vendor llama.cpp
This commit is contained in:
parent
fd4792ec56
commit
442dec1c6f
17 changed files with 35151 additions and 62 deletions
16
.gitignore
vendored
16
.gitignore
vendored
|
@ -3,21 +3,5 @@
|
||||||
.env
|
.env
|
||||||
.venv
|
.venv
|
||||||
*.spec
|
*.spec
|
||||||
build
|
|
||||||
dist
|
dist
|
||||||
__pycache__
|
|
||||||
ollama
|
ollama
|
||||||
ggml-metal.metal
|
|
||||||
|
|
||||||
# cmake gitignore
|
|
||||||
CMakeLists.txt.user
|
|
||||||
CMakeCache.txt
|
|
||||||
CMakeFiles
|
|
||||||
CMakeScripts
|
|
||||||
Testing
|
|
||||||
Makefile
|
|
||||||
cmake_install.cmake
|
|
||||||
install_manifest.txt
|
|
||||||
compile_commands.json
|
|
||||||
CTestTestfile.cmake
|
|
||||||
_deps
|
|
||||||
|
|
|
@ -1,43 +0,0 @@
|
||||||
cmake_minimum_required(VERSION 3.12)
|
|
||||||
project(ollama)
|
|
||||||
|
|
||||||
include(FetchContent)
|
|
||||||
|
|
||||||
FetchContent_Declare(
|
|
||||||
"llama.cpp"
|
|
||||||
GIT_REPOSITORY https://github.com/ggerganov/llama.cpp.git
|
|
||||||
GIT_TAG 55dbb91
|
|
||||||
)
|
|
||||||
|
|
||||||
FetchContent_MakeAvailable(llama.cpp)
|
|
||||||
|
|
||||||
add_custom_target(
|
|
||||||
ollama
|
|
||||||
ALL
|
|
||||||
DEPENDS
|
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal
|
|
||||||
COMMAND
|
|
||||||
${CMAKE_COMMAND} -E
|
|
||||||
env
|
|
||||||
CGO_CPPFLAGS='-I${llama.cpp_SOURCE_DIR}'
|
|
||||||
CGO_LDFLAGS='-L${llama.cpp_BINARY_DIR} -lllama -lggml_static -lm -lstdc++'
|
|
||||||
CGO_CXXFLAGS='-std=c++11'
|
|
||||||
--
|
|
||||||
go build .
|
|
||||||
WORKING_DIRECTORY
|
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}
|
|
||||||
)
|
|
||||||
|
|
||||||
add_custom_command(
|
|
||||||
OUTPUT
|
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal
|
|
||||||
COMMAND
|
|
||||||
${CMAKE_COMMAND} -E
|
|
||||||
copy_if_different
|
|
||||||
${llama.cpp_SOURCE_DIR}/ggml-metal.metal
|
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal
|
|
||||||
WORKING_DIRECTORY
|
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}
|
|
||||||
)
|
|
||||||
|
|
||||||
add_dependencies(ollama llama ggml_static)
|
|
|
@ -75,7 +75,7 @@ ollama run ~/Downloads/vicuna-7b-v1.3.ggmlv3.q4_1.bin
|
||||||
## Building
|
## Building
|
||||||
|
|
||||||
```
|
```
|
||||||
make
|
go build .
|
||||||
```
|
```
|
||||||
|
|
||||||
To run it start the server:
|
To run it start the server:
|
||||||
|
|
1
llama/.gitignore
vendored
1
llama/.gitignore
vendored
|
@ -1 +0,0 @@
|
||||||
build
|
|
3414
llama/ggml-cuda.cu
Normal file
3414
llama/ggml-cuda.cu
Normal file
File diff suppressed because it is too large
Load diff
62
llama/ggml-cuda.h
Normal file
62
llama/ggml-cuda.h
Normal file
|
@ -0,0 +1,62 @@
|
||||||
|
/**
|
||||||
|
* llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066
|
||||||
|
*
|
||||||
|
* MIT License
|
||||||
|
*
|
||||||
|
* Copyright (c) 2023 Georgi Gerganov
|
||||||
|
*
|
||||||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
* of this software and associated documentation files (the "Software"), to deal
|
||||||
|
* in the Software without restriction, including without limitation the rights
|
||||||
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
* copies of the Software, and to permit persons to whom the Software is
|
||||||
|
* furnished to do so, subject to the following conditions:
|
||||||
|
*
|
||||||
|
* The above copyright notice and this permission notice shall be included in all
|
||||||
|
* copies or substantial portions of the Software.
|
||||||
|
*
|
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
* SOFTWARE.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "ggml.h"
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
extern "C" {
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define GGML_CUDA_MAX_DEVICES 16
|
||||||
|
|
||||||
|
void ggml_init_cublas(void);
|
||||||
|
void ggml_cuda_set_tensor_split(const float * tensor_split);
|
||||||
|
|
||||||
|
void ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||||
|
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||||
|
size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||||
|
void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
|
||||||
|
|
||||||
|
// TODO: export these with GGML_API
|
||||||
|
void * ggml_cuda_host_malloc(size_t size);
|
||||||
|
void ggml_cuda_host_free(void * ptr);
|
||||||
|
|
||||||
|
void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
|
||||||
|
|
||||||
|
void ggml_cuda_free_data(struct ggml_tensor * tensor);
|
||||||
|
void ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
|
||||||
|
void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);
|
||||||
|
void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);
|
||||||
|
void ggml_cuda_set_main_device(int main_device);
|
||||||
|
void ggml_cuda_set_scratch_size(size_t scratch_size);
|
||||||
|
void ggml_cuda_free_scratch(void);
|
||||||
|
bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
}
|
||||||
|
#endif
|
97
llama/ggml-metal.h
Normal file
97
llama/ggml-metal.h
Normal file
|
@ -0,0 +1,97 @@
|
||||||
|
/**
|
||||||
|
* llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066
|
||||||
|
*
|
||||||
|
* MIT License
|
||||||
|
*
|
||||||
|
* Copyright (c) 2023 Georgi Gerganov
|
||||||
|
*
|
||||||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
* of this software and associated documentation files (the "Software"), to deal
|
||||||
|
* in the Software without restriction, including without limitation the rights
|
||||||
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
* copies of the Software, and to permit persons to whom the Software is
|
||||||
|
* furnished to do so, subject to the following conditions:
|
||||||
|
*
|
||||||
|
* The above copyright notice and this permission notice shall be included in all
|
||||||
|
* copies or substantial portions of the Software.
