (void *)&resp->ch.nvmlDeviceGetHandleByIndex},
|
||||||
|
{"nvmlDeviceGetMemoryInfo", (void *)&resp->ch.nvmlDeviceGetMemoryInfo},
|
||||||
|
{NULL, NULL},
|
||||||
|
};
|
||||||
|
|
||||||
|
resp->ch.handle = LOAD_LIBRARY(nvml_lib_path, RTLD_LAZY);
|
||||||
|
if (!resp->ch.handle) {
|
||||||
|
char *msg = LOAD_ERR();
|
||||||
|
LOG(resp->ch.verbose, "library %s load err: %s\n", nvml_lib_path, msg);
|
||||||
|
snprintf(buf, buflen,
|
||||||
|
"Unable to load %s library to query for Nvidia GPUs: %s",
|
||||||
|
nvml_lib_path, msg);
|
||||||
|
free(msg);
|
||||||
|
resp->err = strdup(buf);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO once we've squashed the remaining corner cases remove this log
|
||||||
|
// LOG(resp->ch.verbose, "wiring nvidia management library functions in %s\n", nvml_lib_path);
|
||||||
|
|
||||||
|
for (i = 0; l[i].s != NULL; i++) {
|
||||||
|
// TODO once we've squashed the remaining corner cases remove this log
|
||||||
|
// LOG(resp->ch.verbose, "dlsym: %s\n", l[i].s);
|
||||||
|
|
||||||
|
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
|
||||||
|
if (!l[i].p) {
|
||||||
|
resp->ch.handle = NULL;
|
||||||
|
char *msg = LOAD_ERR();
|
||||||
|
LOG(resp->ch.verbose, "dlerr: %s\n", msg);
|
||||||
|
UNLOAD_LIBRARY(resp->ch.handle);
|
||||||
|
snprintf(buf, buflen, "symbol lookup for %s failed: %s", l[i].s,
|
||||||
|
msg);
|
||||||
|
free(msg);
|
||||||
|
resp->err = strdup(buf);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
ret = (*resp->ch.nvmlInit_v2)();
|
||||||
|
if (ret != NVML_SUCCESS) {
|
||||||
|
LOG(resp->ch.verbose, "nvmlInit_v2 err: %d\n", ret);
|
||||||
|
UNLOAD_LIBRARY(resp->ch.handle);
|
||||||
|
resp->ch.handle = NULL;
|
||||||
|
snprintf(buf, buflen, "nvml vram init failure: %d", ret);
|
||||||
|
resp->err = strdup(buf);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void nvml_get_free(nvml_handle_t h, int device_id, uint64_t *free, uint64_t *total, uint64_t *used) {
|
||||||
|
nvmlDevice_t device;
|
||||||
|
nvmlMemory_t memInfo = {0};
|
||||||
|
nvmlReturn_t ret;
|
||||||
|
ret = (*h.nvmlDeviceGetHandleByIndex)(device_id, &device);
|
||||||
|
if (ret != NVML_SUCCESS) {
|
||||||
|
LOG(1, "unable to get device handle %d: %d", device_id, ret);
|
||||||
|
*free = 0;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
ret = (*h.nvmlDeviceGetMemoryInfo)(device, &memInfo);
|
||||||
|
if (ret != NVML_SUCCESS) {
|
||||||
|
LOG(1, "device memory info lookup failure %d: %d", device_id, ret);
|
||||||
|
*free = 0;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
*free = memInfo.free;
|
||||||
|
*total = memInfo.total;
|
||||||
|
*used = memInfo.used;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void nvml_release(nvml_handle_t h) {
|
||||||
|
LOG(h.verbose, "releasing nvml library\n");
|
||||||
|
nvmlReturn_t ret;
|
||||||
|
ret = (*h.nvmlShutdown)();
|
||||||
|
if (ret != NVML_SUCCESS) {
|
||||||
|
LOG(1, "error during nvmlShutdown %d", ret);
|
||||||
|
}
|
||||||
|
UNLOAD_LIBRARY(h.handle);
|
||||||
|
h.handle = NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // __APPLE__
|
48
gpu/gpu_info_nvml.h
Normal file
48
gpu/gpu_info_nvml.h
Normal file
|
@ -0,0 +1,48 @@
|
||||||
|
#ifndef __APPLE__
|
||||||
|
#ifndef __GPU_INFO_NVML_H__
|
||||||
|
#define __GPU_INFO_NVML_H__
|
||||||
|
#include "gpu_info.h"
|
||||||
|
|
||||||
|
// Just enough typedef's to dlopen/dlsym for memory information
|
||||||
|
typedef enum nvmlReturn_enum {
|
||||||
|
NVML_SUCCESS = 0,
|
||||||
|
// Other values omitted for now...
|
||||||
|
} nvmlReturn_t;
|
||||||
|
typedef void *nvmlDevice_t; // Opaque is sufficient
|
||||||
|
typedef struct nvmlMemory_st {
|
||||||
|
unsigned long long total;
|
||||||
|
unsigned long long free;
|
||||||
|
unsigned long long used;
|
||||||
|
} nvmlMemory_t;
|
||||||
|
|
||||||
|
typedef enum nvmlBrandType_enum
|
||||||
|
{
|
||||||
|
NVML_BRAND_UNKNOWN = 0,
|
||||||
|
} nvmlBrandType_t;
|
||||||
|
|
||||||
|
typedef struct nvml_handle {
|
||||||
|
void *handle;
|
||||||
|
uint16_t verbose;
|
||||||
|
nvmlReturn_t (*nvmlInit_v2)(void);
|
||||||
|
nvmlReturn_t (*nvmlShutdown)(void);
|
||||||
|
nvmlReturn_t (*nvmlDeviceGetHandleByIndex)(unsigned int, nvmlDevice_t *);
|
||||||
|
nvmlReturn_t (*nvmlDeviceGetMemoryInfo)(nvmlDevice_t, nvmlMemory_t *);
|
||||||
|
} nvml_handle_t;
|
||||||
|
|
||||||
|
typedef struct nvml_init_resp {
|
||||||
|
char *err; // If err is non-null handle is invalid
|
||||||
|
nvml_handle_t ch;
|
||||||
|
} nvml_init_resp_t;
|
||||||
|
|
||||||
|
typedef struct nvml_compute_capability {
|
||||||
|
char *err;
|
||||||
|
int major;
|
||||||
|
int minor;
|
||||||
|
} nvml_compute_capability_t;
|
||||||
|
|
||||||
|
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp);
|
||||||
|
void nvml_get_free(nvml_handle_t ch, int device_id, uint64_t *free, uint64_t *total, uint64_t *used);
|
||||||
|
void nvml_release(nvml_handle_t ch);
|
||||||
|
|
||||||
|
#endif // __GPU_INFO_NVML_H__
|
||||||
|
#endif // __APPLE__
|
|
@ -4,15 +4,17 @@
|
||||||
|
|
||||||
#include <string.h>
|
#include <string.h>
|
||||||
|
|
||||||
void oneapi_init(char *oneapi_lib_path, oneapi_init_resp_t *resp)
|
void oneapi_init(char *oneapi_lib_path, oneapi_init_resp_t *resp) {
|
||||||
{
|
|
||||||
ze_result_t ret;
|
ze_result_t ret;
|
||||||
resp->err = NULL;
|
resp->err = NULL;
|
||||||
|
resp->oh.devices = NULL;
|
||||||
|
resp->oh.num_devices = NULL;
|
||||||
|
resp->oh.drivers = NULL;
|
||||||
|
resp->oh.num_drivers = 0;
|
||||||
const int buflen = 256;
|
const int buflen = 256;
|
||||||
char buf[buflen + 1];
|
char buf[buflen + 1];
|
||||||
int i;
|
int i, d, count;
|
||||||
struct lookup
|
struct lookup {
|
||||||
{
|
|
||||||
char *s;
|
char *s;
|
||||||
void **p;
|
void **p;
|
||||||
} l[] = {
|
} l[] = {
|
||||||
|
@ -28,8 +30,7 @@ void oneapi_init(char *oneapi_lib_path, oneapi_init_resp_t *resp)
|
||||||
};
|
};
|
||||||
|
|
||||||
resp->oh.handle = LOAD_LIBRARY(oneapi_lib_path, RTLD_LAZY);
|
resp->oh.handle = LOAD_LIBRARY(oneapi_lib_path, RTLD_LAZY);
|
||||||
if (!resp->oh.handle)
|
if (!resp->oh.handle) {
|
||||||
{
|
|
||||||
char *msg = LOAD_ERR();
|
char *msg = LOAD_ERR();
|
||||||
snprintf(buf, buflen,
|
snprintf(buf, buflen,
|
||||||
"Unable to load %s library to query for Intel GPUs: %s\n",
|
"Unable to load %s library to query for Intel GPUs: %s\n",
|
||||||
|
@ -44,14 +45,12 @@ void oneapi_init(char *oneapi_lib_path, oneapi_init_resp_t *resp)
|
||||||
"wiring Level-Zero management library functions in %s\n",
|
"wiring Level-Zero management library functions in %s\n",
|
||||||
oneapi_lib_path);
|
oneapi_lib_path);
|
||||||
|
|
||||||
for (i = 0; l[i].s != NULL; i++)
|
for (i = 0; l[i].s != NULL; i++) {
|
||||||
{
|
|
||||||
// TODO once we've squashed the remaining corner cases remove this log
|
// TODO once we've squashed the remaining corner cases remove this log
|
||||||
LOG(resp->oh.verbose, "dlsym: %s\n", l[i].s);
|
LOG(resp->oh.verbose, "dlsym: %s\n", l[i].s);
|
||||||
|
|
||||||
*l[i].p = LOAD_SYMBOL(resp->oh.handle, l[i].s);
|
*l[i].p = LOAD_SYMBOL(resp->oh.handle, l[i].s);
|
||||||
if (!l[i].p)
|
if (!l[i].p) {
|
||||||
{
|
|
||||||
resp->oh.handle = NULL;
|
resp->oh.handle = NULL;
|
||||||
char *msg = LOAD_ERR();
|
char *msg = LOAD_ERR();
|
||||||
LOG(resp->oh.verbose, "dlerr: %s\n", msg);
|
LOG(resp->oh.verbose, "dlerr: %s\n", msg);
|
||||||
|
@ -64,22 +63,67 @@ void oneapi_init(char *oneapi_lib_path, oneapi_init_resp_t *resp)
|
||||||
}
|
}
|
||||||
|
|
||||||
ret = (*resp->oh.zesInit)(0);
|
ret = (*resp->oh.zesInit)(0);
|
||||||
if (ret != ZE_RESULT_SUCCESS)
|
if (ret != ZE_RESULT_SUCCESS) {
|
||||||
{
|
LOG(resp->oh.verbose, "zesInit err: %x\n", ret);
|
||||||
LOG(resp->oh.verbose, "zesInit err: %d\n", ret);
|
snprintf(buf, buflen, "oneapi vram init failure: %x", ret);
|
||||||
UNLOAD_LIBRARY(resp->oh.handle);
|
|
||||||
resp->oh.handle = NULL;
|
|
||||||
snprintf(buf, buflen, "oneapi vram init failure: %d", ret);
|
|
||||||
resp->err = strdup(buf);
|
resp->err = strdup(buf);
|
||||||
|
oneapi_release(resp->oh);
|
||||||
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
(*resp->oh.zesDriverGet)(&resp->num_devices, NULL);
|
count = 0;
|
||||||
|
ret = (*resp->oh.zesDriverGet)(&resp->oh.num_drivers, NULL);
|
||||||
|
if (ret != ZE_RESULT_SUCCESS) {
|
||||||
|
LOG(resp->oh.verbose, "zesDriverGet err: %x\n", ret);
|
||||||
|
snprintf(buf, buflen, "unable to get driver count: %x", ret);
|
||||||
|
resp->err = strdup(buf);
|
||||||
|
oneapi_release(resp->oh);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
LOG(resp->oh.verbose, "oneapi driver count: %d\n", resp->oh.num_drivers);
|
||||||
|
resp->oh.drivers = malloc(resp->oh.num_drivers * sizeof(zes_driver_handle_t));
|
||||||
|
resp->oh.num_devices = malloc(resp->oh.num_drivers * sizeof(uint32_t));
|
||||||
|
memset(&resp->oh.num_devices[0], 0, resp->oh.num_drivers * sizeof(uint32_t));
|
||||||
|
resp->oh.devices =
|
||||||
|
malloc(resp->oh.num_drivers * sizeof(zes_device_handle_t *));
|
||||||
|
ret = (*resp->oh.zesDriverGet)(&resp->oh.num_drivers, &resp->oh.drivers[0]);
|
||||||
|
if (ret != ZE_RESULT_SUCCESS) {
|
||||||
|
LOG(resp->oh.verbose, "zesDriverGet err: %x\n", ret);
|
||||||
|
snprintf(buf, buflen, "unable to get driver count: %x", ret);
|
||||||
|
resp->err = strdup(buf);
|
||||||
|
oneapi_release(resp->oh);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (d = 0; d < resp->oh.num_drivers; d++) {
|
||||||
|
ret = (*resp->oh.zesDeviceGet)(resp->oh.drivers[d],
|
||||||
|
&resp->oh.num_devices[d], NULL);
|
||||||
|
if (ret != ZE_RESULT_SUCCESS) {
|
||||||
|
LOG(resp->oh.verbose, "zesDeviceGet err: %x\n", ret);
|
||||||
|
snprintf(buf, buflen, "unable to get device count: %x", ret);
|
||||||
|
resp->err = strdup(buf);
|
||||||
|
oneapi_release(resp->oh);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
resp->oh.devices[d] =
|
||||||
|
malloc(resp->oh.num_devices[d] * sizeof(zes_device_handle_t));
|
||||||
|
ret = (*resp->oh.zesDeviceGet)(
|
||||||
|
resp->oh.drivers[d], &resp->oh.num_devices[d], resp->oh.devices[d]);
|
||||||
|
if (ret != ZE_RESULT_SUCCESS) {
|
||||||
|
LOG(resp->oh.verbose, "zesDeviceGet err: %x\n", ret);
|
||||||
|
snprintf(buf, buflen, "unable to get device count: %x", ret);
|
||||||
|
resp->err = strdup(buf);
|
||||||
|
oneapi_release(resp->oh);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
count += resp->oh.num_devices[d];
|
||||||
|
}
|
||||||
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
void oneapi_check_vram(oneapi_handle_t h, mem_info_t *resp)
|
void oneapi_check_vram(oneapi_handle_t h, int driver, int device,
|
||||||
{
|
mem_info_t *resp) {
|
||||||
ze_result_t ret;
|
ze_result_t ret;
|
||||||
resp->err = NULL;
|
resp->err = NULL;
|
||||||
uint64_t totalMem = 0;
|
uint64_t totalMem = 0;
|
||||||
|
@ -88,49 +132,19 @@ void oneapi_check_vram(oneapi_handle_t h, mem_info_t *resp)
|
||||||
char buf[buflen + 1];
|
char buf[buflen + 1];
|
||||||
int i, d, m;
|
int i, d, m;
|
||||||
|
|
||||||
if (h.handle == NULL)
|
if (h.handle == NULL) {
|
||||||
{
|
|
||||||
resp->err = strdup("Level-Zero handle not initialized");
|
resp->err = strdup("Level-Zero handle not initialized");
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
uint32_t driversCount = 0;
|
if (driver > h.num_drivers || device > h.num_devices[driver]) {
|
||||||
ret = (*h.zesDriverGet)(&driversCount, NULL);
|
resp->err = strdup("driver of device index out of bounds");
|
||||||
if (ret != ZE_RESULT_SUCCESS)
|
|
||||||
{
|
|
||||||
snprintf(buf, buflen, "unable to get driver count: %d", ret);
|
|
||||||
resp->err = strdup(buf);
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
LOG(h.verbose, "discovered %d Level-Zero drivers\n", driversCount);
|
|
||||||
|
|
||||||
zes_driver_handle_t *allDrivers =
|
|
||||||
malloc(driversCount * sizeof(zes_driver_handle_t));
|
|
||||||
(*h.zesDriverGet)(&driversCount, allDrivers);
|
|
||||||
|
|
||||||
resp->total = 0;
|
resp->total = 0;
|
||||||
resp->free = 0;
|
resp->free = 0;
|
||||||
|
|
||||||
for (d = 0; d < driversCount; d++)
|
|
||||||
{
|
|
||||||
uint32_t deviceCount = 0;
|
|
||||||
ret = (*h.zesDeviceGet)(allDrivers[d], &deviceCount, NULL);
|
|
||||||
if (ret != ZE_RESULT_SUCCESS)
|
|
||||||
{
|
|
||||||
snprintf(buf, buflen, "unable to get device count: %d", ret);
|
|
||||||
resp->err = strdup(buf);
|
|
||||||
free(allDrivers);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
LOG(h.verbose, "discovered %d Level-Zero devices\n", deviceCount);
|
|
||||||
|
|
||||||
zes_device_handle_t *devices =
|
|
||||||
malloc(deviceCount * sizeof(zes_device_handle_t));
|
|
||||||
(*h.zesDeviceGet)(allDrivers[d], &deviceCount, devices);
|
|
||||||
|
|
||||||
for (i = 0; i < deviceCount; i++)
|
|
||||||
{
|
|
||||||
zes_device_ext_properties_t ext_props;
|
zes_device_ext_properties_t ext_props;
|
||||||
ext_props.stype = ZES_STRUCTURE_TYPE_DEVICE_EXT_PROPERTIES;
|
ext_props.stype = ZES_STRUCTURE_TYPE_DEVICE_EXT_PROPERTIES;
|
||||||
ext_props.pNext = NULL;
|
ext_props.pNext = NULL;
|
||||||
|
@ -139,61 +153,61 @@ void oneapi_check_vram(oneapi_handle_t h, mem_info_t *resp)
|
||||||
props.stype = ZES_STRUCTURE_TYPE_DEVICE_PROPERTIES;
|
props.stype = ZES_STRUCTURE_TYPE_DEVICE_PROPERTIES;
|
||||||
props.pNext = &ext_props;
|
props.pNext = &ext_props;
|
||||||
|
|
||||||
ret = (*h.zesDeviceGetProperties)(devices[i], &props);
|
ret = (*h.zesDeviceGetProperties)(h.devices[driver][device], &props);
|
||||||
if (ret != ZE_RESULT_SUCCESS)
|
if (ret != ZE_RESULT_SUCCESS) {
|
||||||
{
|
|
||||||
snprintf(buf, buflen, "unable to get device properties: %d", ret);
|
snprintf(buf, buflen, "unable to get device properties: %d", ret);
|
||||||
resp->err = strdup(buf);
|
resp->err = strdup(buf);
|
||||||
free(allDrivers);
|
|
||||||
free(devices);
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (h.verbose)
|
snprintf(&resp->gpu_name[0], GPU_NAME_LEN, props.modelName);
|
||||||
{
|
|
||||||
|
// TODO this needs to map to ONEAPI_DEVICE_SELECTOR syntax
|
||||||
|
// (this is probably wrong...)