|
||||||
|
*
|
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
* SOFTWARE.
|
||||||
|
*/
|
||||||
|
|
||||||
|
// An interface allowing to compute ggml_cgraph with Metal
|
||||||
|
//
|
||||||
|
// This is a fully functional interface that extends ggml with GPU support for Apple devices.
|
||||||
|
// A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA, OpenCL, etc.)
|
||||||
|
//
|
||||||
|
// How it works?
|
||||||
|
//
|
||||||
|
// As long as your program can create and evaluate a ggml_cgraph on the CPU, you can use this
|
||||||
|
// interface to evaluate the same graph on the GPU. Instead of using ggml_graph_compute(), you
|
||||||
|
// use ggml_metal_graph_compute() (or ggml_vulkan_graph_compute(), etc.)
|
||||||
|
//
|
||||||
|
// You only need to make sure that all memory buffers that you used during the graph creation
|
||||||
|
// are mapped to the device memory with the ggml_metal_add_buffer() function. This mapping is
|
||||||
|
// used during the graph evaluation to determine the arguments of the compute kernels.
|
||||||
|
//
|
||||||
|
// Synchronization between device and host memory (for example for input and output tensors)
|
||||||
|
// is done with the ggml_metal_set_tensor() and ggml_metal_get_tensor() functions.
|
||||||
|
//
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <stddef.h>
|
||||||
|
#include <stdbool.h>
|
||||||
|
|
||||||
|
// max memory buffers that can be mapped to the device
|
||||||
|
#define GGML_METAL_MAX_BUFFERS 16
|
||||||
|
|
||||||
|
struct ggml_tensor;
|
||||||
|
struct ggml_cgraph;
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
extern "C" {
|
||||||
|
#endif
|
||||||
|
|
||||||
|
struct ggml_metal_context;
|
||||||
|
|
||||||
|
// number of command buffers to use
|
||||||
|
struct ggml_metal_context * ggml_metal_init(int n_cb);
|
||||||
|
void ggml_metal_free(struct ggml_metal_context * ctx);
|
||||||
|
|
||||||
|
// set the number of command buffers to use
|
||||||
|
void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb);
|
||||||
|
|
||||||
|
// creates a mapping between a host memory buffer and a device memory buffer
|
||||||
|
// - make sure to map all buffers used in the graph before calling ggml_metal_graph_compute
|
||||||
|
// - the mapping is used during computation to determine the arguments of the compute kernels
|
||||||
|
// - you don't need to keep the host memory buffer allocated as it is never accessed by Metal
|
||||||
|
// - max_size specifies the maximum size of a tensor and is used to create shared views such
|
||||||
|
// that it is guaranteed that the tensor will fit in at least one of the views
|
||||||
|
//
|
||||||
|
bool ggml_metal_add_buffer(
|
||||||
|
struct ggml_metal_context * ctx,
|
||||||
|
const char * name,
|
||||||
|
void * data,
|
||||||
|
size_t size,
|
||||||
|
size_t max_size);
|
||||||
|
|
||||||
|
// set data from host memory into the device
|
||||||
|
void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
|
||||||
|
|
||||||
|
// get data from the device into host memory
|
||||||
|
void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
|
||||||
|
|
||||||
|
// same as ggml_graph_compute but uses Metal
|
||||||
|
// creates gf->n_threads command buffers in parallel
|
||||||
|
void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
1014
llama/ggml-metal.m
Normal file
1014
llama/ggml-metal.m
Normal file
File diff suppressed because it is too large
Load diff
1855
llama/ggml-metal.metal
Normal file
1855
llama/ggml-metal.metal
Normal file
File diff suppressed because it is too large
Load diff
18380
llama/ggml.c
Normal file
18380
llama/ggml.c
Normal file
File diff suppressed because it is too large
Load diff
1575
llama/ggml.h
Normal file
1575
llama/ggml.h
Normal file
File diff suppressed because it is too large
Load diff
3926
llama/k_quants.c
Normal file
3926
llama/k_quants.c
Normal file
File diff suppressed because it is too large
Load diff
183
llama/k_quants.h
Normal file
183
llama/k_quants.h
Normal file
|
@ -0,0 +1,183 @@
|
||||||
|
/**
|
||||||
|
* llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066
|
||||||
|
*
|
||||||
|
* MIT License
|
||||||
|
*
|
||||||
|
* Copyright (c) 2023 Georgi Gerganov
|
||||||
|
*
|
||||||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
* of this software and associated documentation files (the "Software"), to deal
|
||||||
|
* in the Software without restriction, including without limitation the rights
|
||||||
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
* copies of the Software, and to permit persons to whom the Software is
|
||||||
|
* furnished to do so, subject to the following conditions:
|
||||||
|
*
|
||||||
|
* The above copyright notice and this permission notice shall be included in all
|
||||||
|
* copies or substantial portions of the Software.
|
||||||
|
*
|
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
* SOFTWARE.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "ggml.h"
|
||||||
|
|
||||||
|
#include <stdint.h>
|
||||||
|
#include <assert.h>
|
||||||
|
#include <stddef.h>
|
||||||
|
|
||||||
|
// Super-block size
|
||||||
|
#ifdef GGML_QKK_64
|
||||||
|
#define QK_K 64
|
||||||
|
#define K_SCALE_SIZE 4
|
||||||
|
#else
|
||||||
|
#define QK_K 256
|
||||||
|
#define K_SCALE_SIZE 12
|
||||||
|
#endif
|
||||||
|
|
||||||
|
//
|
||||||
|
// Super-block quantization structures
|
||||||
|
//
|
||||||
|
|
||||||
|
// 2-bit quantization
|
||||||
|
// weight is represented as x = a * q + b
|
||||||
|
// 16 blocks of 16 elemenets each
|
||||||
|
// Effectively 2.5625 bits per weight
|
||||||
|
typedef struct {
|
||||||
|
uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
|
||||||
|
uint8_t qs[QK_K/4]; // quants
|
||||||
|
ggml_fp16_t d; // super-block scale for quantized scales
|
||||||
|
ggml_fp16_t dmin; // super-block scale for quantized mins
|
||||||
|
} block_q2_K;
|
||||||
|
static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
|
||||||
|
|
||||||
|
// 3-bit quantization
|
||||||
|
// weight is represented as x = a * q
|
||||||
|
// 16 blocks of 16 elemenets each
|
||||||
|
// Effectively 3.4375 bits per weight
|
||||||
|
#ifdef GGML_QKK_64
|
||||||
|
typedef struct {
|
||||||
|
uint8_t hmask[QK_K/8]; // quants - high bit
|
||||||
|
uint8_t qs[QK_K/4]; // quants - low 2 bits
|
||||||
|
uint8_t scales[2];
|
||||||
|
ggml_fp16_t d; // super-block scale
|
||||||
|
} block_q3_K;
|
||||||
|
static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 2, "wrong q3_K block size/padding");
|
||||||
|
#else
|
||||||
|
typedef struct {
|
||||||
|
uint8_t hmask[QK_K/8]; // quants - high bit
|
||||||
|
uint8_t qs[QK_K/4]; // quants - low 2 bits
|
||||||
|
uint8_t scales[12]; // scales, quantized with 6 bits
|
||||||
|
ggml_fp16_t d; // super-block scale
|
||||||
|
} block_q3_K;
|
||||||
|
static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 12, "wrong q3_K block size/padding");
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// 4-bit quantization
|
||||||
|
// 16 blocks of 32 elements each
|
||||||
|
// weight is represented as x = a * q + b
|
||||||
|
// Effectively 4.5 bits per weight
|
||||||
|
#ifdef GGML_QKK_64
|
||||||
|
typedef struct {
|
||||||
|
ggml_fp16_t d[2]; // super-block scales/mins
|
||||||
|
uint8_t scales[2]; // 4-bit block scales/mins
|
||||||
|
uint8_t qs[QK_K/2]; // 4--bit quants
|
||||||
|
} block_q4_K;
|
||||||
|
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + QK_K/2 + 2, "wrong q4_K block size/padding");
|
||||||
|
#else
|
||||||
|
typedef struct {
|
||||||
|
ggml_fp16_t d; // super-block scale for quantized scales
|
||||||
|
ggml_fp16_t dmin; // super-block scale for quantized mins
|
||||||
|
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
|
||||||
|
uint8_t qs[QK_K/2]; // 4--bit quants
|
||||||
|
} block_q4_K;
|
||||||
|
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2, "wrong q4_K block size/padding");
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// 5-bit quantization
|
||||||
|
// 16 blocks of 32 elements each
|
||||||
|
// weight is represented as x = a * q + b
|
||||||
|
// Effectively 5.5 bits per weight
|
||||||
|
#ifdef GGML_QKK_64
|
||||||
|
typedef struct {
|
||||||
|
ggml_fp16_t d; // super-block scale
|
||||||
|
int8_t scales[QK_K/16]; // 8-bit block scales
|
||||||
|
uint8_t qh[QK_K/8]; // quants, high bit
|
||||||
|
uint8_t qs[QK_K/2]; // quants, low 4 bits
|
||||||
|
} block_q5_K;
|
||||||
|
static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
|
||||||
|
#else
|
||||||
|
typedef struct {
|
||||||
|
ggml_fp16_t d; // super-block scale for quantized scales
|
||||||
|
ggml_fp16_t dmin; // super-block scale for quantized mins
|
||||||
|
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
|
||||||
|
uint8_t qh[QK_K/8]; // quants, high bit
|
||||||
|
uint8_t qs[QK_K/2]; // quants, low 4 bits
|
||||||
|
} block_q5_K;
|
||||||
|
static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// 6-bit quantization
|
||||||
|
// weight is represented as x = a * q
|
||||||
|
// 16 blocks of 16 elemenets each
|
||||||
|
// Effectively 6.5625 bits per weight
|
||||||
|
typedef struct {
|
||||||
|
uint8_t ql[QK_K/2]; // quants, lower 4 bits
|
||||||
|
uint8_t qh[QK_K/4]; // quants, upper 2 bits
|
||||||
|
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
|
||||||
|
ggml_fp16_t d; // super-block scale
|
||||||
|
} block_q6_K;
|
||||||
|
static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + QK_K / 16 + 3*QK_K/4, "wrong q6_K block size/padding");
|
||||||
|
|
||||||
|
// This is only used for intermediate quantization and dot products
|
||||||
|
typedef struct {
|
||||||
|
float d; // delta
|
||||||
|
int8_t qs[QK_K]; // quants
|
||||||
|
int16_t bsums[QK_K/16]; // sum of quants in groups of 16
|
||||||
|
} block_q8_K;
|
||||||
|
static_assert(sizeof(block_q8_K) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_t), "wrong q8_K block size/padding");
|
||||||
|
|
||||||
|
|
||||||
|
// Quantization
|
||||||
|
void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k);
|
||||||
|
void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k);
|
||||||
|
void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k);
|
||||||
|
void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k);
|
||||||
|
void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k);
|
||||||
|
void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k);
|
||||||
|
|
||||||
|
void quantize_row_q2_K(const float * restrict x, void * restrict y, int k);
|
||||||
|
void quantize_row_q3_K(const float * restrict x, void * restrict y, int k);
|
||||||
|
void quantize_row_q4_K(const float * restrict x, void * restrict y, int k);
|
||||||
|
void quantize_row_q5_K(const float * restrict x, void * restrict y, int k);
|
||||||
|
void quantize_row_q6_K(const float * restrict x, void * restrict y, int k);
|
||||||
|
void quantize_row_q8_K(const float * restrict x, void * restrict y, int k);
|
||||||
|
|
||||||
|
// Dequantization
|
||||||
|
void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k);
|
||||||
|
void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k);
|
||||||
|
void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k);
|
||||||
|
void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k);
|
||||||
|
void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k);
|
||||||
|
void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k);
|
||||||
|
|
||||||
|
// Dot product
|
||||||
|
void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||||
|
void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||||
|
void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||||
|
void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||||
|
void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||||
|
|
||||||
|
// Quantization with histogram collection
|
||||||
|
size_t ggml_quantize_q2_K(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||||
|
size_t ggml_quantize_q3_K(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||||
|
size_t ggml_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||||
|
size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||||
|
size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||||
|
|
530
llama/llama-util.h
Normal file
530
llama/llama-util.h
Normal file
|
@ -0,0 +1,530 @@
|
||||||
|
/**
|
||||||
|
* llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066
|
||||||
|
*
|
||||||
|
* MIT License
|
||||||
|
*
|
||||||
|
* Copyright (c) 2023 Georgi Gerganov
|
||||||
|
*
|
||||||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
* of this software and associated documentation files (the "Software"), to deal
|
||||||
|
* in the Software without restriction, including without limitation the rights
|
||||||
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
* copies of the Software, and to permit persons to whom the Software is
|
||||||
|
* furnished to do so, subject to the following conditions:
|
||||||
|
*
|
||||||
|
* The above copyright notice and this permission notice shall be included in all
|
||||||
|
* copies or substantial portions of the Software.