|
||||||
|
// TODO - the driver isn't included - what if there are multiple drivers?
|
||||||
|
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", device);
|
||||||
|
|
||||||
|
if (h.verbose) {
|
||||||
// When in verbose mode, report more information about
|
// When in verbose mode, report more information about
|
||||||
// the card we discover.
|
// the card we discover.
|
||||||
LOG(h.verbose, "[%d] oneAPI device name: %s\n", i,
|
LOG(h.verbose, "[%d:%d] oneAPI device name: %s\n", driver, device,
|
||||||
props.modelName);
|
props.modelName);
|
||||||
LOG(h.verbose, "[%d] oneAPI brand: %s\n", i,
|
LOG(h.verbose, "[%d:%d] oneAPI brand: %s\n", driver, device,
|
||||||
props.brandName);
|
props.brandName);
|
||||||
LOG(h.verbose, "[%d] oneAPI vendor: %s\n", i,
|
LOG(h.verbose, "[%d:%d] oneAPI vendor: %s\n", driver, device,
|
||||||
props.vendorName);
|
props.vendorName);
|
||||||
LOG(h.verbose, "[%d] oneAPI S/N: %s\n", i,
|
LOG(h.verbose, "[%d:%d] oneAPI S/N: %s\n", driver, device,
|
||||||
props.serialNumber);
|
props.serialNumber);
|
||||||
LOG(h.verbose, "[%d] oneAPI board number: %s\n", i,
|
LOG(h.verbose, "[%d:%d] oneAPI board number: %s\n", driver, device,
|
||||||
props.boardNumber);
|
props.boardNumber);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// TODO
|
||||||
|
// Compute Capability equivalent in resp->major, resp->minor, resp->patch
|
||||||
|
|
||||||
uint32_t memCount = 0;
|
uint32_t memCount = 0;
|
||||||
ret = (*h.zesDeviceEnumMemoryModules)(devices[i], &memCount, NULL);
|
ret = (*h.zesDeviceEnumMemoryModules)(h.devices[driver][device], &memCount,
|
||||||
if (ret != ZE_RESULT_SUCCESS)
|
NULL);
|
||||||
{
|
if (ret != ZE_RESULT_SUCCESS) {
|
||||||
snprintf(buf, buflen,
|
snprintf(buf, buflen, "unable to enumerate Level-Zero memory modules: %x",
|
||||||
"unable to enumerate Level-Zero memory modules: %d", ret);
|
ret);
|
||||||
resp->err = strdup(buf);
|
resp->err = strdup(buf);
|
||||||
free(allDrivers);
|
|
||||||
free(devices);
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
LOG(h.verbose, "discovered %d Level-Zero memory modules\n", memCount);
|
LOG(h.verbose, "discovered %d Level-Zero memory modules\n", memCount);
|
||||||
|
|
||||||
zes_mem_handle_t *mems = malloc(memCount * sizeof(zes_mem_handle_t));
|
zes_mem_handle_t *mems = malloc(memCount * sizeof(zes_mem_handle_t));
|
||||||
(*h.zesDeviceEnumMemoryModules)(devices[i], &memCount, mems);
|
(*h.zesDeviceEnumMemoryModules)(h.devices[driver][device], &memCount, mems);
|
||||||
|
|
||||||
for (m = 0; m < memCount; m++)
|
for (m = 0; m < memCount; m++) {
|
||||||
{
|
|
||||||
zes_mem_state_t state;
|
zes_mem_state_t state;
|
||||||
state.stype = ZES_STRUCTURE_TYPE_MEM_STATE;
|
state.stype = ZES_STRUCTURE_TYPE_MEM_STATE;
|
||||||
state.pNext = NULL;
|
state.pNext = NULL;
|
||||||
ret = (*h.zesMemoryGetState)(mems[m], &state);
|
ret = (*h.zesMemoryGetState)(mems[m], &state);
|
||||||
if (ret != ZE_RESULT_SUCCESS)
|
if (ret != ZE_RESULT_SUCCESS) {
|
||||||
{
|
snprintf(buf, buflen, "unable to get memory state: %x", ret);
|
||||||
snprintf(buf, buflen, "unable to get memory state: %d", ret);
|
|
||||||
resp->err = strdup(buf);
|
resp->err = strdup(buf);
|
||||||
free(allDrivers);
|
|
||||||
free(devices);
|
|
||||||
free(mems);
|
free(mems);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
@ -203,12 +217,41 @@ void oneapi_check_vram(oneapi_handle_t h, mem_info_t *resp)
|
||||||
}
|
}
|
||||||
|
|
||||||
free(mems);
|
free(mems);
|
||||||
}
|
}
|
||||||
|
|
||||||
free(devices);
|
void oneapi_release(oneapi_handle_t h) {
|
||||||
|
int d;
|
||||||
|
LOG(h.verbose, "releasing oneapi library\n");
|
||||||
|
for (d = 0; d < h.num_drivers; d++) {
|
||||||
|
if (h.devices != NULL && h.devices[d] != NULL) {
|
||||||
|
free(h.devices[d]);
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
if (h.devices != NULL) {
|
||||||
|
free(h.devices);
|
||||||
|
h.devices = NULL;
|
||||||
|
}
|
||||||
|
if (h.num_devices != NULL) {
|
||||||
|
free(h.num_devices);
|
||||||
|
h.num_devices = NULL;
|
||||||
|
}
|
||||||
|
if (h.drivers != NULL) {
|
||||||
|
free(h.drivers);
|
||||||
|
h.drivers = NULL;
|
||||||
|
}
|
||||||
|
h.num_drivers = 0;
|
||||||
|
UNLOAD_LIBRARY(h.handle);
|
||||||
|
h.handle = NULL;
|
||||||
|
}
|
||||||
|
|
||||||
free(allDrivers);
|
int oneapi_get_device_count(oneapi_handle_t h, int driver) {
|
||||||
|
if (h.handle == NULL || h.num_devices == NULL) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
if (driver > h.num_drivers) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
return (int)h.num_devices[driver];
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif // __APPLE__
|
#endif // __APPLE__
|
||||||
|
|
|
@ -9,8 +9,7 @@
|
||||||
#define ZE_BIT(_i) (1 << _i)
|
#define ZE_BIT(_i) (1 << _i)
|
||||||
|
|
||||||
// Just enough typedef's to dlopen/dlsym for memory information
|
// Just enough typedef's to dlopen/dlsym for memory information
|
||||||
typedef enum ze_result_t
|
typedef enum ze_result_t {
|
||||||
{
|
|
||||||
ZE_RESULT_SUCCESS = 0,
|
ZE_RESULT_SUCCESS = 0,
|
||||||
// Other values omitted for now...
|
// Other values omitted for now...
|
||||||
} ze_result_t;
|
} ze_result_t;
|
||||||
|
@ -20,13 +19,11 @@ typedef struct _zes_driver_handle_t *zes_driver_handle_t;
|
||||||
typedef struct _zes_device_handle_t *zes_device_handle_t;
|
typedef struct _zes_device_handle_t *zes_device_handle_t;
|
||||||
typedef struct _zes_mem_handle_t *zes_mem_handle_t;
|
typedef struct _zes_mem_handle_t *zes_mem_handle_t;
|
||||||
|
|
||||||
typedef enum _ze_structure_type_t
|
typedef enum _ze_structure_type_t {
|
||||||
{
|
|
||||||
ZE_STRUCTURE_TYPE_FORCE_UINT32 = 0x7fffffff
|
ZE_STRUCTURE_TYPE_FORCE_UINT32 = 0x7fffffff
|
||||||
} ze_structure_type_t;
|
} ze_structure_type_t;
|
||||||
|
|
||||||
typedef enum _zes_structure_type_t
|
typedef enum _zes_structure_type_t {
|
||||||
{
|
|
||||||
ZES_STRUCTURE_TYPE_DEVICE_PROPERTIES = 0x1,
|
ZES_STRUCTURE_TYPE_DEVICE_PROPERTIES = 0x1,
|
||||||
ZES_STRUCTURE_TYPE_MEM_PROPERTIES = 0xb,
|
ZES_STRUCTURE_TYPE_MEM_PROPERTIES = 0xb,
|
||||||
ZES_STRUCTURE_TYPE_MEM_STATE = 0x1e,
|
ZES_STRUCTURE_TYPE_MEM_STATE = 0x1e,
|
||||||
|
@ -34,35 +31,29 @@ typedef enum _zes_structure_type_t
|
||||||
ZES_STRUCTURE_TYPE_FORCE_UINT32 = 0x7fffffff
|
ZES_STRUCTURE_TYPE_FORCE_UINT32 = 0x7fffffff
|
||||||
} zes_structure_type_t;
|
} zes_structure_type_t;
|
||||||
|
|
||||||
typedef enum _zes_mem_type_t
|
typedef enum _zes_mem_type_t {
|
||||||
{
|
|
||||||
ZES_MEM_TYPE_FORCE_UINT32 = 0x7fffffff
|
ZES_MEM_TYPE_FORCE_UINT32 = 0x7fffffff
|
||||||
} zes_mem_type_t;
|
} zes_mem_type_t;
|
||||||
|
|
||||||
typedef enum _zes_mem_loc_t
|
typedef enum _zes_mem_loc_t {
|
||||||
{
|
|
||||||
ZES_MEM_LOC_SYSTEM = 0,
|
ZES_MEM_LOC_SYSTEM = 0,
|
||||||
ZES_MEM_LOC_DEVICE = 1,
|
ZES_MEM_LOC_DEVICE = 1,
|
||||||
ZES_MEM_LOC_FORCE_UINT32 = 0x7fffffff
|
ZES_MEM_LOC_FORCE_UINT32 = 0x7fffffff
|
||||||
} zes_mem_loc_t;
|
} zes_mem_loc_t;
|
||||||
|
|
||||||
typedef enum _zes_mem_health_t
|
typedef enum _zes_mem_health_t {
|
||||||
{
|
|
||||||
ZES_MEM_HEALTH_FORCE_UINT32 = 0x7fffffff
|
ZES_MEM_HEALTH_FORCE_UINT32 = 0x7fffffff
|
||||||
} zes_mem_health_t;
|
} zes_mem_health_t;
|
||||||
|
|
||||||
typedef struct _ze_device_uuid_t
|
typedef struct _ze_device_uuid_t {
|
||||||
{
|
|
||||||
uint8_t id[ZE_MAX_DEVICE_UUID_SIZE];
|
uint8_t id[ZE_MAX_DEVICE_UUID_SIZE];
|
||||||
} ze_device_uuid_t;
|
} ze_device_uuid_t;
|
||||||
|
|
||||||
typedef struct _zes_uuid_t
|
typedef struct _zes_uuid_t {
|
||||||
{
|
|
||||||
uint8_t id[ZE_MAX_DEVICE_UUID_SIZE];
|
uint8_t id[ZE_MAX_DEVICE_UUID_SIZE];
|
||||||
} zes_uuid_t;
|
} zes_uuid_t;
|
||||||
|
|
||||||
typedef enum _ze_device_type_t
|
typedef enum _ze_device_type_t {
|
||||||
{
|
|
||||||
ZE_DEVICE_TYPE_GPU = 1,
|
ZE_DEVICE_TYPE_GPU = 1,
|
||||||
ZE_DEVICE_TYPE_CPU = 2,
|
ZE_DEVICE_TYPE_CPU = 2,
|
||||||
ZE_DEVICE_TYPE_FPGA = 3,
|
ZE_DEVICE_TYPE_FPGA = 3,
|
||||||
|
@ -71,8 +62,7 @@ typedef enum _ze_device_type_t
|
||||||
ZE_DEVICE_TYPE_FORCE_UINT32 = 0x7fffffff
|
ZE_DEVICE_TYPE_FORCE_UINT32 = 0x7fffffff
|
||||||
} ze_device_type_t;
|
} ze_device_type_t;
|
||||||
|
|
||||||
typedef enum _zes_device_type_t
|
typedef enum _zes_device_type_t {
|
||||||
{
|
|
||||||
ZES_DEVICE_TYPE_GPU = 1,
|
ZES_DEVICE_TYPE_GPU = 1,
|
||||||
ZES_DEVICE_TYPE_CPU = 2,
|
ZES_DEVICE_TYPE_CPU = 2,
|
||||||
ZES_DEVICE_TYPE_FPGA = 3,
|
ZES_DEVICE_TYPE_FPGA = 3,
|
||||||
|
@ -82,8 +72,7 @@ typedef enum _zes_device_type_t
|
||||||
} zes_device_type_t;
|
} zes_device_type_t;
|
||||||
|
|
||||||
typedef uint32_t ze_device_property_flags_t;
|
typedef uint32_t ze_device_property_flags_t;
|
||||||
typedef enum _ze_device_property_flag_t
|
typedef enum _ze_device_property_flag_t {
|
||||||
{
|
|
||||||
ZE_DEVICE_PROPERTY_FLAG_INTEGRATED = ZE_BIT(0),
|
ZE_DEVICE_PROPERTY_FLAG_INTEGRATED = ZE_BIT(0),
|
||||||
ZE_DEVICE_PROPERTY_FLAG_SUBDEVICE = ZE_BIT(1),
|
ZE_DEVICE_PROPERTY_FLAG_SUBDEVICE = ZE_BIT(1),
|
||||||
ZE_DEVICE_PROPERTY_FLAG_ECC = ZE_BIT(2),
|
ZE_DEVICE_PROPERTY_FLAG_ECC = ZE_BIT(2),
|
||||||
|
@ -92,8 +81,7 @@ typedef enum _ze_device_property_flag_t
|
||||||
} ze_device_property_flag_t;
|
} ze_device_property_flag_t;
|
||||||
|
|
||||||
typedef uint32_t zes_device_property_flags_t;
|
typedef uint32_t zes_device_property_flags_t;
|
||||||
typedef enum _zes_device_property_flag_t
|
typedef enum _zes_device_property_flag_t {
|
||||||
{
|
|
||||||
ZES_DEVICE_PROPERTY_FLAG_INTEGRATED = ZE_BIT(0),
|
ZES_DEVICE_PROPERTY_FLAG_INTEGRATED = ZE_BIT(0),
|
||||||
ZES_DEVICE_PROPERTY_FLAG_SUBDEVICE = ZE_BIT(1),
|
ZES_DEVICE_PROPERTY_FLAG_SUBDEVICE = ZE_BIT(1),
|
||||||
ZES_DEVICE_PROPERTY_FLAG_ECC = ZE_BIT(2),
|
ZES_DEVICE_PROPERTY_FLAG_ECC = ZE_BIT(2),
|
||||||
|
@ -101,8 +89,7 @@ typedef enum _zes_device_property_flag_t
|
||||||
ZES_DEVICE_PROPERTY_FLAG_FORCE_UINT32 = 0x7fffffff
|
ZES_DEVICE_PROPERTY_FLAG_FORCE_UINT32 = 0x7fffffff
|
||||||
} zes_device_property_flag_t;
|
} zes_device_property_flag_t;
|
||||||
|
|
||||||
typedef struct _ze_device_properties_t
|
typedef struct _ze_device_properties_t {
|
||||||
{
|
|
||||||
ze_structure_type_t stype;
|
ze_structure_type_t stype;
|
||||||
void *pNext;
|
void *pNext;
|
||||||
ze_device_type_t type;
|
ze_device_type_t type;
|
||||||
|
@ -126,8 +113,7 @@ typedef struct _ze_device_properties_t
|
||||||
char name[ZE_MAX_DEVICE_NAME];
|
char name[ZE_MAX_DEVICE_NAME];
|
||||||
} ze_device_properties_t;
|
} ze_device_properties_t;
|
||||||
|
|
||||||
typedef struct _zes_device_properties_t
|
typedef struct _zes_device_properties_t {
|
||||||
{
|
|
||||||
zes_structure_type_t stype;
|
zes_structure_type_t stype;
|
||||||
void *pNext;
|
void *pNext;
|
||||||
ze_device_properties_t core;
|
ze_device_properties_t core;
|
||||||
|
@ -140,8 +126,7 @@ typedef struct _zes_device_properties_t
|
||||||
char driverVersion[ZES_STRING_PROPERTY_SIZE];
|
char driverVersion[ZES_STRING_PROPERTY_SIZE];
|
||||||
} zes_device_properties_t;
|
} zes_device_properties_t;
|
||||||
|
|
||||||
typedef struct _zes_device_ext_properties_t
|
typedef struct _zes_device_ext_properties_t {
|
||||||
{
|
|
||||||
zes_structure_type_t stype;
|
zes_structure_type_t stype;
|
||||||
void *pNext;
|
void *pNext;
|
||||||
zes_uuid_t uuid;
|
zes_uuid_t uuid;
|
||||||
|
@ -149,8 +134,7 @@ typedef struct _zes_device_ext_properties_t
|
||||||
zes_device_property_flags_t flags;
|
zes_device_property_flags_t flags;
|
||||||
} zes_device_ext_properties_t;
|
} zes_device_ext_properties_t;
|
||||||
|
|
||||||
typedef struct _zes_mem_properties_t
|
typedef struct _zes_mem_properties_t {
|
||||||
{
|
|
||||||
zes_structure_type_t stype;
|
zes_structure_type_t stype;
|
||||||
void *pNext;
|
void *pNext;
|
||||||
zes_mem_type_t type;
|
zes_mem_type_t type;
|
||||||
|
@ -162,8 +146,7 @@ typedef struct _zes_mem_properties_t
|
||||||
int32_t numChannels;
|
int32_t numChannels;
|
||||||
} zes_mem_properties_t;
|
} zes_mem_properties_t;
|
||||||
|
|
||||||
typedef struct _zes_mem_state_t
|
typedef struct _zes_mem_state_t {
|
||||||
{
|
|
||||||
zes_structure_type_t stype;
|
zes_structure_type_t stype;
|
||||||
const void *pNext;
|
const void *pNext;
|
||||||
zes_mem_health_t health;
|
zes_mem_health_t health;
|
||||||
|
@ -171,10 +154,19 @@ typedef struct _zes_mem_state_t
|
||||||
uint64_t size;
|
uint64_t size;
|
||||||
} zes_mem_state_t;
|
} zes_mem_state_t;
|
||||||
|
|
||||||
typedef struct oneapi_handle
|
typedef struct oneapi_handle {
|
||||||
{
|
|
||||||
void *handle;
|
void *handle;
|
||||||
uint16_t verbose;
|
uint16_t verbose;
|
||||||
|
|
||||||
|
uint32_t num_drivers;
|
||||||
|
zes_driver_handle_t *drivers;
|
||||||
|
uint32_t *num_devices;
|
||||||
|
zes_device_handle_t **devices;
|
||||||
|
|
||||||
|
// TODO Driver major, minor information
|
||||||
|
// int driver_major;
|
||||||
|
// int driver_minor;
|
||||||
|
|
||||||
ze_result_t (*zesInit)(int);
|
ze_result_t (*zesInit)(int);
|
||||||
ze_result_t (*zesDriverGet)(uint32_t *pCount, zes_driver_handle_t *phDrivers);
|
ze_result_t (*zesDriverGet)(uint32_t *pCount, zes_driver_handle_t *phDrivers);
|
||||||
ze_result_t (*zesDeviceGet)(zes_driver_handle_t hDriver, uint32_t *pCount,
|
ze_result_t (*zesDeviceGet)(zes_driver_handle_t hDriver, uint32_t *pCount,