|
||||||
|
*
|
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
* SOFTWARE.
|
||||||
|
*/
|
||||||
|
|
||||||
|
// Internal header to be included only by llama.cpp.
|
||||||
|
// Contains wrappers around OS interfaces.
|
||||||
|
|
||||||
|
#ifndef LLAMA_UTIL_H
|
||||||
|
#define LLAMA_UTIL_H
|
||||||
|
|
||||||
|
#include <cstdio>
|
||||||
|
#include <cstdint>
|
||||||
|
#include <cerrno>
|
||||||
|
#include <cstring>
|
||||||
|
#include <cstdarg>
|
||||||
|
#include <cstdlib>
|
||||||
|
#include <climits>
|
||||||
|
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
#include <stdexcept>
|
||||||
|
|
||||||
|
#ifdef __has_include
|
||||||
|
#if __has_include(<unistd.h>)
|
||||||
|
#include <unistd.h>
|
||||||
|
#if defined(_POSIX_MAPPED_FILES)
|
||||||
|
#include <sys/mman.h>
|
||||||
|
#endif
|
||||||
|
#if defined(_POSIX_MEMLOCK_RANGE)
|
||||||
|
#include <sys/resource.h>
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if defined(_WIN32)
|
||||||
|
#define WIN32_LEAN_AND_MEAN
|
||||||
|
#ifndef NOMINMAX
|
||||||
|
#define NOMINMAX
|
||||||
|
#endif
|
||||||
|
#include <windows.h>
|
||||||
|
#include <io.h>
|
||||||
|
#include <stdio.h> // for _fseeki64
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define LLAMA_ASSERT(x) \
|
||||||
|
do { \
|
||||||
|
if (!(x)) { \
|
||||||
|
fprintf(stderr, "LLAMA_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
|
||||||
|
abort(); \
|
||||||
|
} \
|
||||||
|
} while (0)
|
||||||
|
|
||||||
|
#ifdef __GNUC__
|
||||||
|
#ifdef __MINGW32__
|
||||||
|
__attribute__((format(gnu_printf, 1, 2)))
|
||||||
|
#else
|
||||||
|
__attribute__((format(printf, 1, 2)))
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
static std::string format(const char * fmt, ...) {
|
||||||
|
va_list ap, ap2;
|
||||||
|
va_start(ap, fmt);
|
||||||
|
va_copy(ap2, ap);
|
||||||
|
int size = vsnprintf(NULL, 0, fmt, ap);
|
||||||
|
LLAMA_ASSERT(size >= 0 && size < INT_MAX);
|
||||||
|
std::vector<char> buf(size + 1);
|
||||||
|
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
||||||
|
LLAMA_ASSERT(size2 == size);
|
||||||
|
va_end(ap2);
|
||||||
|
va_end(ap);
|
||||||
|
return std::string(buf.data(), size);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct llama_file {
|
||||||
|
// use FILE * so we don't have to re-open the file to mmap
|
||||||
|
FILE * fp;
|
||||||
|
size_t size;
|
||||||
|
|
||||||
|
llama_file(const char * fname, const char * mode) {
|
||||||
|
fp = std::fopen(fname, mode);
|
||||||
|
if (fp == NULL) {
|
||||||
|
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
|
||||||
|
}
|
||||||
|
seek(0, SEEK_END);
|
||||||
|
size = tell();
|
||||||
|
seek(0, SEEK_SET);
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t tell() const {
|
||||||
|
#ifdef _WIN32
|
||||||
|
__int64 ret = _ftelli64(fp);
|
||||||
|
#else
|
||||||
|
long ret = std::ftell(fp);
|
||||||
|
#endif
|
||||||
|
LLAMA_ASSERT(ret != -1); // this really shouldn't fail
|
||||||
|
return (size_t) ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
void seek(size_t offset, int whence) {
|
||||||
|
#ifdef _WIN32
|
||||||
|
int ret = _fseeki64(fp, (__int64) offset, whence);
|
||||||
|
#else
|
||||||
|
int ret = std::fseek(fp, (long) offset, whence);
|
||||||
|
#endif
|
||||||
|
LLAMA_ASSERT(ret == 0); // same
|
||||||
|
}
|
||||||
|
|
||||||
|
void read_raw(void * ptr, size_t len) const {
|
||||||
|
if (len == 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
errno = 0;
|
||||||
|
std::size_t ret = std::fread(ptr, len, 1, fp);
|
||||||
|
if (ferror(fp)) {
|
||||||
|
throw std::runtime_error(format("read error: %s", strerror(errno)));
|
||||||
|
}
|
||||||
|
if (ret != 1) {
|
||||||
|
throw std::runtime_error(std::string("unexpectedly reached end of file"));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::uint32_t read_u32() {
|
||||||
|
std::uint32_t ret;
|
||||||
|
read_raw(&ret, sizeof(ret));
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string read_string(std::uint32_t len) {
|
||||||
|
std::vector<char> chars(len);
|
||||||
|
read_raw(chars.data(), len);
|
||||||
|
return std::string(chars.data(), len);
|
||||||
|
}
|
||||||
|
|
||||||
|
void write_raw(const void * ptr, size_t len) const {
|
||||||
|
if (len == 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
errno = 0;
|
||||||
|
size_t ret = std::fwrite(ptr, len, 1, fp);
|
||||||
|
if (ret != 1) {
|
||||||
|
throw std::runtime_error(format("write error: %s", strerror(errno)));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void write_u32(std::uint32_t val) {
|
||||||
|
write_raw(&val, sizeof(val));
|
||||||
|
}
|
||||||
|
|
||||||
|
~llama_file() {
|
||||||
|
if (fp) {
|
||||||
|
std::fclose(fp);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
#if defined(_WIN32)
|
||||||
|
static std::string llama_format_win_err(DWORD err) {
|
||||||
|
LPSTR buf;
|
||||||
|
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
|
||||||
|
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
|
||||||
|
if (!size) {
|
||||||
|
return "FormatMessageA failed";
|
||||||
|
}
|
||||||
|
std::string ret(buf, size);
|
||||||
|
LocalFree(buf);
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
struct llama_mmap {
|
||||||
|
void * addr;
|
||||||
|
size_t size;
|
||||||
|
|
||||||
|
llama_mmap(const llama_mmap &) = delete;
|
||||||
|
|
||||||
|
#ifdef _POSIX_MAPPED_FILES
|
||||||
|
static constexpr bool SUPPORTED = true;
|
||||||
|
|
||||||
|
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
|
||||||
|
size = file->size;
|
||||||
|
int fd = fileno(file->fp);
|
||||||
|
int flags = MAP_PRIVATE;
|
||||||
|
// prefetch/readahead impairs performance on NUMA systems
|
||||||
|
if (numa) { prefetch = 0; }
|
||||||
|
#ifdef __linux__
|
||||||
|
if (prefetch) { flags |= MAP_POPULATE; }
|
||||||
|
#endif
|
||||||
|
addr = mmap(NULL, file->size, PROT_READ | PROT_WRITE, flags, fd, 0);
|
||||||
|
if (addr == MAP_FAILED) {
|
||||||
|
throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
|
||||||
|
}
|
||||||
|
|
||||||
|
if (prefetch > 0) {
|
||||||
|
// Advise the kernel to preload the mapped memory
|
||||||
|
if (madvise(addr, std::min(file->size, prefetch), MADV_WILLNEED)) {
|
||||||
|
fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n",
|
||||||
|
strerror(errno));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (numa) {
|
||||||
|
// advise the kernel not to use readahead
|
||||||
|
// (because the next page might not belong on the same node)
|
||||||
|
if (madvise(addr, file->size, MADV_RANDOM)) {
|
||||||
|
fprintf(stderr, "warning: madvise(.., MADV_RANDOM) failed: %s\n",
|
||||||
|
strerror(errno));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
~llama_mmap() {
|
||||||
|
munmap(addr, size);
|
||||||
|
}
|
||||||
|
#elif defined(_WIN32)
|
||||||
|
static constexpr bool SUPPORTED = true;
|
||||||
|
|
||||||
|
llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
|
||||||
|
(void) numa;
|
||||||
|
|
||||||
|
size = file->size;
|
||||||
|
|
||||||
|
HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
|
||||||
|
|
||||||
|
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
|
||||||
|
DWORD error = GetLastError();
|
||||||
|
|
||||||
|
if (hMapping == NULL) {
|
||||||
|
throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
|
||||||
|
}
|
||||||
|
|
||||||
|
addr = MapViewOfFile(hMapping, FILE_MAP_COPY, 0, 0, 0);
|
||||||
|
error = GetLastError();
|
||||||
|
CloseHandle(hMapping);
|
||||||
|
|
||||||
|
if (addr == NULL) {
|
||||||
|
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
|
||||||
|
}
|
||||||
|
|
||||||
|
#if _WIN32_WINNT >= _WIN32_WINNT_WIN8
|
||||||
|
if (prefetch) {
|
||||||
|
// Advise the kernel to preload the mapped memory
|
||||||
|
WIN32_MEMORY_RANGE_ENTRY range;
|
||||||
|
range.VirtualAddress = addr;
|
||||||
|
range.NumberOfBytes = (SIZE_T)size;
|
||||||
|
if (!PrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
|
||||||
|
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
|
||||||
|
llama_format_win_err(GetLastError()).c_str());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
#pragma message("warning: You are building for pre-Windows 8; prefetch not supported")
|
||||||
|
#endif // _WIN32_WINNT >= _WIN32_WINNT_WIN8
|
||||||
|
}
|
||||||
|
|
||||||
|
~llama_mmap() {
|
||||||
|
if (!UnmapViewOfFile(addr)) {
|
||||||
|
fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
|
||||||
|
llama_format_win_err(GetLastError()).c_str());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
static constexpr bool SUPPORTED = false;
|
||||||
|
|
||||||
|
llama_mmap(struct llama_file *, bool prefetch = true, bool numa = false) {
|
||||||
|
(void) prefetch;
|
||||||
|
(void) numa;
|
||||||
|
|
||||||
|
throw std::runtime_error(std::string("mmap not supported"));
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
};
|
||||||
|
|
||||||
|
// Represents some region of memory being locked using mlock or VirtualLock;
|
||||||
|
// will automatically unlock on destruction.