|
||||||
|
@ -191,21 +183,21 @@ typedef struct oneapi_handle
|
||||||
|
|
||||||
} oneapi_handle_t;
|
} oneapi_handle_t;
|
||||||
|
|
||||||
typedef struct oneapi_init_resp
|
typedef struct oneapi_init_resp {
|
||||||
{
|
|
||||||
char *err; // If err is non-null handle is invalid
|
char *err; // If err is non-null handle is invalid
|
||||||
int num_devices;
|
|
||||||
oneapi_handle_t oh;
|
oneapi_handle_t oh;
|
||||||
} oneapi_init_resp_t;
|
} oneapi_init_resp_t;
|
||||||
|
|
||||||
typedef struct oneapi_version_resp
|
typedef struct oneapi_version_resp {
|
||||||
{
|
|
||||||
ze_result_t status;
|
ze_result_t status;
|
||||||
char *str; // Contains version or error string if status != 0
|
char *str; // Contains version or error string if status != 0
|
||||||
} oneapi_version_resp_t;
|
} oneapi_version_resp_t;
|
||||||
|
|
||||||
void oneapi_init(char *oneapi_lib_path, oneapi_init_resp_t *resp);
|
void oneapi_init(char *oneapi_lib_path, oneapi_init_resp_t *resp);
|
||||||
void oneapi_check_vram(oneapi_handle_t rh, mem_info_t *resp);
|
void oneapi_check_vram(oneapi_handle_t h, int driver, int device,
|
||||||
|
mem_info_t *resp);
|
||||||
|
void oneapi_release(oneapi_handle_t h);
|
||||||
|
int oneapi_get_device_count(oneapi_handle_t h, int driver);
|
||||||
|
|
||||||
#endif // __GPU_INFO_INTEL_H__
|
#endif // __GPU_INFO_INTEL_H__
|
||||||
#endif // __APPLE__
|
#endif // __APPLE__
|
||||||
|
|
89
gpu/gpu_linux.go
Normal file
89
gpu/gpu_linux.go
Normal file
|
@ -0,0 +1,89 @@
|
||||||
|
package gpu
|
||||||
|
|
||||||
|
import (
|
||||||
|
"bufio"
|
||||||
|
"fmt"
|
||||||
|
"os"
|
||||||
|
"strings"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/format"
|
||||||
|
)
|
||||||
|
|
||||||
|
var CudartGlobs = []string{
|
||||||
|
"/usr/local/cuda/lib64/libcudart.so*",
|
||||||
|
"/usr/lib/x86_64-linux-gnu/nvidia/current/libcudart.so*",
|
||||||
|
"/usr/lib/x86_64-linux-gnu/libcudart.so*",
|
||||||
|
"/usr/lib/wsl/lib/libcudart.so*",
|
||||||
|
"/usr/lib/wsl/drivers/*/libcudart.so*",
|
||||||
|
"/opt/cuda/lib64/libcudart.so*",
|
||||||
|
"/usr/local/cuda*/targets/aarch64-linux/lib/libcudart.so*",
|
||||||
|
"/usr/lib/aarch64-linux-gnu/nvidia/current/libcudart.so*",
|
||||||
|
"/usr/lib/aarch64-linux-gnu/libcudart.so*",
|
||||||
|
"/usr/local/cuda/lib*/libcudart.so*",
|
||||||
|
"/usr/lib*/libcudart.so*",
|
||||||
|
"/usr/local/lib*/libcudart.so*",
|
||||||
|
}
|
||||||
|
|
||||||
|
var NvmlGlobs = []string{}
|
||||||
|
|
||||||
|
var NvcudaGlobs = []string{
|
||||||
|
"/usr/local/cuda*/targets/*/lib/libcuda.so*",
|
||||||
|
"/usr/lib/*-linux-gnu/nvidia/current/libcuda.so*",
|
||||||
|
"/usr/lib/*-linux-gnu/libcuda.so*",
|
||||||
|
"/usr/lib/wsl/lib/libcuda.so*",
|
||||||
|
"/usr/lib/wsl/drivers/*/libcuda.so*",
|
||||||
|
"/opt/cuda/lib*/libcuda.so*",
|
||||||
|
"/usr/local/cuda/lib*/libcuda.so*",
|
||||||
|
"/usr/lib*/libcuda.so*",
|
||||||
|
"/usr/local/lib*/libcuda.so*",
|
||||||
|
}
|
||||||
|
|
||||||
|
var OneapiGlobs = []string{
|
||||||
|
"/usr/lib/x86_64-linux-gnu/libze_intel_gpu.so*",
|
||||||
|
"/usr/lib*/libze_intel_gpu.so*",
|
||||||
|
}
|
||||||
|
|
||||||
|
var CudartMgmtName = "libcudart.so*"
|
||||||
|
var NvcudaMgmtName = "libcuda.so*"
|
||||||
|
var NvmlMgmtName = "" // not currently wired on linux
|
||||||
|
var OneapiMgmtName = "libze_intel_gpu.so"
|
||||||
|
|
||||||
|
func GetCPUMem() (memInfo, error) {
|
||||||
|
var mem memInfo
|
||||||
|
var total, available, free, buffers, cached uint64
|
||||||
|
f, err := os.Open("/proc/meminfo")
|
||||||
|
if err != nil {
|
||||||
|
return mem, err
|
||||||
|
}
|
||||||
|
defer f.Close()
|
||||||
|
s := bufio.NewScanner(f)
|
||||||
|
for s.Scan() {
|
||||||
|
line := s.Text()
|
||||||
|
switch {
|
||||||
|
case strings.HasPrefix(line, "MemTotal:"):
|
||||||
|
_, err = fmt.Sscanf(line, "MemTotal:%d", &total)
|
||||||
|
case strings.HasPrefix(line, "MemAvailable:"):
|
||||||
|
_, err = fmt.Sscanf(line, "MemAvailable:%d", &available)
|
||||||
|
case strings.HasPrefix(line, "MemFree:"):
|
||||||
|
_, err = fmt.Sscanf(line, "MemFree:%d", &free)
|
||||||
|
case strings.HasPrefix(line, "Buffers:"):
|
||||||
|
_, err = fmt.Sscanf(line, "Buffers:%d", &buffers)
|
||||||
|
case strings.HasPrefix(line, "Cached:"):
|
||||||
|
_, err = fmt.Sscanf(line, "Cached:%d", &cached)
|
||||||
|
default:
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
if err != nil {
|
||||||
|
return mem, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if total > 0 && available > 0 {
|
||||||
|
mem.TotalMemory = total * format.KibiByte
|
||||||
|
mem.FreeMemory = available * format.KibiByte
|
||||||
|
return mem, nil
|
||||||
|
}
|
||||||
|
}
|
||||||
|
mem.TotalMemory = total * format.KibiByte
|
||||||
|
mem.FreeMemory = (free + buffers + cached) * format.KibiByte
|
||||||
|
return mem, nil
|
||||||
|
}
|
55
gpu/gpu_windows.go
Normal file
55
gpu/gpu_windows.go
Normal file
|
@ -0,0 +1,55 @@
|
||||||
|
package gpu
|
||||||
|
|
||||||
|
import (
|
||||||
|
"fmt"
|
||||||
|
"syscall"
|
||||||
|
"unsafe"
|
||||||
|
)
|
||||||
|
|
||||||
|
type MEMORYSTATUSEX struct {
|
||||||
|
length uint32
|
||||||
|
MemoryLoad uint32
|
||||||
|
TotalPhys uint64
|
||||||
|
AvailPhys uint64
|
||||||
|
TotalPageFile uint64
|
||||||
|
AvailPageFile uint64
|
||||||
|
TotalVirtual uint64
|
||||||
|
AvailVirtual uint64
|
||||||
|
AvailExtendedVirtual uint64
|
||||||
|
}
|
||||||
|
|
||||||
|
var (
|
||||||
|
k32 = syscall.NewLazyDLL("kernel32.dll")
|
||||||
|
globalMemoryStatusExProc = k32.NewProc("GlobalMemoryStatusEx")
|
||||||
|
sizeofMemoryStatusEx = uint32(unsafe.Sizeof(MEMORYSTATUSEX{}))
|
||||||
|
)
|
||||||
|
|
||||||
|
var CudartGlobs = []string{
|
||||||
|
"c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll",
|
||||||
|
}
|
||||||
|
|
||||||
|
var NvmlGlobs = []string{
|
||||||
|
"c:\\Windows\\System32\\nvml.dll",
|
||||||
|
}
|
||||||
|
|
||||||
|
var NvcudaGlobs = []string{
|
||||||
|
"c:\\windows\\system*\\nvcuda.dll",
|
||||||
|
}
|
||||||
|
|
||||||
|
var OneapiGlobs = []string{
|
||||||
|
"c:\\Windows\\System32\\DriverStore\\FileRepository\\*\\ze_intel_gpu64.dll",
|
||||||
|
}
|
||||||
|
|
||||||
|
var CudartMgmtName = "cudart64_*.dll"
|
||||||
|
var NvcudaMgmtName = "nvcuda.dll"
|
||||||
|
var NvmlMgmtName = "nvml.dll"
|
||||||
|
var OneapiMgmtName = "ze_intel_gpu64.dll"
|
||||||
|
|
||||||
|
func GetCPUMem() (memInfo, error) {
|
||||||
|
memStatus := MEMORYSTATUSEX{length: sizeofMemoryStatusEx}
|
||||||
|
r1, _, err := globalMemoryStatusExProc.Call(uintptr(unsafe.Pointer(&memStatus)))
|
||||||
|
if r1 == 0 {
|
||||||
|
return memInfo{}, fmt.Errorf("GlobalMemoryStatusEx failed: %w", err)
|
||||||
|
}
|
||||||
|
return memInfo{TotalMemory: memStatus.TotalPhys, FreeMemory: memStatus.AvailPhys}, nil
|
||||||
|
}
|
53
gpu/types.go
53
gpu/types.go
|
@ -18,7 +18,7 @@ type GpuInfo struct {
|
||||||
Library string `json:"library,omitempty"`
|
Library string `json:"library,omitempty"`
|
||||||
|
|
||||||
// Optional variant to select (e.g. versions, cpu feature flags)
|
// Optional variant to select (e.g. versions, cpu feature flags)
|
||||||
Variant string `json:"variant,omitempty"`
|
Variant CPUCapability `json:"variant"`
|
||||||
|
|
||||||
// MinimumMemory represents the minimum memory required to use the GPU
|
// MinimumMemory represents the minimum memory required to use the GPU
|
||||||
MinimumMemory uint64 `json:"-"`
|
MinimumMemory uint64 `json:"-"`
|
||||||
|
@ -38,6 +38,30 @@ type GpuInfo struct {
|
||||||
// TODO other performance capability info to help in scheduling decisions
|
// TODO other performance capability info to help in scheduling decisions
|
||||||
}
|
}
|
||||||
|
|
||||||
|
type CPUInfo struct {
|
||||||
|
GpuInfo
|
||||||
|
}
|
||||||
|
|
||||||
|
type CudaGPUInfo struct {
|
||||||
|
GpuInfo
|
||||||
|
index int //nolint:unused,nolintlint
|
||||||
|
}
|
||||||
|
type CudaGPUInfoList []CudaGPUInfo
|
||||||
|
|
||||||
|
type RocmGPUInfo struct {
|
||||||
|
GpuInfo
|
||||||
|
usedFilepath string //nolint:unused,nolintlint
|
||||||
|
index int //nolint:unused,nolintlint
|
||||||
|
}
|
||||||
|
type RocmGPUInfoList []RocmGPUInfo
|
||||||
|
|
||||||
|
type OneapiGPUInfo struct {
|
||||||
|
GpuInfo
|
||||||
|
driverIndex int //nolint:unused,nolintlint
|
||||||
|
gpuIndex int //nolint:unused,nolintlint
|
||||||
|
}
|
||||||
|
type OneapiGPUInfoList []OneapiGPUInfo
|
||||||
|
|
||||||
type GpuInfoList []GpuInfo
|
type GpuInfoList []GpuInfo
|
||||||
|
|
||||||
// Split up the set of gpu info's by Library and variant
|
// Split up the set of gpu info's by Library and variant
|
||||||
|
@ -47,8 +71,8 @@ func (l GpuInfoList) ByLibrary() []GpuInfoList {
|
||||||
for _, info := range l {
|
for _, info := range l {
|
||||||
found := false
|
found := false
|
||||||
requested := info.Library
|
requested := info.Library
|
||||||
if info.Variant != "" {
|
if info.Variant != CPUCapabilityNone {
|
||||||
requested += "_" + info.Variant
|
requested += "_" + info.Variant.String()
|
||||||
}
|
}
|
||||||
for i, lib := range libs {
|
for i, lib := range libs {
|
||||||
if lib == requested {
|
if lib == requested {
|
||||||
|
@ -86,3 +110,26 @@ type ByFreeMemory []GpuInfo
|
||||||
func (a ByFreeMemory) Len() int { return len(a) }
|
func (a ByFreeMemory) Len() int { return len(a) }
|
||||||
func (a ByFreeMemory) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
|
func (a ByFreeMemory) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
|
||||||
func (a ByFreeMemory) Less(i, j int) bool { return a[i].FreeMemory < a[j].FreeMemory }
|
func (a ByFreeMemory) Less(i, j int) bool { return a[i].FreeMemory < a[j].FreeMemory }
|
||||||
|
|
||||||
|
type CPUCapability uint32
|
||||||
|
|
||||||
|
// Override at build time when building base GPU runners
|
||||||
|
var GPURunnerCPUCapability = CPUCapabilityAVX
|
||||||
|
|
||||||
|
const (
|
||||||
|
CPUCapabilityNone CPUCapability = iota
|
||||||
|
CPUCapabilityAVX
|
||||||
|
CPUCapabilityAVX2
|
||||||
|
// TODO AVX512
|
||||||
|
)
|
||||||
|
|
||||||
|
func (c CPUCapability) String() string {
|
||||||
|
switch c {
|
||||||
|
case CPUCapabilityAVX:
|
||||||
|
return "avx"
|
||||||
|
case CPUCapabilityAVX2:
|
||||||
|
return "avx2"
|
||||||
|
default:
|
||||||
|
return "no vector extensions"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
|
@ -22,6 +22,7 @@ func TestMultiModelConcurrency(t *testing.T) {
|
||||||
Model: "orca-mini",
|
Model: "orca-mini",
|
||||||
Prompt: "why is the ocean blue?",
|
Prompt: "why is the ocean blue?",
|
||||||
Stream: &stream,
|
Stream: &stream,
|
||||||
|
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||||
Options: map[string]interface{}{
|
Options: map[string]interface{}{
|
||||||
"seed": 42,
|
"seed": 42,
|
||||||
"temperature": 0.0,
|
"temperature": 0.0,
|
||||||
|
@ -30,6 +31,7 @@ func TestMultiModelConcurrency(t *testing.T) {
|
||||||
Model: "tinydolphin",
|
Model: "tinydolphin",
|
||||||
Prompt: "what is the origin of the us thanksgiving holiday?",
|
Prompt: "what is the origin of the us thanksgiving holiday?",
|
||||||
Stream: &stream,
|
Stream: &stream,
|
||||||
|
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||||
Options: map[string]interface{}{
|
Options: map[string]interface{}{
|
||||||
"seed": 42,
|
"seed": 42,
|
||||||
"temperature": 0.0,
|
"temperature": 0.0,
|
||||||
|
@ -38,42 +40,64 @@ func TestMultiModelConcurrency(t *testing.T) {
|
||||||
}
|
}
|
||||||
resp = [2][]string{
|
resp = [2][]string{
|
||||||
[]string{"sunlight"},
|
[]string{"sunlight"},
|
||||||
[]string{"england", "english", "massachusetts", "pilgrims"},
|
[]string{"england", "english", "massachusetts", "pilgrims", "british"},
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
var wg sync.WaitGroup
|
var wg sync.WaitGroup
|
||||||
wg.Add(len(req))
|
wg.Add(len(req))
|
||||||
ctx, cancel := context.WithTimeout(context.Background(), time.Second*120)
|
ctx, cancel := context.WithTimeout(context.Background(), time.Second*240)
|
||||||
defer cancel()
|
defer cancel()
|
||||||
|
|
||||||
|
client, _, cleanup := InitServerConnection(ctx, t)
|
||||||
|
defer cleanup()
|
||||||
|
|
||||||
|
for i := 0; i < len(req); i++ {
|
||||||
|
require.NoError(t, PullIfMissing(ctx, client, req[i].Model))
|
||||||
|
}
|
||||||
|
|
||||||
for i := 0; i < len(req); i++ {
|
for i := 0; i < len(req); i++ {
|
||||||
go func(i int) {
|
go func(i int) {
|
||||||
defer wg.Done()
|
defer wg.Done()
|
||||||
GenerateTestHelper(ctx, t, req[i], resp[i])
|
DoGenerate(ctx, t, client, req[i], resp[i], 60*time.Second, 10*time.Second)
|
||||||
}(i)
|
}(i)
|
||||||
}
|
}
|
||||||
wg.Wait()
|
wg.Wait()
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestIntegrationConcurrentPredictOrcaMini(t *testing.T) {
|
func TestIntegrationConcurrentPredictOrcaMini(t *testing.T) {
|
||||||
ctx, cancel := context.WithTimeout(context.Background(), 10*time.Minute) // GTX 750 2G card takes ~9 minutes
|
req, resp := GenerateRequests()
|
||||||
|
reqLimit := len(req)
|
||||||
|
iterLimit := 5
|
||||||
|
|
||||||
|
vram := os.Getenv("OLLAMA_MAX_VRAM")
|
||||||
|
if vram != "" {
|
||||||
|
max, err := strconv.ParseUint(vram, 10, 64)
|
||||||
|
require.NoError(t, err)
|
||||||
|
// Don't hammer on small VRAM cards...
|
||||||
|
if max < 4*1024*1024*1024 {
|
||||||
|
reqLimit = min(reqLimit, 2)
|
||||||
|
iterLimit = 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
ctx, cancel := context.WithTimeout(context.Background(), 9*time.Minute)
|
||||||
defer cancel()
|
defer cancel()
|
||||||
client, _, cleanup := InitServerConnection(ctx, t)
|
client, _, cleanup := InitServerConnection(ctx, t)
|
||||||
defer cleanup()
|
defer cleanup()
|
||||||
|
|
||||||
req, resp := GenerateRequests()
|
|
||||||
// Get the server running (if applicable) warm the model up with a single initial request
|
// Get the server running (if applicable) warm the model up with a single initial request
|
||||||
DoGenerate(ctx, t, client, req[0], resp[0], 60*time.Second, 5*time.Second)
|
DoGenerate(ctx, t, client, req[0], resp[0], 60*time.Second, 10*time.Second)
|
||||||
|
|
||||||
var wg sync.WaitGroup
|
var wg sync.WaitGroup
|
||||||
wg.Add(len(req))
|
wg.Add(reqLimit)
|
||||||
for i := 0; i < len(req); i++ {
|
for i := 0; i < reqLimit; i++ {
|
||||||
go func(i int) {
|
go func(i int) {
|
||||||
defer wg.Done()
|
defer wg.Done()
|
||||||
for j := 0; j < 5; j++ {
|
for j := 0; j < iterLimit; j++ {
|
||||||
slog.Info("Starting", "req", i, "iter", j)
|
slog.Info("Starting", "req", i, "iter", j)
|
||||||
// On slower GPUs it can take a while to process the 4 concurrent requests
|
// On slower GPUs it can take a while to process the concurrent requests
|
||||||
// so we allow a much longer initial timeout
|
// so we allow a much longer initial timeout
|
||||||
DoGenerate(ctx, t, client, req[i], resp[i], 90*time.Second, 5*time.Second)
|
DoGenerate(ctx, t, client, req[i], resp[i], 120*time.Second, 20*time.Second)
|
||||||
}
|
}
|
||||||
}(i)
|
}(i)
|
||||||
}
|
}
|
||||||
|
@ -221,5 +245,23 @@ func TestMultiModelStress(t *testing.T) {
|
||||||
}
|
}
|
||||||
}(i)
|
}(i)
|
||||||
}
|
}
|
||||||
|
go func() {
|
||||||
|
for {
|
||||||
|
time.Sleep(2 * time.Second)
|
||||||
|
select {
|
||||||
|
case <-ctx.Done():
|
||||||
|
return
|
||||||
|
default:
|
||||||
|
models, err := client.ListRunning(ctx)
|
||||||
|
if err != nil {
|
||||||
|
slog.Warn("failed to list running models", "error", err)
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
for _, m := range models.Models {
|
||||||
|
slog.Info("loaded model snapshot", "model", m)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}()
|
||||||
wg.Wait()
|
wg.Wait()
|
||||||
}
|
}
|
||||||
|
|
|
@ -11,7 +11,8 @@ import (
|
||||||
)
|
)
|
||||||
|
|
||||||
func TestContextExhaustion(t *testing.T) {
|
func TestContextExhaustion(t *testing.T) {
|
||||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute) // TODO maybe shorter?
|
// Longer needed for small footprint GPUs
|
||||||
|
ctx, cancel := context.WithTimeout(context.Background(), 6*time.Minute)
|
||||||
defer cancel()
|
defer cancel()
|
||||||
// Set up the test data
|
// Set up the test data
|
||||||
req := api.GenerateRequest{
|
req := api.GenerateRequest{
|
||||||
|
|
|
@ -32,7 +32,11 @@ func TestIntegrationMultimodal(t *testing.T) {
|
||||||
resp := "the ollam"
|
resp := "the ollam"
|
||||||
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Minute)
|
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Minute)
|
||||||
defer cancel()
|
defer cancel()
|
||||||
GenerateTestHelper(ctx, t, req, []string{resp})
|
client, _, cleanup := InitServerConnection(ctx, t)
|
||||||
|
defer cleanup()
|
||||||
|
require.NoError(t, PullIfMissing(ctx, client, req.Model))
|
||||||
|
// llava models on CPU can be quite slow to start,
|
||||||
|
DoGenerate(ctx, t, client, req, []string{resp}, 120*time.Second, 30*time.Second)
|
||||||
}
|
}
|
||||||
|
|
||||||
const imageEncoding = `iVBORw0KGgoAAAANSUhEUgAAANIAAAB4CAYAAACHHqzKAAAAAXNSR0IArs4c6QAAAIRlWElmTU0AKgAAAAgABQESAAMAAAABAAEAAAEaAAUAAAABAAAASgEb
|
const imageEncoding = `iVBORw0KGgoAAAANSUhEUgAAANIAAAB4CAYAAACHHqzKAAAAAXNSR0IArs4c6QAAAIRlWElmTU0AKgAAAAgABQESAAMAAAABAAEAAAEaAAUAAAABAAAASgEb
|
||||||
|
|
|
@ -140,7 +140,7 @@ func PullIfMissing(ctx context.Context, client *api.Client, modelName string) er
|
||||||
|
|
||||||
showCtx, cancel := context.WithDeadlineCause(
|
showCtx, cancel := context.WithDeadlineCause(
|
||||||
ctx,
|
ctx,
|
||||||
time.Now().Add(5*time.Second),
|
time.Now().Add(10*time.Second),
|
||||||
fmt.Errorf("show for existing model %s took too long", modelName),
|
fmt.Errorf("show for existing model %s took too long", modelName),
|
||||||
)
|
)
|
||||||
defer cancel()
|
defer cancel()
|
||||||
|
@ -290,6 +290,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
|
||||||
Model: "orca-mini",
|
Model: "orca-mini",
|
||||||
Prompt: "why is the ocean blue?",
|
Prompt: "why is the ocean blue?",
|
||||||
Stream: &stream,
|
Stream: &stream,
|
||||||
|
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||||
Options: map[string]interface{}{
|
Options: map[string]interface{}{
|
||||||
"seed": 42,
|
"seed": 42,
|
||||||
"temperature": 0.0,
|
"temperature": 0.0,
|
||||||
|
@ -298,6 +299,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
|
||||||
Model: "orca-mini",
|
Model: "orca-mini",
|
||||||
Prompt: "why is the color of dirt brown?",
|
Prompt: "why is the color of dirt brown?",
|
||||||
Stream: &stream,
|
Stream: &stream,
|
||||||
|
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||||
Options: map[string]interface{}{
|
Options: map[string]interface{}{
|
||||||
"seed": 42,
|
"seed": 42,
|
||||||
"temperature": 0.0,
|
"temperature": 0.0,
|
||||||
|
@ -306,6 +308,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
|
||||||
Model: "orca-mini",
|
Model: "orca-mini",
|
||||||
Prompt: "what is the origin of the us thanksgiving holiday?",
|
Prompt: "what is the origin of the us thanksgiving holiday?",
|
||||||
Stream: &stream,
|
Stream: &stream,
|
||||||
|
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||||
Options: map[string]interface{}{
|
Options: map[string]interface{}{
|
||||||
"seed": 42,
|
"seed": 42,
|
||||||
"temperature": 0.0,
|
"temperature": 0.0,
|
||||||
|
@ -314,6 +317,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
|
||||||
Model: "orca-mini",
|
Model: "orca-mini",
|
||||||
Prompt: "what is the origin of independence day?",
|
Prompt: "what is the origin of independence day?",
|
||||||
Stream: &stream,
|
Stream: &stream,
|
||||||
|
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||||
Options: map[string]interface{}{
|
Options: map[string]interface{}{
|
||||||
"seed": 42,
|
"seed": 42,
|
||||||
"temperature": 0.0,
|
"temperature": 0.0,
|
||||||
|
@ -322,6 +326,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
|
||||||
Model: "orca-mini",
|
Model: "orca-mini",
|
||||||
Prompt: "what is the composition of air?",
|
Prompt: "what is the composition of air?",
|
||||||
Stream: &stream,
|
Stream: &stream,
|
||||||
|
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||||
Options: map[string]interface{}{
|
Options: map[string]interface{}{
|
||||||
"seed": 42,
|
"seed": 42,
|
||||||
"temperature": 0.0,
|
"temperature": 0.0,
|
||||||
|
@ -331,7 +336,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
|
||||||
[][]string{
|
[][]string{
|
||||||
[]string{"sunlight"},
|
[]string{"sunlight"},
|
||||||
[]string{"soil", "organic", "earth", "black", "tan"},
|
[]string{"soil", "organic", "earth", "black", "tan"},
|
||||||
[]string{"england", "english", "massachusetts", "pilgrims"},
|
[]string{"england", "english", "massachusetts", "pilgrims", "british"},
|
||||||
[]string{"fourth", "july", "declaration", "independence"},
|
[]string{"fourth", "july", "declaration", "independence"},
|
||||||
[]string{"nitrogen", "oxygen", "carbon", "dioxide"},
|
[]string{"nitrogen", "oxygen", "carbon", "dioxide"},
|
||||||
}
|
}
|
||||||
|
|
14
llm/ext_server/server.cpp
vendored
14
llm/ext_server/server.cpp
vendored
|
@ -2335,9 +2335,9 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, g
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
#ifndef GGML_USE_CUBLAS
|
#ifndef GGML_USE_CUDA
|
||||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the split mode has no effect.\n");
|
fprintf(stderr, "warning: llama.cpp was compiled without CUDA. Setting the split mode has no effect.\n");
|
||||||
#endif // GGML_USE_CUBLAS
|
#endif // GGML_USE_CUDA
|
||||||
}
|
}
|
||||||
else if (arg == "--tensor-split" || arg == "-ts")
|
else if (arg == "--tensor-split" || arg == "-ts")
|
||||||
{
|
{
|
||||||
|
@ -2346,7 +2346,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, g
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)
|
#if defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)
|
||||||
std::string arg_next = argv[i];
|
std::string arg_next = argv[i];
|
||||||
|
|
||||||
// split string by , and /
|
// split string by , and /
|
||||||
|
@ -2367,8 +2367,8 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, g
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {});
|
LOG_WARNING("llama.cpp was compiled without CUDA. It is not possible to set a tensor split.\n", {});
|
||||||
#endif // GGML_USE_CUBLAS
|
#endif // GGML_USE_CUDA
|
||||||
}
|
}
|
||||||
else if (arg == "--main-gpu" || arg == "-mg")
|
else if (arg == "--main-gpu" || arg == "-mg")
|
||||||
{
|
{
|
||||||
|
@ -2377,7 +2377,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, g
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)
|
#if defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)
|
||||||
params.main_gpu = std::stoi(argv[i]);
|
params.main_gpu = std::stoi(argv[i]);
|
||||||
#else
|
#else
|
||||||
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
|
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
|
||||||
|
|
|
@ -307,6 +307,7 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
|
||||||
|
|
||||||
partialOffload = 4 * batch * embedding
|
partialOffload = 4 * batch * embedding
|
||||||
partialOffload += max(
|
partialOffload += max(
|
||||||
|
// 4*batch*(4+6*embedding+context*(2*heads)+llm.KV().GQA()),
|
||||||
4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embedding/heads*headsKV),
|
4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embedding/heads*headsKV),
|
||||||
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
||||||
)
|
)
|
||||||
|
|
257
llm/memory.go
257
llm/memory.go
|
@ -1,11 +1,11 @@
|
||||||
package llm
|
package llm
|
||||||
|
|
||||||
import (
|
import (
|
||||||
"fmt"
|
|
||||||
"log/slog"
|
"log/slog"
|
||||||
|
"strconv"
|
||||||
|
"strings"
|
||||||
|
|
||||||
"github.com/ollama/ollama/api"
|
"github.com/ollama/ollama/api"
|
||||||
"github.com/ollama/ollama/envconfig"
|
|
||||||
"github.com/ollama/ollama/format"
|
"github.com/ollama/ollama/format"
|
||||||
"github.com/ollama/ollama/gpu"
|
"github.com/ollama/ollama/gpu"
|
||||||
)
|
)
|
||||||
|
@ -16,7 +16,8 @@ func PredictServerFit(allGpus gpu.GpuInfoList, ggml *GGML, adapters, projectors
|
||||||
var estimatedVRAM uint64
|
var estimatedVRAM uint64
|
||||||
for _, gpus := range allGpus.ByLibrary() {
|
for _, gpus := range allGpus.ByLibrary() {
|
||||||
var layerCount int
|
var layerCount int
|
||||||
layerCount, estimatedVRAM, _ = EstimateGPULayers(gpus, ggml, projectors, opts)
|
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
|
||||||
|
layerCount, estimatedVRAM = estimate.Layers, estimate.VRAMSize
|
||||||
if opts.NumGPU < 0 {
|
if opts.NumGPU < 0 {
|
||||||
if layerCount > 0 && layerCount >= int(ggml.KV().BlockCount()+1) {
|
if layerCount > 0 && layerCount >= int(ggml.KV().BlockCount()+1) {
|
||||||
return true, estimatedVRAM
|
return true, estimatedVRAM
|
||||||
|
@ -30,24 +31,64 @@ func PredictServerFit(allGpus gpu.GpuInfoList, ggml *GGML, adapters, projectors
|
||||||
return false, estimatedVRAM
|
return false, estimatedVRAM
|
||||||
}
|
}
|
||||||
|
|
||||||
|
type MemoryEstimate struct {
|
||||||
|
// How many layers we predict we can load
|
||||||
|
Layers int
|
||||||
|
|
||||||
|
// The size of the graph which occupies the main GPU
|
||||||
|
Graph uint64
|
||||||
|
|
||||||
|
// How much VRAM will be allocated given the number of layers we predict
|
||||||
|
VRAMSize uint64
|
||||||
|
|
||||||
|
// The total size of the model if loaded into VRAM. If all layers are loaded, VRAMSize == TotalSize
|
||||||
|
TotalSize uint64
|
||||||
|
|
||||||
|
// For multi-GPU scenarios, this provides the tensor split parameter
|
||||||
|
TensorSplit string
|
||||||
|
|
||||||
|
// For multi-GPU scenarios, this is the size in bytes per GPU
|
||||||
|
GPUSizes []uint64
|
||||||
|
}
|
||||||
|
|
||||||
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
|
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
|
||||||
// The GPUs provided must all be the same Library
|
// The GPUs provided must all be the same Library
|
||||||
func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts api.Options) (int, uint64, uint64) {
|
func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts api.Options) MemoryEstimate {
|
||||||
var memoryAvailable uint64
|
// Graph size for a partial offload, applies to all GPUs
|
||||||
for _, info := range gpus {
|
var graphPartialOffload uint64
|
||||||
memoryAvailable += info.FreeMemory
|
|
||||||
}
|
|
||||||
if envconfig.MaxVRAM > 0 {
|
|
||||||
memoryAvailable = envconfig.MaxVRAM
|
|
||||||
}
|
|
||||||
|
|
||||||
slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", format.HumanBytes2(memoryAvailable))
|
// Graph size when all layers are offloaded, applies to all GPUs
|
||||||
|
var graphFullOffload uint64
|
||||||
|
|
||||||
// TODO - this is probably wrong, first GPU vs secondaries will have different overheads
|
// Final graph offload once we know full or partial
|
||||||
memoryMinimum := gpus[0].MinimumMemory
|
var graphOffload uint64
|
||||||
|
|
||||||
|
// Projectors loaded into GPU0 only
|
||||||
|
var projectorSize uint64