|
||||||
|
struct llama_mlock {
|
||||||
|
void * addr = NULL;
|
||||||
|
size_t size = 0;
|
||||||
|
bool failed_already = false;
|
||||||
|
|
||||||
|
llama_mlock() {}
|
||||||
|
llama_mlock(const llama_mlock &) = delete;
|
||||||
|
|
||||||
|
~llama_mlock() {
|
||||||
|
if (size) {
|
||||||
|
raw_unlock(addr, size);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void init(void * ptr) {
|
||||||
|
LLAMA_ASSERT(addr == NULL && size == 0);
|
||||||
|
addr = ptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
void grow_to(size_t target_size) {
|
||||||
|
LLAMA_ASSERT(addr);
|
||||||
|
if (failed_already) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
size_t granularity = lock_granularity();
|
||||||
|
target_size = (target_size + granularity - 1) & ~(granularity - 1);
|
||||||
|
if (target_size > size) {
|
||||||
|
if (raw_lock((uint8_t *) addr + size, target_size - size)) {
|
||||||
|
size = target_size;
|
||||||
|
} else {
|
||||||
|
failed_already = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef _POSIX_MEMLOCK_RANGE
|
||||||
|
static constexpr bool SUPPORTED = true;
|
||||||
|
|
||||||
|
size_t lock_granularity() {
|
||||||
|
return (size_t) sysconf(_SC_PAGESIZE);
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef __APPLE__
|
||||||
|
#define MLOCK_SUGGESTION \
|
||||||
|
"Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
|
||||||
|
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
|
||||||
|
#else
|
||||||
|
#define MLOCK_SUGGESTION \
|
||||||
|
"Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
|
||||||
|
#endif
|
||||||
|
|
||||||
|
bool raw_lock(const void * addr, size_t size) {
|
||||||
|
if (!mlock(addr, size)) {
|
||||||
|
return true;
|
||||||
|
} else {
|
||||||
|
char* errmsg = std::strerror(errno);
|
||||||
|
bool suggest = (errno == ENOMEM);
|
||||||
|
|
||||||
|
// Check if the resource limit is fine after all
|
||||||
|
struct rlimit lock_limit;
|
||||||
|
if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit))
|
||||||
|
suggest = false;
|
||||||
|
if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size))
|
||||||
|
suggest = false;
|
||||||
|
|
||||||
|
fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
|
||||||
|
size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#undef MLOCK_SUGGESTION
|
||||||
|
|
||||||
|
void raw_unlock(void * addr, size_t size) {
|
||||||
|
if (munlock(addr, size)) {
|
||||||
|
fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#elif defined(_WIN32)
|
||||||
|
static constexpr bool SUPPORTED = true;
|
||||||
|
|
||||||
|
size_t lock_granularity() {
|
||||||
|
SYSTEM_INFO si;
|
||||||
|
GetSystemInfo(&si);
|
||||||
|
return (size_t) si.dwPageSize;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool raw_lock(void * ptr, size_t len) {
|
||||||
|
for (int tries = 1; ; tries++) {
|
||||||
|
if (VirtualLock(ptr, len)) {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
if (tries == 2) {
|
||||||
|
fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
|
||||||
|
len, size, llama_format_win_err(GetLastError()).c_str());
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// It failed but this was only the first try; increase the working
|
||||||
|
// set size and try again.
|
||||||
|
SIZE_T min_ws_size, max_ws_size;
|
||||||
|
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
|
||||||
|
fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
|
||||||
|
llama_format_win_err(GetLastError()).c_str());
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
// Per MSDN: "The maximum number of pages that a process can lock
|
||||||
|
// is equal to the number of pages in its minimum working set minus
|
||||||
|
// a small overhead."
|
||||||
|
// Hopefully a megabyte is enough overhead:
|
||||||
|
size_t increment = len + 1048576;
|
||||||
|
// The minimum must be <= the maximum, so we need to increase both:
|
||||||
|
min_ws_size += increment;
|
||||||
|
max_ws_size += increment;
|
||||||
|
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
|
||||||
|
fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
|
||||||
|
llama_format_win_err(GetLastError()).c_str());
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void raw_unlock(void * ptr, size_t len) {
|
||||||
|
if (!VirtualUnlock(ptr, len)) {
|
||||||
|
fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
|
||||||
|
llama_format_win_err(GetLastError()).c_str());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
static constexpr bool SUPPORTED = false;
|
||||||
|
|
||||||
|
size_t lock_granularity() {
|
||||||
|
return (size_t) 65536;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool raw_lock(const void * addr, size_t len) {
|
||||||
|
fprintf(stderr, "warning: mlock not supported on this system\n");
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
void raw_unlock(const void * addr, size_t len) {}
|
||||||
|
#endif
|
||||||
|
};
|
||||||
|
|
||||||
|
// Replacement for std::vector<uint8_t> that doesn't require zero-initialization.