|
||||||
|
|
||||||
|
// Conditional output size on GPU 0
|
||||||
|
var memoryLayerOutput uint64
|
||||||
|
|
||||||
|
// The sizes of a layer
|
||||||
|
var layerSize uint64
|
||||||
|
|
||||||
|
// The sum of all the layer sizes (just for logging)
|
||||||
|
var memoryWeights uint64
|
||||||
|
|
||||||
|
// True if all the layers are loaded
|
||||||
|
var fullyLoaded bool
|
||||||
|
|
||||||
|
// Overflow that didn't fit into the GPU
|
||||||
|
var overflow uint64
|
||||||
|
|
||||||
|
availableList := make([]string, len(gpus))
|
||||||
|
for i, gpu := range gpus {
|
||||||
|
availableList[i] = format.HumanBytes2(gpu.FreeMemory)
|
||||||
|
}
|
||||||
|
slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", availableList)
|
||||||
|
|
||||||
for _, projector := range projectors {
|
for _, projector := range projectors {
|
||||||
memoryMinimum += projectorMemoryRequirements(projector)
|
projectorSize += projectorMemoryRequirements(projector)
|
||||||
|
|
||||||
// multimodal models require at least 2048 context
|
// multimodal models require at least 2048 context
|
||||||
opts.NumCtx = max(opts.NumCtx, 2048)
|
opts.NumCtx = max(opts.NumCtx, 2048)
|
||||||
|
@ -56,79 +97,160 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
|
||||||
layers := ggml.Tensors().Layers()
|
layers := ggml.Tensors().Layers()
|
||||||
// add one layer worth of memory as a buffer
|
// add one layer worth of memory as a buffer
|
||||||
if blk0, ok := layers["blk.0"]; ok {
|
if blk0, ok := layers["blk.0"]; ok {
|
||||||
memoryMinimum += blk0.size()
|
layerSize = blk0.size()
|
||||||
|
} else {
|
||||||
|
slog.Warn("model missing blk.0 layer size")
|
||||||
}
|
}
|
||||||
|
|
||||||
// fp16 k,v = (1 (k) + 1 (v)) * sizeof(float16) * n_ctx * n_layer * n_embd / n_head * n_head_kv
|
// fp16 k,v = (1 (k) + 1 (v)) * sizeof(float16) * n_ctx * n_layer * n_embd / n_head * n_head_kv
|
||||||
var kv uint64 = 2 * 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * ggml.KV().EmbeddingLength() / ggml.KV().HeadCount() * ggml.KV().HeadCountKV()
|
var kv uint64 = 2 * 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * ggml.KV().EmbeddingLength() / ggml.KV().HeadCount() * ggml.KV().HeadCountKV()
|
||||||
|
|
||||||
graphPartialOffload, graphFullOffload := ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
|
// KV is proportional to the number of layers
|
||||||
|
layerSize += kv / ggml.KV().BlockCount()
|
||||||
|
|
||||||
|
graphPartialOffload, graphFullOffload = ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
|
||||||
if graphPartialOffload == 0 {
|
if graphPartialOffload == 0 {
|
||||||
graphPartialOffload = ggml.KV().GQA() * kv / 6
|
graphPartialOffload = ggml.KV().GQA() * kv / 6
|
||||||
}
|
}
|
||||||
|
|
||||||
if graphFullOffload == 0 {
|
if graphFullOffload == 0 {
|
||||||
graphFullOffload = graphPartialOffload
|
graphFullOffload = graphPartialOffload
|
||||||
}
|
}
|
||||||
|
|
||||||
graphFullOffload *= uint64(len(gpus))
|
|
||||||
graphPartialOffload *= uint64(len(gpus))
|
|
||||||
|
|
||||||
// on metal there's no partial offload overhead
|
// on metal there's no partial offload overhead
|
||||||
if gpus[0].Library == "metal" {
|
if gpus[0].Library == "metal" {
|
||||||
graphPartialOffload = graphFullOffload
|
graphPartialOffload = graphFullOffload
|
||||||
|
} else if len(gpus) > 1 {
|
||||||
|
// multigpu should always use the partial graph size
|
||||||
|
graphFullOffload = graphPartialOffload
|
||||||
}
|
}
|
||||||
|
|
||||||
// memoryRequiredTotal represents the memory required for full GPU offloading (all layers)
|
|
||||||
memoryRequiredTotal := memoryMinimum + graphFullOffload
|
|
||||||
|
|
||||||
// memoryRequiredPartial represents the memory required for partial GPU offloading (n > 0, n < layers)
|
|
||||||
memoryRequiredPartial := memoryMinimum + graphPartialOffload
|
|
||||||
|
|
||||||
var memoryLayerOutput uint64
|
|
||||||
if layer, ok := layers["output_norm"]; ok {
|
if layer, ok := layers["output_norm"]; ok {
|
||||||
memoryLayerOutput += layer.size()
|
memoryLayerOutput += layer.size()
|
||||||
}
|
}
|
||||||
|
|
||||||
if layer, ok := layers["output"]; ok {
|
if layer, ok := layers["output"]; ok {
|
||||||
memoryLayerOutput += layer.size()
|
memoryLayerOutput += layer.size()
|
||||||
} else if layer, ok := layers["token_embd"]; ok {
|
} else if layer, ok := layers["token_embd"]; ok {
|
||||||
memoryLayerOutput += layer.size()
|
memoryLayerOutput += layer.size()
|
||||||
}
|
}
|
||||||
|
|
||||||
if gpus[0].Library == "metal" && opts.UseMMap {
|
// Output layer handled at the end if we have space
|
||||||
// memory is preallocated for output tensors
|
gpuZeroOverhead := projectorSize
|
||||||
memoryRequiredTotal += memoryLayerOutput
|
|
||||||
memoryRequiredPartial += memoryLayerOutput
|
|
||||||
}
|
|
||||||
|
|
||||||
|
// Reduce set of GPUs to only those that have sufficient space to fit overhead and at least one layer
|
||||||
var layerCount int
|
var layerCount int
|
||||||
|
layerCounts := make([]int, len(gpus))
|
||||||
|
gpuAllocations := make([]uint64, len(gpus))
|
||||||
|
type gs struct {
|
||||||
|
i int
|
||||||
|
g *gpu.GpuInfo
|
||||||
|
}
|
||||||
|
gpusWithSpace := []gs{}
|
||||||
|
for i := range gpus {
|
||||||
|
var gzo uint64
|
||||||
|
if len(gpusWithSpace) == 0 {
|
||||||
|
gzo = gpuZeroOverhead
|
||||||
|
}
|
||||||
|
// Only include GPUs that can fit the graph, gpu minimum, the layer buffer and at least more layer
|
||||||
|
if gpus[i].FreeMemory < gzo+max(graphPartialOffload, graphFullOffload)+gpus[i].MinimumMemory+2*layerSize {
|
||||||
|
slog.Debug("gpu has too little memory to allocate any layers", "gpu", gpus[i])
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
gpusWithSpace = append(gpusWithSpace, gs{i, &gpus[i]})
|
||||||
|
gpuAllocations[i] += gpus[i].MinimumMemory + layerSize // We hold off on graph until we know partial vs. full
|
||||||
|
}
|
||||||
|
|
||||||
|
var gpuZeroID int
|
||||||
|
if len(gpusWithSpace) > 0 {
|
||||||
|
gpuZeroID = gpusWithSpace[0].i
|
||||||
|
gpuAllocations[gpuZeroID] += gpuZeroOverhead
|
||||||
|
}
|
||||||
|
|
||||||
|
// For all the layers, find where they can fit on the GPU(s)
|
||||||
for i := range int(ggml.KV().BlockCount()) {
|
for i := range int(ggml.KV().BlockCount()) {
|
||||||
if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
|
memoryWeights += layerSize
|
||||||
memoryLayer := blk.size()
|
|
||||||
|
|
||||||
// KV is proportional to the number of layers
|
if opts.NumGPU >= 0 && layerCount >= opts.NumGPU {
|
||||||
memoryLayer += kv / ggml.KV().BlockCount()
|
// Stop allocating on GPU(s) once we hit the users target NumGPU
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
|
||||||
memoryRequiredTotal += memoryLayer
|
// distribute the layers across the GPU(s) that have space
|
||||||
if (opts.NumGPU >= 0 && layerCount+1 <= opts.NumGPU) || (opts.NumGPU < 0 && memoryAvailable > memoryRequiredPartial+memoryLayer) {
|
for j := len(gpusWithSpace); j > 0; j-- {
|
||||||
memoryRequiredPartial += memoryLayer
|
g := gpusWithSpace[i%j]
|
||||||
|
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
|
||||||
|
if g.g.FreeMemory > used+layerSize {
|
||||||
|
gpuAllocations[g.i] += layerSize
|
||||||
|
layerCounts[g.i]++
|
||||||
layerCount++
|
layerCount++
|
||||||
|
break
|
||||||
|
} else {
|
||||||
|
gpusWithSpace = append(gpusWithSpace[:i%j], gpusWithSpace[i%j+1:]...)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
if layerCount >= int(ggml.KV().BlockCount()) {
|
||||||
|
fullyLoaded = true
|
||||||
|
} else {
|
||||||
|
for i := layerCount; i < int(ggml.KV().BlockCount()); i++ {
|
||||||
|
overflow += layerSize
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if gpus[0].Library != "metal" || !opts.UseMMap {
|
// Determine if we need to consider output then find where it fits
|
||||||
// memory was not preallocated for output tensors
|
if memoryLayerOutput > 0 && (opts.NumGPU < 0 || layerCount < opts.NumGPU) {
|
||||||
memoryRequiredTotal += memoryLayerOutput
|
for j := len(gpusWithSpace); j > 0; j-- {
|
||||||
|
g := gpusWithSpace[layerCount%j]
|
||||||
|
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
|
||||||
|
if g.g.FreeMemory > used+memoryLayerOutput {
|
||||||
|
gpuAllocations[g.i] += memoryLayerOutput
|
||||||
|
layerCounts[g.i]++
|
||||||
|
layerCount++
|
||||||
|
break
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (opts.NumGPU >= 0 && layerCount+1 <= opts.NumGPU) || (opts.NumGPU < 0 && memoryAvailable > memoryRequiredTotal) {
|
if layerCount < int(ggml.KV().BlockCount())+1 {
|
||||||
layerCount = int(ggml.KV().BlockCount()) + 1
|
fullyLoaded = false
|
||||||
memoryRequiredPartial = memoryRequiredTotal
|
overflow += memoryLayerOutput
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
memoryWeights := memoryRequiredTotal - memoryMinimum - graphFullOffload - kv
|
// Add the applicable (full or partial) graph allocations
|
||||||
|
for i := range gpus {
|
||||||
|
if layerCounts[i] <= 0 {
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
if fullyLoaded {
|
||||||
|
gpuAllocations[i] += graphFullOffload
|
||||||
|
} else {
|
||||||
|
gpuAllocations[i] += graphPartialOffload
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if fullyLoaded {
|
||||||
|
graphOffload = graphFullOffload
|
||||||
|
} else {
|
||||||
|
graphOffload = graphPartialOffload
|
||||||
|
}
|
||||||
|
|
||||||
|
// Summaries for the log
|
||||||
|
var memoryRequiredPartial, memoryRequiredTotal uint64
|
||||||
|
for i := range gpuAllocations {
|
||||||
|
memoryRequiredPartial += gpuAllocations[i]
|
||||||
|
}
|
||||||
|
memoryRequiredTotal = memoryRequiredPartial + overflow
|
||||||
|
|
||||||
|
tensorSplit := ""
|
||||||
|
if len(gpus) > 1 {
|
||||||
|
splits := make([]string, len(gpus))
|
||||||
|
for i, count := range layerCounts {
|
||||||
|
splits[i] = strconv.Itoa(count)
|
||||||
|
}
|
||||||
|
tensorSplit = strings.Join(splits, ",")
|
||||||
|
}
|
||||||
|
allocationsList := []string{}
|
||||||
|
for _, a := range gpuAllocations {
|
||||||
|
allocationsList = append(allocationsList, format.HumanBytes2(a))
|
||||||
|
}
|
||||||
|
|
||||||
slog.Info(
|
slog.Info(
|
||||||
"offload to gpu",
|
"offload to gpu",
|
||||||
|
@ -136,13 +258,17 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
|
||||||
"layers",
|
"layers",
|
||||||
// requested number of layers to offload
|
// requested number of layers to offload
|
||||||
"requested", opts.NumGPU,
|
"requested", opts.NumGPU,
|
||||||
|
// The number of layers the model has (including output)
|
||||||
|
"model", int(ggml.KV().BlockCount())+1,
|
||||||
// estimated number of layers that can be offloaded
|
// estimated number of layers that can be offloaded
|
||||||
"real", layerCount,
|
"offload", layerCount,
|
||||||
|
// multi-gpu split for tesnors
|
||||||
|
"split", tensorSplit,
|
||||||
),
|
),
|
||||||
slog.Group(
|
slog.Group(
|
||||||
"memory",
|
"memory",
|
||||||
// memory available for offloading
|
// memory available by GPU for offloading
|
||||||
"available", format.HumanBytes2(memoryAvailable),
|
"available", availableList,
|
||||||
slog.Group(
|
slog.Group(
|
||||||
"required",
|
"required",
|
||||||
// memory required for full offloading
|
// memory required for full offloading
|
||||||
|
@ -151,6 +277,8 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
|
||||||
"partial", format.HumanBytes2(memoryRequiredPartial),
|
"partial", format.HumanBytes2(memoryRequiredPartial),
|
||||||
// memory of KV cache
|
// memory of KV cache
|
||||||
"kv", format.HumanBytes2(kv),
|
"kv", format.HumanBytes2(kv),
|
||||||
|
// Allocations across the GPUs
|
||||||
|
"allocations", allocationsList,
|
||||||
),
|
),
|
||||||
slog.Group(
|
slog.Group(
|
||||||
"weights",
|
"weights",
|
||||||
|
@ -171,12 +299,31 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
if gpus[0].Library == "cpu" {
|
if gpus[0].Library == "cpu" {
|
||||||
return 0, 0, memoryRequiredTotal
|
return MemoryEstimate{
|
||||||
|
Layers: 0,
|
||||||
|
Graph: 0,
|
||||||
|
VRAMSize: 0,
|
||||||
|
TotalSize: memoryRequiredTotal,
|
||||||
|
GPUSizes: []uint64{},
|
||||||
}
|
}
|
||||||
if memoryRequiredPartial > memoryAvailable {
|
}
|
||||||
|
if layerCount == 0 {
|
||||||
slog.Debug("insufficient VRAM to load any model layers")
|
slog.Debug("insufficient VRAM to load any model layers")
|
||||||
return 0, 0, memoryRequiredTotal
|
return MemoryEstimate{
|
||||||
|
Layers: 0,
|
||||||
|
Graph: 0,
|
||||||
|
VRAMSize: 0,
|
||||||
|
TotalSize: memoryRequiredTotal,
|
||||||
|
GPUSizes: []uint64{},
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
return layerCount, memoryRequiredPartial, memoryRequiredTotal
|
return MemoryEstimate{
|
||||||
|
Layers: layerCount,
|
||||||
|
Graph: graphOffload,
|
||||||
|
VRAMSize: memoryRequiredPartial,
|
||||||
|
TotalSize: memoryRequiredTotal,
|
||||||
|
TensorSplit: tensorSplit,
|
||||||
|
GPUSizes: gpuAllocations,
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
127
llm/memory_test.go
Normal file
127
llm/memory_test.go
Normal file
|
@ -0,0 +1,127 @@
|
||||||
|
package llm
|
||||||
|
|
||||||
|
import (
|
||||||
|
"bytes"
|
||||||
|
"encoding/binary"
|
||||||
|
"fmt"
|
||||||
|
"os"
|
||||||
|
"testing"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/api"
|
||||||
|
"github.com/ollama/ollama/envconfig"
|
||||||
|
"github.com/ollama/ollama/gpu"
|
||||||
|
"github.com/stretchr/testify/assert"
|
||||||
|
"github.com/stretchr/testify/require"
|
||||||
|
)
|
||||||
|
|
||||||
|
func TestEstimateGPULayers(t *testing.T) {
|
||||||
|
envconfig.Debug = true
|
||||||
|
modelName := "dummy"
|
||||||
|
f, err := os.CreateTemp(t.TempDir(), modelName)
|
||||||
|
require.NoError(t, err)
|
||||||
|
defer f.Close()
|
||||||
|
gguf := NewGGUFV3(binary.LittleEndian)
|
||||||
|
inputLayerCount := 5
|
||||||
|
tensors := []Tensor{
|
||||||
|
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
|
||||||
|
{Name: "blk.1.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
|
||||||
|
{Name: "blk.2.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
|
||||||
|
{Name: "blk.3.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
|
||||||
|
{Name: "blk.4.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
|
||||||
|
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
|
||||||
|
}
|
||||||
|
assert.Len(t, tensors, inputLayerCount+1)
|
||||||
|
err = gguf.Encode(f, KV{
|
||||||
|
"general.architecture": "llama",
|
||||||
|
"general.name": "name",
|
||||||
|
"llama.context_length": uint32(32),
|
||||||
|
"llama.embedding_length": uint32(4096),
|
||||||
|
"llama.block_count": uint32(inputLayerCount),
|
||||||
|
"llama.attention.head_count": uint32(32),
|
||||||
|
"llama.attention.head_count_kv": uint32(32),
|
||||||
|
"tokenizer.ggml.tokens": []string{" "},
|
||||||
|
"tokenizer.ggml.scores": []float32{0},
|
||||||
|
"tokenizer.ggml.token_type": []int32{0},
|
||||||
|
}, tensors)
|
||||||
|
require.NoError(t, err)
|
||||||
|
|
||||||
|
ggml, err := LoadModel(f.Name())
|
||||||
|
require.NoError(t, err)
|
||||||
|
|
||||||
|
// Simple CPU scenario
|
||||||
|
gpus := []gpu.GpuInfo{
|
||||||
|
{
|
||||||
|
Library: "cpu",
|
||||||
|
},
|
||||||
|
}
|
||||||
|
projectors := []string{}
|
||||||
|
opts := api.DefaultOptions()
|
||||||
|
t.Run("cpu", func(t *testing.T) {
|
||||||
|
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
|
||||||
|
assert.Equal(t, 0, estimate.Layers)
|
||||||
|
assert.Equal(t, uint64(0), estimate.Graph)
|
||||||
|
})
|
||||||
|
|
||||||
|
// derived from the dummy ggml file above
|
||||||
|
graphPartialOffload := uint64(202377216)
|
||||||
|
graphFullOffload := uint64(171968512)
|
||||||
|
layerSize := uint64(33554436)
|
||||||
|
projectorSize := uint64(0)
|
||||||
|
memoryLayerOutput := uint64(4)
|
||||||
|
|
||||||
|
// Dual CUDA scenario with assymetry
|
||||||
|
gpuMinimumMemory := uint64(2048)
|
||||||
|
gpus = []gpu.GpuInfo{
|
||||||
|
{
|
||||||
|
Library: "cuda",
|
||||||
|
MinimumMemory: gpuMinimumMemory,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
Library: "cuda",
|
||||||
|
MinimumMemory: gpuMinimumMemory,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
// Nested array: GPU0 layer space, GPU1 layer space, expected gpu0, expected gpu1
|
||||||
|
for i, s := range []struct {
|
||||||
|
layer0, layer1 uint64
|
||||||
|
expect0, expect1 uint64
|
||||||
|
}{
|
||||||
|
{1, 1, 1, 1},
|
||||||
|
{2, 1, 2, 1},
|
||||||
|
{2, 2, 2, 2},
|
||||||
|
{1, 2, 1, 2},
|
||||||
|
{3, 3, 3, 3},
|
||||||
|
{4, 4, 3, 3},
|
||||||
|
{6, 6, 3, 3},
|
||||||
|
{0, 3, 0, 3},
|
||||||
|
} {
|
||||||
|
t.Run(fmt.Sprintf("%v", s), func(t *testing.T) {
|
||||||
|
gpus[0].FreeMemory = 0
|
||||||
|
gpus[1].FreeMemory = 0
|
||||||
|
gpus[0].FreeMemory += projectorSize
|
||||||
|
if s.layer0 > 0 {
|
||||||
|
gpus[0].FreeMemory += memoryLayerOutput
|
||||||
|
} else {
|
||||||
|
gpus[1].FreeMemory += memoryLayerOutput
|
||||||
|
}
|
||||||
|
gpus[0].FreeMemory += gpuMinimumMemory + layerSize + s.layer0*layerSize + 1
|
||||||
|
gpus[1].FreeMemory += gpuMinimumMemory + layerSize + s.layer1*layerSize + 1
|
||||||
|
gpus[0].FreeMemory += max(graphFullOffload, graphPartialOffload)
|
||||||
|
gpus[1].FreeMemory += max(graphFullOffload, graphPartialOffload)
|
||||||
|
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
|
||||||
|
assert.Equal(t, int(s.expect0+s.expect1), estimate.Layers, "scenario %d: %v", i, s)
|
||||||
|
assert.Equal(t, fmt.Sprintf("%d,%d", s.expect0, s.expect1), estimate.TensorSplit, "scenario %d: %v", i, s)
|
||||||
|
var layerSums uint64
|
||||||
|
for _, b := range estimate.GPUSizes {
|
||||||
|
layerSums += b
|
||||||
|
}
|
||||||
|
if estimate.Layers < inputLayerCount+1 {
|
||||||
|
assert.Less(t, estimate.VRAMSize, estimate.TotalSize, "scenario %d: %v %+v", i, s, estimate)
|
||||||
|
assert.Equal(t, estimate.VRAMSize, layerSums, "scenario %d: %v %+v", i, s, estimate)
|
||||||
|
} else {
|
||||||
|
assert.Equal(t, estimate.VRAMSize, estimate.TotalSize, "scenario %d: %v %+v", i, s, estimate)
|
||||||
|
assert.Equal(t, estimate.TotalSize, layerSums, "scenario %d: %v %+v", i, s, estimate)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
|
@ -82,8 +82,8 @@ func serversForGpu(info gpu.GpuInfo) []string {
|
||||||
// glob workDir for files that start with ollama_
|
// glob workDir for files that start with ollama_
|
||||||
availableServers := availableServers()
|
availableServers := availableServers()
|
||||||
requested := info.Library
|
requested := info.Library
|
||||||
if info.Variant != "" {
|
if info.Variant != gpu.CPUCapabilityNone {
|
||||||
requested += "_" + info.Variant
|
requested += "_" + info.Variant.String()
|
||||||
}
|
}
|
||||||
|
|
||||||
servers := []string{}
|
servers := []string{}
|
||||||
|
@ -117,14 +117,14 @@ func serversForGpu(info gpu.GpuInfo) []string {
|
||||||
|
|
||||||
// Load up the best CPU variant if not primary requested
|
// Load up the best CPU variant if not primary requested
|
||||||
if info.Library != "cpu" {
|
if info.Library != "cpu" {
|
||||||
variant := gpu.GetCPUVariant()
|
variant := gpu.GetCPUCapability()
|
||||||
// If no variant, then we fall back to default
|
// If no variant, then we fall back to default
|
||||||
// If we have a variant, try that if we find an exact match
|
// If we have a variant, try that if we find an exact match
|
||||||
// Attempting to run the wrong CPU instructions will panic the
|
// Attempting to run the wrong CPU instructions will panic the
|
||||||
// process
|
// process
|
||||||
if variant != "" {
|
if variant != gpu.CPUCapabilityNone {
|
||||||
for cmp := range availableServers {
|
for cmp := range availableServers {
|
||||||
if cmp == "cpu_"+variant {
|
if cmp == "cpu_"+variant.String() {
|
||||||
servers = append(servers, cmp)
|
servers = append(servers, cmp)
|
||||||
break
|
break
|
||||||
}
|
}
|
||||||
|
@ -146,11 +146,11 @@ func serverForCpu() string {
|
||||||
if runtime.GOOS == "darwin" && runtime.GOARCH == "arm64" {
|
if runtime.GOOS == "darwin" && runtime.GOARCH == "arm64" {
|
||||||
return "metal"
|
return "metal"
|
||||||
}
|
}
|
||||||
variant := gpu.GetCPUVariant()
|
variant := gpu.GetCPUCapability()
|
||||||
availableServers := availableServers()
|
availableServers := availableServers()
|
||||||
if variant != "" {
|
if variant != gpu.CPUCapabilityNone {
|
||||||
for cmp := range availableServers {
|
for cmp := range availableServers {
|
||||||
if cmp == "cpu_"+variant {
|
if cmp == "cpu_"+variant.String() {
|
||||||
return cmp
|
return cmp
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -37,8 +37,9 @@ type LlamaServer interface {
|
||||||
Tokenize(ctx context.Context, content string) ([]int, error)
|
Tokenize(ctx context.Context, content string) ([]int, error)
|
||||||
Detokenize(ctx context.Context, tokens []int) (string, error)
|
Detokenize(ctx context.Context, tokens []int) (string, error)
|
||||||
Close() error
|
Close() error
|
||||||
EstimatedVRAM() uint64
|
EstimatedVRAM() uint64 // Total VRAM across all GPUs
|
||||||
EstimatedTotal() uint64
|
EstimatedTotal() uint64
|
||||||
|
EstimatedVRAMByGPU(gpuID string) uint64
|
||||||
}
|
}
|
||||||
|
|
||||||
// llmServer is an instance of the llama.cpp server
|
// llmServer is an instance of the llama.cpp server
|
||||||
|
@ -49,11 +50,10 @@ type llmServer struct {
|
||||||
status *StatusWriter
|
status *StatusWriter
|
||||||
options api.Options
|
options api.Options
|
||||||
|
|
||||||
// TODO - this should be broken down by GPU
|
estimate MemoryEstimate
|
||||||
estimatedVRAM uint64 // Estimated usage of VRAM by the loaded model
|
|
||||||
estimatedTotal uint64 // Total size of model
|
|
||||||
totalLayers uint64
|
totalLayers uint64
|
||||||
gpuCount int
|
// gpuCount int
|
||||||
|
gpus gpu.GpuInfoList // Recorded just before the model loaded, free space will be incorrect
|
||||||
loadDuration time.Duration // Record how long it took the model to load
|
loadDuration time.Duration // Record how long it took the model to load
|
||||||
loadProgress float32
|
loadProgress float32
|
||||||
|
|
||||||
|
@ -80,16 +80,16 @@ func LoadModel(model string) (*GGML, error) {
|
||||||
func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, projectors []string, opts api.Options) (LlamaServer, error) {
|
func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, projectors []string, opts api.Options) (LlamaServer, error) {
|
||||||
var err error
|
var err error
|
||||||
var cpuRunner string
|
var cpuRunner string
|
||||||
var estimatedVRAM uint64
|
var estimate MemoryEstimate
|
||||||
var estimatedTotal uint64
|
|
||||||
var systemMemory uint64
|
var systemMemory uint64
|
||||||
gpuCount := len(gpus)
|
|
||||||
if (len(gpus) == 1 && gpus[0].Library == "cpu") || opts.NumGPU == 0 {
|
|
||||||
// TODO evaluate system memory to see if we should block the load, or force an unload of another CPU runner
|
|
||||||
|
|
||||||
|
// If the user wants zero GPU layers, reset the gpu list to be CPU/system ram info
|
||||||
|
if opts.NumGPU == 0 {
|
||||||
|
gpus = gpu.GetCPUInfo()
|
||||||
|
}
|
||||||
|
if len(gpus) == 1 && gpus[0].Library == "cpu" {
|
||||||
cpuRunner = serverForCpu()
|
cpuRunner = serverForCpu()
|
||||||
gpuCount = 0
|
estimate = EstimateGPULayers(gpus, ggml, projectors, opts)
|
||||||
_, _, estimatedTotal = EstimateGPULayers(gpus, ggml, projectors, opts)
|
|
||||||
} else {
|
} else {
|
||||||
if gpus[0].Library == "metal" {
|
if gpus[0].Library == "metal" {
|
||||||
memInfo, err := gpu.GetCPUMem()
|
memInfo, err := gpu.GetCPUMem()
|
||||||
|
@ -100,20 +100,19 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||||
slog.Debug("system memory", "total", format.HumanBytes2(systemMemory))
|
slog.Debug("system memory", "total", format.HumanBytes2(systemMemory))
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
var layers int
|
estimate = EstimateGPULayers(gpus, ggml, projectors, opts)
|
||||||
layers, estimatedVRAM, estimatedTotal = EstimateGPULayers(gpus, ggml, projectors, opts)
|
|
||||||
|
|
||||||
switch {
|
switch {
|
||||||
case gpus[0].Library == "metal" && estimatedVRAM > systemMemory:
|
case gpus[0].Library == "metal" && estimate.VRAMSize > systemMemory:
|
||||||
// disable partial offloading when model is greater than total system memory as this
|
// disable partial offloading when model is greater than total system memory as this
|
||||||
// can lead to locking up the system
|
// can lead to locking up the system
|
||||||
opts.NumGPU = 0
|
opts.NumGPU = 0
|
||||||
case gpus[0].Library != "metal" && layers == 0:
|
case gpus[0].Library != "metal" && estimate.Layers == 0:
|
||||||
// Don't bother loading into the GPU if no layers can fit
|
// Don't bother loading into the GPU if no layers can fit
|
||||||
cpuRunner = serverForCpu()
|
cpuRunner = serverForCpu()
|
||||||
gpuCount = 0
|
gpus = gpu.GetCPUInfo()
|
||||||
case opts.NumGPU < 0 && layers > 0 && gpus[0].Library != "cpu":
|
case opts.NumGPU < 0 && estimate.Layers > 0 && gpus[0].Library != "cpu":
|
||||||
opts.NumGPU = layers
|
opts.NumGPU = estimate.Layers
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -232,6 +231,14 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||||
|
|
||||||
params = append(params, "--parallel", fmt.Sprintf("%d", numParallel))
|
params = append(params, "--parallel", fmt.Sprintf("%d", numParallel))
|
||||||
|
|
||||||
|
if estimate.TensorSplit != "" {
|
||||||
|
params = append(params, "--tensor-split", estimate.TensorSplit)
|
||||||
|
}
|
||||||
|
|
||||||
|
if estimate.TensorSplit != "" {
|
||||||
|
params = append(params, "--tensor-split", estimate.TensorSplit)
|
||||||
|
}
|
||||||
|
|
||||||
for i := range len(servers) {
|
for i := range len(servers) {
|
||||||
dir := availableServers[servers[i]]
|
dir := availableServers[servers[i]]
|
||||||
if dir == "" {
|
if dir == "" {
|
||||||
|
@ -242,8 +249,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||||
}
|
}
|
||||||
|
|
||||||
if strings.HasPrefix(servers[i], "cpu") {
|
if strings.HasPrefix(servers[i], "cpu") {
|
||||||
// TODO if we tried a gpu runner first, and it failed, record the error and bubble that back up
|
gpus = gpu.GetCPUInfo()
|
||||||
gpuCount = 0
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Find an availableServers port, retry on each iteration in case the failure was a port conflict race
|
// Find an availableServers port, retry on each iteration in case the failure was a port conflict race
|
||||||
|
@ -303,11 +309,10 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||||
cmd: exec.Command(server, finalParams...),
|
cmd: exec.Command(server, finalParams...),
|
||||||
status: NewStatusWriter(os.Stderr),
|
status: NewStatusWriter(os.Stderr),
|
||||||
options: opts,
|
options: opts,
|
||||||
estimatedVRAM: estimatedVRAM,
|
estimate: estimate,
|
||||||
estimatedTotal: estimatedTotal,
|
|
||||||
sem: semaphore.NewWeighted(int64(numParallel)),
|
sem: semaphore.NewWeighted(int64(numParallel)),
|
||||||
totalLayers: ggml.KV().BlockCount() + 1,
|
totalLayers: ggml.KV().BlockCount() + 1,
|
||||||
gpuCount: gpuCount,
|
gpus: gpus,
|
||||||
done: make(chan error, 1),
|
done: make(chan error, 1),
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1004,11 +1009,20 @@ func (s *llmServer) Close() error {
|
||||||
}
|
}
|
||||||
|
|
||||||
func (s *llmServer) EstimatedVRAM() uint64 {
|
func (s *llmServer) EstimatedVRAM() uint64 {
|
||||||
return s.estimatedVRAM
|
return s.estimate.VRAMSize
|
||||||
}
|
}
|
||||||
|
|
||||||