|
||||||
|
struct llama_buffer {
|
||||||
|
uint8_t * addr = NULL;
|
||||||
|
size_t size = 0;
|
||||||
|
|
||||||
|
llama_buffer() = default;
|
||||||
|
|
||||||
|
void resize(size_t len) {
|
||||||
|
#ifdef GGML_USE_METAL
|
||||||
|
free(addr);
|
||||||
|
int result = posix_memalign((void **) &addr, getpagesize(), len);
|
||||||
|
if (result == 0) {
|
||||||
|
memset(addr, 0, len);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
addr = NULL;
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
delete[] addr;
|
||||||
|
addr = new uint8_t[len];
|
||||||
|
#endif
|
||||||
|
size = len;
|
||||||
|
}
|
||||||
|
|
||||||
|
~llama_buffer() {
|
||||||
|
#ifdef GGML_USE_METAL
|
||||||
|
free(addr);
|
||||||
|
#else
|
||||||
|
delete[] addr;
|
||||||
|
#endif
|
||||||
|
addr = NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
// disable copy and move
|
||||||
|
llama_buffer(const llama_buffer&) = delete;
|
||||||
|
llama_buffer(llama_buffer&&) = delete;
|
||||||
|
llama_buffer& operator=(const llama_buffer&) = delete;
|
||||||
|
llama_buffer& operator=(llama_buffer&&) = delete;
|
||||||
|
};
|
||||||
|
|
||||||
|
#ifdef GGML_USE_CUBLAS
|
||||||
|
#include "ggml-cuda.h"
|
||||||
|
struct llama_ctx_buffer {
|
||||||
|
uint8_t * addr = NULL;
|
||||||
|
bool is_cuda;
|
||||||
|
size_t size = 0;
|
||||||
|
|
||||||
|
llama_ctx_buffer() = default;
|
||||||
|
|
||||||
|
void resize(size_t size) {
|
||||||
|
free();
|
||||||
|
|
||||||
|
addr = (uint8_t *) ggml_cuda_host_malloc(size);
|
||||||
|
if (addr) {
|
||||||
|
is_cuda = true;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
// fall back to pageable memory
|
||||||
|
addr = new uint8_t[size];
|
||||||
|
is_cuda = false;
|
||||||
|
}
|
||||||
|
this->size = size;
|
||||||
|
}
|
||||||
|
|
||||||
|
void free() {
|
||||||
|
if (addr) {
|
||||||
|
if (is_cuda) {
|
||||||
|
ggml_cuda_host_free(addr);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
delete[] addr;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
addr = NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
~llama_ctx_buffer() {
|
||||||
|
free();
|
||||||
|
}
|
||||||
|
|
||||||
|
// disable copy and move
|
||||||
|
llama_ctx_buffer(const llama_ctx_buffer&) = delete;
|
||||||
|
llama_ctx_buffer(llama_ctx_buffer&&) = delete;
|
||||||
|
llama_ctx_buffer& operator=(const llama_ctx_buffer&) = delete;
|
||||||
|
llama_ctx_buffer& operator=(llama_ctx_buffer&&) = delete;
|
||||||
|
};
|
||||||
|
#else
|
||||||
|
typedef llama_buffer llama_ctx_buffer;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#endif
|
3700
llama/llama.cpp
Normal file
3700
llama/llama.cpp
Normal file
File diff suppressed because it is too large
Load diff
|
@ -1,6 +1,9 @@
|
||||||
package llama
|
package llama
|
||||||
|
|
||||||
/*
|
/*
|
||||||
|
#cgo CPPFLAGS: -O3 -DNDEBUG=1
|
||||||
|
#cgo CXXFLAGS: -std=c++11
|
||||||
|
#cgo darwin CPPFLAGS: -DGGML_USE_METAL=1 -DGGML_METAL_NDEBUG=1
|
||||||
#cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
|
#cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
|
||||||
#include <stdlib.h>
|
#include <stdlib.h>
|
||||||
#include "llama.h"
|
#include "llama.h"
|
||||||
|
@ -99,7 +102,7 @@ func New(model string, opts api.Options) (*llama, error) {
|
||||||
|
|
||||||
llm := llama{Options: opts}
|
llm := llama{Options: opts}
|
||||||
|
|
||||||
C.llama_init_backend(C.bool(llm.UseNUMA))
|
C.llama_backend_init(C.bool(llm.UseNUMA))
|
||||||
|
|
||||||
params := C.llama_context_default_params()
|
params := C.llama_context_default_params()
|
||||||
params.seed = C.uint(llm.Seed)
|
params.seed = C.uint(llm.Seed)
|
||||||
|
|
410
llama/llama.h
Normal file
410
llama/llama.h
Normal file
|
@ -0,0 +1,410 @@
|
||||||
|
/**
|
||||||
|
* llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066
|
||||||
|
*
|
||||||
|
* MIT License
|
||||||
|
*
|
||||||
|
* Copyright (c) 2023 Georgi Gerganov
|
||||||
|
*
|
||||||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
* of this software and associated documentation files (the "Software"), to deal
|
||||||
|
* in the Software without restriction, including without limitation the rights
|
||||||
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
* copies of the Software, and to permit persons to whom the Software is
|
||||||
|
* furnished to do so, subject to the following conditions:
|
||||||
|
*
|
||||||
|
* The above copyright notice and this permission notice shall be included in all
|
||||||
|
* copies or substantial portions of the Software.
|
||||||
|
*
|
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
* SOFTWARE.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef LLAMA_H
|
||||||
|
#define LLAMA_H
|
||||||
|
|
||||||
|
#include "ggml.h"
|
||||||
|
#ifdef GGML_USE_CUBLAS
|
||||||
|
#include "ggml-cuda.h"
|
||||||
|
#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
|
||||||
|
#else
|
||||||
|
#define LLAMA_MAX_DEVICES 1
|
||||||
|
#endif // GGML_USE_CUBLAS
|
||||||
|
#include <stddef.h>
|
||||||
|
#include <stdint.h>
|
||||||
|
#include <stdbool.h>
|
||||||
|
|
||||||
|
#ifdef LLAMA_SHARED
|
||||||
|
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||||
|
# ifdef LLAMA_BUILD
|
||||||
|
# define LLAMA_API __declspec(dllexport)
|
||||||
|
# else
|
||||||
|
# define LLAMA_API __declspec(dllimport)
|
||||||
|
# endif
|
||||||
|
# else
|
||||||
|
# define LLAMA_API __attribute__ ((visibility ("default")))
|
||||||
|
# endif
|
||||||
|
#else
|
||||||
|
# define LLAMA_API
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef __GNUC__
|
||||||
|
# define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
|
||||||
|
#elif defined(_MSC_VER)
|
||||||
|
# define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
|
||||||
|
#else
|
||||||
|
# define DEPRECATED(func, hint) func
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