func (s *llmServer) EstimatedTotal() uint64 {
|
func (s *llmServer) EstimatedTotal() uint64 {
|
||||||
return s.estimatedTotal
|
return s.estimate.TotalSize
|
||||||
|
}
|
||||||
|
|
||||||
|
func (s *llmServer) EstimatedVRAMByGPU(gpuID string) uint64 {
|
||||||
|
for i, gpu := range s.gpus {
|
||||||
|
if gpu.ID == gpuID {
|
||||||
|
return s.estimate.GPUSizes[i]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return 0
|
||||||
}
|
}
|
||||||
|
|
||||||
func parseDurationMs(ms float64) time.Duration {
|
func parseDurationMs(ms float64) time.Duration {
|
||||||
|
|
139
server/sched.go
139
server/sched.go
|
@ -7,7 +7,6 @@ import (
|
||||||
"log/slog"
|
"log/slog"
|
||||||
"reflect"
|
"reflect"
|
||||||
"runtime"
|
"runtime"
|
||||||
"slices"
|
|
||||||
"sort"
|
"sort"
|
||||||
"strings"
|
"strings"
|
||||||
"sync"
|
"sync"
|
||||||
|
@ -27,6 +26,7 @@ type LlmRequest struct {
|
||||||
sessionDuration time.Duration
|
sessionDuration time.Duration
|
||||||
successCh chan *runnerRef
|
successCh chan *runnerRef
|
||||||
errCh chan error
|
errCh chan error
|
||||||
|
schedAttempts uint
|
||||||
}
|
}
|
||||||
|
|
||||||
type Scheduler struct {
|
type Scheduler struct {
|
||||||
|
@ -41,6 +41,8 @@ type Scheduler struct {
|
||||||
loadFn func(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList)
|
loadFn func(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList)
|
||||||
newServerFn func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options) (llm.LlamaServer, error)
|
newServerFn func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options) (llm.LlamaServer, error)
|
||||||
getGpuFn func() gpu.GpuInfoList
|
getGpuFn func() gpu.GpuInfoList
|
||||||
|
getCpuFn func() gpu.GpuInfoList
|
||||||
|
reschedDelay time.Duration
|
||||||
}
|
}
|
||||||
|
|
||||||
var ErrMaxQueue = fmt.Errorf("server busy, please try again. maximum pending requests exceeded")
|
var ErrMaxQueue = fmt.Errorf("server busy, please try again. maximum pending requests exceeded")
|
||||||
|
@ -54,6 +56,8 @@ func InitScheduler(ctx context.Context) *Scheduler {
|
||||||
loaded: make(map[string]*runnerRef),
|
loaded: make(map[string]*runnerRef),
|
||||||
newServerFn: llm.NewLlamaServer,
|
newServerFn: llm.NewLlamaServer,
|
||||||
getGpuFn: gpu.GetGPUInfo,
|
getGpuFn: gpu.GetGPUInfo,
|
||||||
|
getCpuFn: gpu.GetCPUInfo,
|
||||||
|
reschedDelay: 250 * time.Millisecond,
|
||||||
}
|
}
|
||||||
sched.loadFn = sched.load
|
sched.loadFn = sched.load
|
||||||
return sched
|
return sched
|
||||||
|
@ -105,6 +109,7 @@ func (s *Scheduler) processPending(ctx context.Context) {
|
||||||
return
|
return
|
||||||
case pending := <-s.pendingReqCh:
|
case pending := <-s.pendingReqCh:
|
||||||
// Block other requests until we get this pending request running
|
// Block other requests until we get this pending request running
|
||||||
|
pending.schedAttempts++
|
||||||
|
|
||||||
if pending.ctx.Err() != nil {
|
if pending.ctx.Err() != nil {
|
||||||
slog.Debug("pending request cancelled or timed out, skipping scheduling")
|
slog.Debug("pending request cancelled or timed out, skipping scheduling")
|
||||||
|
@ -131,7 +136,12 @@ func (s *Scheduler) processPending(ctx context.Context) {
|
||||||
} else {
|
} else {
|
||||||
// Either no models are loaded or below envconfig.MaxRunners
|
// Either no models are loaded or below envconfig.MaxRunners
|
||||||
// Get a refreshed GPU list
|
// Get a refreshed GPU list
|
||||||
gpus := s.getGpuFn()
|
var gpus gpu.GpuInfoList
|
||||||
|
if pending.opts.NumGPU == 0 {
|
||||||
|
gpus = s.getCpuFn()
|
||||||
|
} else {
|
||||||
|
gpus = s.getGpuFn()
|
||||||
|
}
|
||||||
|
|
||||||
// Load model for fitting
|
// Load model for fitting
|
||||||
ggml, err := llm.LoadModel(pending.model.ModelPath)
|
ggml, err := llm.LoadModel(pending.model.ModelPath)
|
||||||
|
@ -140,16 +150,22 @@ func (s *Scheduler) processPending(ctx context.Context) {
|
||||||
break
|
break
|
||||||
}
|
}
|
||||||
|
|
||||||
// If we're CPU only mode, just limit by envconfig.MaxRunners above
|
// Evaluate if the model will fit in the available system memory, or if we should unload a model first
|
||||||
// TODO handle system memory exhaustion
|
if len(gpus) == 1 && gpus[0].Library == "cpu" {
|
||||||
if (len(gpus) == 1 && gpus[0].Library == "cpu") || pending.opts.NumGPU == 0 {
|
if loadedCount == 0 {
|
||||||
slog.Debug("cpu mode with existing models, loading")
|
slog.Debug("cpu mode with first model, loading")
|
||||||
s.loadFn(pending, ggml, gpus)
|
s.loadFn(pending, ggml, gpus)
|
||||||
break
|
break
|
||||||
}
|
}
|
||||||
|
runnerToExpire = s.maybeFindCPURunnerToUnload(pending, ggml, gpus)
|
||||||
|
if runnerToExpire == nil {
|
||||||
|
slog.Debug("cpu mode with available system memory or first model, loading")
|
||||||
|
s.loadFn(pending, ggml, gpus)
|
||||||
|
break
|
||||||
|
}
|
||||||
|
// else we need to expire a runner
|
||||||
|
} else if loadedCount == 0 {
|
||||||
// No models loaded. Load the model but prefer the best fit.
|
// No models loaded. Load the model but prefer the best fit.
|
||||||
if loadedCount == 0 {
|
|
||||||
slog.Debug("loading first model", "model", pending.model.ModelPath)
|
slog.Debug("loading first model", "model", pending.model.ModelPath)
|
||||||
g := pickBestFitGPUs(pending, ggml, gpus)
|
g := pickBestFitGPUs(pending, ggml, gpus)
|
||||||
if g != nil {
|
if g != nil {
|
||||||
|
@ -159,17 +175,45 @@ func (s *Scheduler) processPending(ctx context.Context) {
|
||||||
break
|
break
|
||||||
}
|
}
|
||||||
|
|
||||||
// More than one loaded model, so we have to see if the new one fits
|
if runnerToExpire == nil {
|
||||||
|
// More than one loaded model, so we have to see if the
|
||||||
|
// new one fits
|
||||||
|
//
|
||||||
|
// We want to avoid loading on any GPUs that have other
|
||||||
|
// models still loading on them to avoid potential races
|
||||||
|
// with VRAM consumption ramping up during load
|
||||||
|
availGpus := s.filterGPUsWithoutLoadingModels(gpus)
|
||||||
|
|
||||||
// Update free memory from currently loaded models
|
// Update free memory from currently loaded models
|
||||||
s.updateFreeSpace(gpus)
|
s.updateFreeSpace(availGpus)
|
||||||
gpus = pickBestFitGPUs(pending, ggml, gpus)
|
fitGpus := pickBestFitGPUs(pending, ggml, availGpus)
|
||||||
if gpus != nil {
|
if fitGpus != nil {
|
||||||
slog.Debug("new model fits with existing models, loading")
|
slog.Debug("new model fits with existing models, loading")
|
||||||
s.loadFn(pending, ggml, gpus)
|
s.loadFn(pending, ggml, fitGpus)
|
||||||
|
break
|
||||||
|
}
|
||||||
|
|
||||||
|
// We couldn't find a set of GPUs to fully load the new
|
||||||
|
// model. If no other models are loading (both GPU lists
|
||||||
|
// are the same) then we need to unload another model to
|
||||||
|
// make room
|
||||||
|
if len(availGpus) < len(gpus) {
|
||||||
|
// There are other requests pending, and this one
|
||||||
|
// needs more time, so put it on the back of the
|
||||||
|
// queue so that we might satisfy other pending
|
||||||
|
// requests that aren't blocked
|
||||||
|
go func() {
|
||||||
|
// Process in a go routine to avoid deadlocking
|
||||||
|
// the scheduler if our queue is full
|
||||||
|
slog.Debug("delaying scheduling while other models finish loading", "attempts", pending.schedAttempts, "model", pending.model.ModelPath)
|
||||||
|
time.Sleep(s.reschedDelay)
|
||||||
|
s.pendingReqCh <- pending
|
||||||
|
}()
|
||||||
break
|
break
|
||||||
}
|
}
|
||||||
runnerToExpire = s.findRunnerToUnload()
|
runnerToExpire = s.findRunnerToUnload()
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if runnerToExpire == nil {
|
if runnerToExpire == nil {
|
||||||
// Shouildn't happen
|
// Shouildn't happen
|
||||||
|
@ -368,17 +412,9 @@ func (s *Scheduler) updateFreeSpace(allGpus gpu.GpuInfoList) {
|
||||||
s.loadedMu.Lock()
|
s.loadedMu.Lock()
|
||||||
for _, r := range s.loaded {
|
for _, r := range s.loaded {
|
||||||
r.refMu.Lock()
|
r.refMu.Lock()
|
||||||
gpuIDs := make([]string, 0, len(r.gpus))
|
|
||||||
if r.llama != nil {
|
if r.llama != nil {
|
||||||
// TODO this should be broken down by GPU instead of assuming uniform spread
|
|
||||||
estimatedVRAMPerGPU := r.llama.EstimatedVRAM() / uint64(len(r.gpus))
|
|
||||||
for _, gpu := range r.gpus {
|
|
||||||
gpuIDs = append(gpuIDs, gpu.ID)
|
|
||||||
}
|
|
||||||
for _, gpu := range allGpus {
|
for _, gpu := range allGpus {
|
||||||
if slices.Contains(gpuIDs, gpu.ID) {
|
predMap[predKey{gpu.Library, gpu.ID}] += r.llama.EstimatedVRAMByGPU(gpu.ID)
|
||||||
predMap[predKey{gpu.Library, gpu.ID}] += estimatedVRAMPerGPU
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
slog.Warn("unexpected nil runner reference, memory prediction may be incorrect")
|
slog.Warn("unexpected nil runner reference, memory prediction may be incorrect")
|
||||||
|
@ -401,11 +437,36 @@ func (s *Scheduler) updateFreeSpace(allGpus gpu.GpuInfoList) {
|
||||||
// after we start our first runner, then we'll never acount for that, so picking the smallest free value seems prudent.
|
// after we start our first runner, then we'll never acount for that, so picking the smallest free value seems prudent.
|
||||||
allGpus[i].FreeMemory = allGpus[i].TotalMemory - p
|
allGpus[i].FreeMemory = allGpus[i].TotalMemory - p
|
||||||
}
|
}
|
||||||
slog.Info("updated VRAM", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "total", format.HumanBytes2(allGpus[i].TotalMemory), "available", format.HumanBytes2(allGpus[i].FreeMemory))
|
slog.Info("updated VRAM based on existing loaded models", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "total", format.HumanBytes2(allGpus[i].TotalMemory), "available", format.HumanBytes2(allGpus[i].FreeMemory))
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// While models are loading the VRAM consumption numbers will be indeterminate, so we have
|
||||||
|
// to avoid scheduling another model on the same GPU(s) that haven't stabilized.
|
||||||
|
// This routine returns the set of GPUs that do not have an active loading model.
|
||||||
|
// If all GPUs have loading models, an empty list will be returned (not a single CPU entry)
|
||||||
|
func (s *Scheduler) filterGPUsWithoutLoadingModels(allGpus gpu.GpuInfoList) gpu.GpuInfoList {
|
||||||
|
ret := append(gpu.GpuInfoList{}, allGpus...)
|
||||||
|
s.loadedMu.Lock()
|
||||||
|
defer s.loadedMu.Unlock()
|
||||||
|
for _, runner := range s.loaded {
|
||||||
|
if runner.loading {
|
||||||
|
slog.Debug("overlapping loads detected", "gpus", runner.gpus, "model", runner.modelPath)
|
||||||
|
for _, busyGPU := range runner.gpus {
|
||||||
|
for i := range ret {
|
||||||
|
if ret[i].ID == busyGPU.ID {
|
||||||
|
ret = append(ret[:i], ret[i+1:]...)
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return ret
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO consolidate sched_types.go
|
||||||
type runnerRef struct {
|
type runnerRef struct {
|
||||||
refMu sync.Mutex
|
refMu sync.Mutex
|
||||||
// refCond sync.Cond // Signaled on transition from 1 -> 0 refCount
|
// refCond sync.Cond // Signaled on transition from 1 -> 0 refCount
|
||||||
|
@ -487,8 +548,11 @@ func (runner *runnerRef) needsReload(ctx context.Context, req *LlmRequest) bool
|
||||||
func (runner *runnerRef) waitForVRAMRecovery() chan interface{} {
|
func (runner *runnerRef) waitForVRAMRecovery() chan interface{} {
|
||||||
finished := make(chan interface{}, 1)
|
finished := make(chan interface{}, 1)
|
||||||
|
|
||||||
// CPU or Metal don't need checking, so no waiting required, windows can page VRAM, and the APIs we query tend to be optimistic on free space
|
// CPU or Metal don't need checking, so no waiting required
|
||||||
if (len(runner.gpus) == 1 && (runner.gpus[0].Library == "cpu" || runner.gpus[0].Library == "metal")) || runtime.GOOS == "windows" {
|
// windows can page VRAM, only cuda currently can report accurate used vram usage
|
||||||
|
if len(runner.gpus) == 0 ||
|
||||||
|
(len(runner.gpus) == 1 && (runner.gpus[0].Library == "cpu" || runner.gpus[0].Library == "metal")) ||
|
||||||
|
(runtime.GOOS == "windows" && runner.gpus[0].Library != "cuda") {
|
||||||
finished <- struct{}{}
|
finished <- struct{}{}
|
||||||
return finished
|
return finished
|
||||||
}
|
}
|
||||||
|
@ -508,7 +572,7 @@ func (runner *runnerRef) waitForVRAMRecovery() chan interface{} {
|
||||||
for {
|
for {
|
||||||
<-ticker.C
|
<-ticker.C
|
||||||
if time.Now().After(expiresAt) {
|
if time.Now().After(expiresAt) {
|
||||||
slog.Warn("gpu VRAM usage didn't recover within timeout", "seconds", time.Since(start).Seconds())
|
slog.Warn("gpu VRAM usage didn't recover within timeout", "seconds", time.Since(start).Seconds(), "model", runner.modelPath)
|
||||||
finished <- struct{}{}
|
finished <- struct{}{}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -521,7 +585,7 @@ func (runner *runnerRef) waitForVRAMRecovery() chan interface{} {
|
||||||
}
|
}
|
||||||
// If we're within ~80% of the estimated memory usage recovered, bail out
|
// If we're within ~80% of the estimated memory usage recovered, bail out
|
||||||
if float32(freeMemoryNow-freeMemoryBefore) > float32(runner.estimatedVRAM)*0.8 {
|
if float32(freeMemoryNow-freeMemoryBefore) > float32(runner.estimatedVRAM)*0.8 {
|
||||||
slog.Debug(fmt.Sprintf("gpu VRAM free memory converged after %0.2f seconds", time.Since(start).Seconds()))
|
slog.Debug(fmt.Sprintf("gpu VRAM free memory converged after %0.2f seconds", time.Since(start).Seconds()), "model", runner.modelPath)
|
||||||
finished <- struct{}{}
|
finished <- struct{}{}
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
|
@ -558,12 +622,14 @@ func pickBestFitGPUs(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList) gpu.
|
||||||
sort.Sort(sort.Reverse(gpu.ByFreeMemory(sgl)))
|
sort.Sort(sort.Reverse(gpu.ByFreeMemory(sgl)))
|
||||||
|
|
||||||
// First attempt to fit the model into a single GPU
|
// First attempt to fit the model into a single GPU
|
||||||
|
if !envconfig.SchedSpread {
|
||||||
for _, g := range sgl {
|
for _, g := range sgl {
|
||||||
if ok, estimatedVRAM = llm.PredictServerFit([]gpu.GpuInfo{g}, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
|
if ok, estimatedVRAM = llm.PredictServerFit([]gpu.GpuInfo{g}, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
|
||||||
slog.Debug("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM))
|
slog.Debug("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM))
|
||||||
return []gpu.GpuInfo{g}
|
return []gpu.GpuInfo{g}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// TODO future refinements
|
// TODO future refinements
|
||||||
// - if multiple Libraries, see if any single GPU in any Library will fit
|
// - if multiple Libraries, see if any single GPU in any Library will fit
|
||||||
|
@ -586,6 +652,10 @@ func (s *Scheduler) findRunnerToUnload() *runnerRef {
|
||||||
runnerList = append(runnerList, r)
|
runnerList = append(runnerList, r)
|
||||||
}
|
}
|
||||||
s.loadedMu.Unlock()
|
s.loadedMu.Unlock()
|
||||||
|
if len(runnerList) == 0 {
|
||||||
|
slog.Debug("no loaded runner to unload")
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
|
||||||
// In the future we can enhance the algorithm to be smarter about picking the optimal runner to unload
|
// In the future we can enhance the algorithm to be smarter about picking the optimal runner to unload
|
||||||
// e.g., if we have multiple options, will one make room for the request?
|
// e.g., if we have multiple options, will one make room for the request?
|
||||||
|
@ -616,3 +686,18 @@ func (s *Scheduler) unloadAllRunners() {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// If other runners are loaded, make sure the pending request will fit in system memory
|
||||||
|
// If not, pick a runner to unload, else return nil and the request can be loaded
|
||||||
|
func (s *Scheduler) maybeFindCPURunnerToUnload(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList) *runnerRef {
|
||||||
|
slog.Debug("evaluating if CPU model load will fit in available system memory")
|
||||||
|
estimate := llm.EstimateGPULayers(gpus, ggml, req.model.ProjectorPaths, req.opts)
|
||||||
|
if estimate.TotalSize <= gpus[0].FreeMemory {
|
||||||
|
slog.Debug("cpu inference mode, model fits in available system memory", "model", format.HumanBytes2(estimate.TotalSize), "available", format.HumanBytes2(gpus[0].FreeMemory))
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO - optimization: try to find CPU only runners first, or partial offloads with enough in system memory to make room
|
||||||
|
|
||||||
|
return s.findRunnerToUnload()
|
||||||
|
}
|
||||||
|
|
|
@ -60,7 +60,7 @@ func TestLoad(t *testing.T) {
|
||||||
err := <-req.errCh
|
err := <-req.errCh
|
||||||
require.Contains(t, err.Error(), "this model may be incompatible")
|
require.Contains(t, err.Error(), "this model may be incompatible")
|
||||||
|
|
||||||
server := &mockLlm{estimatedVRAM: 10}
|
server := &mockLlm{estimatedVRAM: 10, estimatedVRAMByGPU: map[string]uint64{}}
|
||||||
s.newServerFn = func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options) (llm.LlamaServer, error) {
|
s.newServerFn = func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options) (llm.LlamaServer, error) {
|
||||||
return server, nil
|
return server, nil
|
||||||
}
|
}
|
||||||
|
@ -129,6 +129,7 @@ func newScenario(t *testing.T, ctx context.Context, modelName string, estimatedV
|
||||||
"tokenizer.ggml.token_type": []int32{0},
|
"tokenizer.ggml.token_type": []int32{0},
|
||||||
}, []llm.Tensor{
|
}, []llm.Tensor{
|
||||||
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
|
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
|
||||||
|
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
|
||||||
})
|
})
|
||||||
require.NoError(t, err)
|
require.NoError(t, err)
|
||||||
|
|
||||||
|
@ -145,7 +146,7 @@ func newScenario(t *testing.T, ctx context.Context, modelName string, estimatedV
|
||||||
successCh: make(chan *runnerRef, 1),
|
successCh: make(chan *runnerRef, 1),
|
||||||
errCh: make(chan error, 1),
|
errCh: make(chan error, 1),
|
||||||
}
|
}
|
||||||
scenario.srv = &mockLlm{estimatedVRAM: estimatedVRAM}
|
scenario.srv = &mockLlm{estimatedVRAM: estimatedVRAM, estimatedVRAMByGPU: map[string]uint64{"": estimatedVRAM}}
|
||||||
return scenario
|
return scenario
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -155,7 +156,7 @@ func TestRequests(t *testing.T) {
|
||||||
|
|
||||||
// Same model, same request
|
// Same model, same request
|
||||||
scenario1a := newScenario(t, ctx, "ollama-model-1", 10)
|
scenario1a := newScenario(t, ctx, "ollama-model-1", 10)
|
||||||
scenario1a.req.sessionDuration = 0
|
scenario1a.req.sessionDuration = 5 * time.Millisecond
|
||||||
scenario1b := newScenario(t, ctx, "ollama-model-1", 11)
|
scenario1b := newScenario(t, ctx, "ollama-model-1", 11)
|
||||||
scenario1b.req.model = scenario1a.req.model
|
scenario1b.req.model = scenario1a.req.model
|
||||||
scenario1b.ggml = scenario1a.ggml
|
scenario1b.ggml = scenario1a.ggml
|
||||||
|
@ -166,6 +167,7 @@ func TestRequests(t *testing.T) {
|
||||||
tmpModel := *scenario1a.req.model
|
tmpModel := *scenario1a.req.model
|
||||||
scenario2a.req.model = &tmpModel
|
scenario2a.req.model = &tmpModel
|
||||||
scenario2a.ggml = scenario1a.ggml
|
scenario2a.ggml = scenario1a.ggml
|
||||||
|
scenario2a.req.sessionDuration = 5 * time.Millisecond
|
||||||
|
|
||||||
// Multiple loaded models
|
// Multiple loaded models
|
||||||
scenario3a := newScenario(t, ctx, "ollama-model-3a", 1*format.GigaByte)
|
scenario3a := newScenario(t, ctx, "ollama-model-3a", 1*format.GigaByte)
|
||||||
|
@ -181,6 +183,12 @@ func TestRequests(t *testing.T) {
|
||||||
g.FreeMemory = 12 * format.GigaByte
|
g.FreeMemory = 12 * format.GigaByte
|
||||||
return []gpu.GpuInfo{g}
|
return []gpu.GpuInfo{g}
|
||||||
}
|
}
|
||||||
|
s.getCpuFn = func() gpu.GpuInfoList {
|
||||||
|
g := gpu.GpuInfo{Library: "cpu"}
|
||||||
|
g.TotalMemory = 32 * format.GigaByte
|
||||||
|
g.FreeMemory = 26 * format.GigaByte
|
||||||
|
return []gpu.GpuInfo{g}
|
||||||
|
}
|
||||||
s.newServerFn = scenario1a.newServer
|
s.newServerFn = scenario1a.newServer
|
||||||
slog.Info("scenario1a")
|
slog.Info("scenario1a")
|
||||||
s.pendingReqCh <- scenario1a.req
|
s.pendingReqCh <- scenario1a.req
|
||||||
|
@ -309,7 +317,6 @@ func TestGetRunner(t *testing.T) {
|
||||||
ctx, done := context.WithTimeout(context.Background(), 100*time.Millisecond)
|
ctx, done := context.WithTimeout(context.Background(), 100*time.Millisecond)
|
||||||
defer done()
|
defer done()
|
||||||
|
|
||||||
// Same model, same request
|
|
||||||
scenario1a := newScenario(t, ctx, "ollama-model-1a", 10)
|
scenario1a := newScenario(t, ctx, "ollama-model-1a", 10)
|
||||||
scenario1a.req.sessionDuration = 0
|
scenario1a.req.sessionDuration = 0
|
||||||
scenario1b := newScenario(t, ctx, "ollama-model-1b", 10)
|
scenario1b := newScenario(t, ctx, "ollama-model-1b", 10)
|
||||||
|
@ -419,7 +426,7 @@ func TestUseLoadedRunner(t *testing.T) {
|
||||||
sessionDuration: 2,
|
sessionDuration: 2,
|
||||||
}
|
}
|
||||||
finished := make(chan *LlmRequest)
|
finished := make(chan *LlmRequest)
|
||||||
llm1 := &mockLlm{}
|
llm1 := &mockLlm{estimatedVRAMByGPU: map[string]uint64{}}
|
||||||
r1 := &runnerRef{llama: llm1, sessionDuration: 1}
|
r1 := &runnerRef{llama: llm1, sessionDuration: 1}
|
||||||
req.useLoadedRunner(r1, finished)
|
req.useLoadedRunner(r1, finished)
|
||||||
require.Equal(t, uint(1), r1.refCount)
|
require.Equal(t, uint(1), r1.refCount)
|
||||||
|
@ -452,8 +459,8 @@ func TestUpdateFreeSpace(t *testing.T) {
|
||||||
gpus[0].FreeMemory = 900
|
gpus[0].FreeMemory = 900
|
||||||
gpus[1].TotalMemory = 2000
|
gpus[1].TotalMemory = 2000
|
||||||
gpus[1].FreeMemory = 1900
|
gpus[1].FreeMemory = 1900
|
||||||
llm1 := &mockLlm{estimatedVRAM: 100}
|
llm1 := &mockLlm{estimatedVRAMByGPU: map[string]uint64{"1": 50, "2": 50}}
|
||||||
llm2 := &mockLlm{estimatedVRAM: 200}
|
llm2 := &mockLlm{estimatedVRAMByGPU: map[string]uint64{"1": 125, "2": 75}}
|
||||||
r1 := &runnerRef{llama: llm1, gpus: gpus}
|
r1 := &runnerRef{llama: llm1, gpus: gpus}
|
||||||
r2 := &runnerRef{llama: llm2, gpus: gpus}
|
r2 := &runnerRef{llama: llm2, gpus: gpus}
|
||||||
|
|
||||||
|
@ -464,8 +471,42 @@ func TestUpdateFreeSpace(t *testing.T) {
|
||||||
s.loadedMu.Unlock()
|
s.loadedMu.Unlock()
|
||||||
|
|
||||||
s.updateFreeSpace(gpus)
|
s.updateFreeSpace(gpus)
|
||||||
require.Equal(t, uint64(850), gpus[0].FreeMemory)
|
require.Equal(t, uint64(1000-50-125), gpus[0].FreeMemory)
|
||||||
require.Equal(t, uint64(1850), gpus[1].FreeMemory)
|
require.Equal(t, uint64(2000-50-75), gpus[1].FreeMemory)
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestFilterGPUsWithoutLoadingModels(t *testing.T) {
|
||||||
|
ctx, done := context.WithTimeout(context.Background(), 100*time.Millisecond)
|
||||||
|
defer done()
|
||||||
|
gpus := gpu.GpuInfoList{
|
||||||
|
{
|
||||||
|
Library: "cuda",
|
||||||
|
ID: "0",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
Library: "cuda",
|
||||||
|
ID: "1",
|
||||||
|
},
|
||||||
|
}
|
||||||
|
r1 := &runnerRef{gpus: gpu.GpuInfoList{gpus[0]}, loading: true}
|
||||||
|
|
||||||
|
s := InitScheduler(ctx)
|
||||||
|
s.loadedMu.Lock()
|
||||||
|
s.loaded["a"] = r1
|
||||||
|
s.loadedMu.Unlock()
|
||||||
|
|
||||||
|
tmp := s.filterGPUsWithoutLoadingModels(gpus)
|
||||||
|
require.Len(t, tmp, 1)
|
||||||
|
require.Equal(t, "1", tmp[0].ID)
|
||||||
|
|
||||||
|
r1.gpus = gpu.GpuInfoList{gpus[1]}
|
||||||
|
tmp = s.filterGPUsWithoutLoadingModels(gpus)
|
||||||
|
require.Len(t, tmp, 1)
|
||||||
|
require.Equal(t, "0", tmp[0].ID)
|
||||||
|
|
||||||
|
r1.gpus = gpu.GpuInfoList{}
|
||||||
|
tmp = s.filterGPUsWithoutLoadingModels(gpus)
|
||||||
|
require.Len(t, tmp, 2)
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestFindRunnerToUnload(t *testing.T) {
|
func TestFindRunnerToUnload(t *testing.T) {
|
||||||
|
@ -492,7 +533,7 @@ func TestNeedsReload(t *testing.T) {
|
||||||
ctx, done := context.WithTimeout(context.Background(), 100*time.Millisecond)
|
ctx, done := context.WithTimeout(context.Background(), 100*time.Millisecond)
|
||||||
defer done()
|
defer done()
|
||||||
|
|
||||||
llm := &mockLlm{}
|
llm := &mockLlm{estimatedVRAMByGPU: map[string]uint64{}}
|
||||||
do := api.DefaultOptions()
|
do := api.DefaultOptions()
|
||||||
runner := &runnerRef{
|
runner := &runnerRef{
|
||||||
model: &Model{AdapterPaths: []string{"adapter1"}, ProjectorPaths: []string{"projector1"}},
|
model: &Model{AdapterPaths: []string{"adapter1"}, ProjectorPaths: []string{"projector1"}},
|
||||||
|
@ -535,8 +576,8 @@ func TestUnloadAllRunners(t *testing.T) {
|
||||||
ctx, done := context.WithTimeout(context.Background(), 100*time.Millisecond)
|
ctx, done := context.WithTimeout(context.Background(), 100*time.Millisecond)
|
||||||
defer done()
|
defer done()
|
||||||
|
|
||||||
llm1 := &mockLlm{}
|
llm1 := &mockLlm{estimatedVRAMByGPU: map[string]uint64{}}
|
||||||
llm2 := &mockLlm{}
|
llm2 := &mockLlm{estimatedVRAMByGPU: map[string]uint64{}}
|
||||||
s := InitScheduler(ctx)
|
s := InitScheduler(ctx)
|
||||||
s.unloadAllRunners()
|
s.unloadAllRunners()
|
||||||
|
|
||||||
|
@ -554,7 +595,7 @@ func TestUnloadAllRunners(t *testing.T) {
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestUnload(t *testing.T) {
|
func TestUnload(t *testing.T) {
|
||||||
llm1 := &mockLlm{}
|
llm1 := &mockLlm{estimatedVRAMByGPU: map[string]uint64{}}
|
||||||
r1 := &runnerRef{llama: llm1}
|
r1 := &runnerRef{llama: llm1}
|
||||||
r2 := &runnerRef{model: &Model{AdapterPaths: []string{"A"}}}
|
r2 := &runnerRef{model: &Model{AdapterPaths: []string{"A"}}}
|
||||||
r1.unload()
|
r1.unload()
|
||||||
|
@ -577,6 +618,7 @@ type mockLlm struct {
|
||||||
closeCalled bool
|
closeCalled bool
|
||||||
estimatedVRAM uint64
|
estimatedVRAM uint64
|
||||||
estimatedTotal uint64
|
estimatedTotal uint64
|
||||||
|
estimatedVRAMByGPU map[string]uint64
|
||||||
}
|
}
|
||||||
|
|
||||||
func (s *mockLlm) Ping(ctx context.Context) error { return s.pingResp }
|
func (s *mockLlm) Ping(ctx context.Context) error { return s.pingResp }
|
||||||
|
@ -599,3 +641,4 @@ func (s *mockLlm) Close() error {
|
||||||
}
|
}
|
||||||
func (s *mockLlm) EstimatedVRAM() uint64 { return s.estimatedVRAM }
|
func (s *mockLlm) EstimatedVRAM() uint64 { return s.estimatedVRAM }
|
||||||
func (s *mockLlm) EstimatedTotal() uint64 { return s.estimatedTotal }
|
func (s *mockLlm) EstimatedTotal() uint64 { return s.estimatedTotal }
|
||||||
|
func (s *mockLlm) EstimatedVRAMByGPU(gpuid string) uint64 { return s.estimatedVRAMByGPU[gpuid] }
|
||||||
|
|
Loading…
Reference in a new issue