|
||||||
|
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
|
||||||
|
#define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf'
|
||||||
|
#define LLAMA_FILE_MAGIC_GGML 0x67676d6cu // 'ggml'
|
||||||
|
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
|
||||||
|
|
||||||
|
#define LLAMA_FILE_VERSION 3
|
||||||
|
#define LLAMA_FILE_MAGIC LLAMA_FILE_MAGIC_GGJT
|
||||||
|
#define LLAMA_FILE_MAGIC_UNVERSIONED LLAMA_FILE_MAGIC_GGML
|
||||||
|
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
||||||
|
#define LLAMA_SESSION_VERSION 1
|
||||||
|
|
||||||
|
#define LLAMA_DEFAULT_SEED 0xFFFFFFFF
|
||||||
|
|
||||||
|
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
|
||||||
|
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
|
||||||
|
#define LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
extern "C" {
|
||||||
|
#endif
|
||||||
|
|
||||||
|
//
|
||||||
|
// C interface
|
||||||
|
//
|
||||||
|
// TODO: show sample usage
|
||||||
|
//
|
||||||
|
|
||||||
|
struct llama_model;
|
||||||
|
struct llama_context;
|
||||||
|
|
||||||
|
typedef int llama_token;
|
||||||
|
|
||||||
|
typedef struct llama_token_data {
|
||||||
|
llama_token id; // token id
|
||||||
|
float logit; // log-odds of the token
|
||||||
|
float p; // probability of the token
|
||||||
|
} llama_token_data;
|
||||||
|
|
||||||
|
typedef struct llama_token_data_array {
|
||||||
|
llama_token_data * data;
|
||||||
|
size_t size;
|
||||||
|
bool sorted;
|
||||||
|
} llama_token_data_array;
|
||||||
|
|
||||||
|
typedef void (*llama_progress_callback)(float progress, void *ctx);
|
||||||
|
|
||||||
|
struct llama_context_params {
|
||||||
|
uint32_t seed; // RNG seed, -1 for random
|
||||||
|
int32_t n_ctx; // text context
|
||||||
|
int32_t n_batch; // prompt processing batch size
|
||||||
|
int32_t n_gpu_layers; // number of layers to store in VRAM
|
||||||
|
int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
||||||
|
float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs
|
||||||
|
// called with a progress value between 0 and 1, pass NULL to disable
|
||||||
|
llama_progress_callback progress_callback;
|
||||||
|
// context pointer passed to the progress callback
|
||||||
|
void * progress_callback_user_data;
|
||||||
|
|
||||||
|
// Keep the booleans together to avoid misalignment during copy-by-value.
|
||||||
|
bool low_vram; // if true, reduce VRAM usage at the cost of performance
|
||||||
|
bool f16_kv; // use fp16 for KV cache
|
||||||
|
bool logits_all; // the llama_eval() call computes all logits, not just the last one
|
||||||
|
bool vocab_only; // only load the vocabulary, no weights
|
||||||
|
bool use_mmap; // use mmap if possible
|
||||||
|
bool use_mlock; // force system to keep model in RAM
|
||||||
|
bool embedding; // embedding mode only
|
||||||
|
};
|
||||||
|
// model file types
|
||||||
|
enum llama_ftype {
|
||||||
|
LLAMA_FTYPE_ALL_F32 = 0,
|
||||||
|
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
||||||
|
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
|
||||||
|
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
|
||||||
|
};
|
||||||
|
|
||||||
|
// model quantization parameters
|
||||||
|
typedef struct llama_model_quantize_params {
|
||||||
|
int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
|
||||||
|
enum llama_ftype ftype; // quantize to this llama_ftype
|
||||||
|
bool allow_requantize; // allow quantizing non-f32/f16 tensors
|
||||||
|
bool quantize_output_tensor; // quantize output.weight
|
||||||
|
} llama_model_quantize_params;
|
||||||
|
|
||||||
|
// performance timing information
|
||||||
|
struct llama_timings {
|
||||||
|
double t_start_ms;
|
||||||
|
double t_end_ms;
|
||||||
|
double t_load_ms;
|
||||||
|
double t_sample_ms;
|
||||||
|
double t_p_eval_ms;
|
||||||
|
double t_eval_ms;
|
||||||
|
|
||||||
|
int32_t n_sample;
|
||||||
|
int32_t n_p_eval;
|
||||||
|
int32_t n_eval;
|
||||||
|
};
|
||||||
|
|
||||||
|
LLAMA_API struct llama_context_params llama_context_default_params();
|
||||||
|
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params();
|
||||||
|
|
||||||
|
LLAMA_API bool llama_mmap_supported();
|
||||||
|
LLAMA_API bool llama_mlock_supported();
|
||||||
|
|
||||||
|
// TODO: not great API - very likely to change
|
||||||
|
// Initialize the llama + ggml backend
|
||||||
|
// If numa is true, use NUMA optimizations
|
||||||
|
// Call once at the start of the program
|
||||||
|
LLAMA_API void llama_backend_init(bool numa);
|
||||||
|
// Call once at the end of the program - currently only used for MPI
|
||||||
|
LLAMA_API void llama_backend_free();
|
||||||
|
|
||||||
|
LLAMA_API int64_t llama_time_us();
|
||||||
|
|
||||||
|
LLAMA_API struct llama_model * llama_load_model_from_file(
|
||||||
|
const char * path_model,
|
||||||
|
struct llama_context_params params);
|
||||||
|
|
||||||
|
LLAMA_API void llama_free_model(struct llama_model * model);
|
||||||
|
|
||||||
|
LLAMA_API struct llama_context * llama_new_context_with_model(
|
||||||
|
struct llama_model * model,
|
||||||
|
struct llama_context_params params);
|
||||||
|
|
||||||
|
// Various functions for loading a ggml llama model.
|
||||||
|
// Allocate (almost) all memory needed for the model.
|
||||||
|
// Return NULL on failure
|
||||||
|
LLAMA_API DEPRECATED(struct llama_context * llama_init_from_file(
|
||||||
|
const char * path_model,
|
||||||
|
struct llama_context_params params),
|
||||||
|
"please use llama_load_model_from_file combined with llama_new_context_with_model instead");
|
||||||
|
|
||||||
|
// Frees all allocated memory
|
||||||
|
LLAMA_API void llama_free(struct llama_context * ctx);
|
||||||
|
|
||||||
|
// Returns 0 on success
|
||||||
|
LLAMA_API int llama_model_quantize(
|
||||||
|
const char * fname_inp,
|
||||||
|
const char * fname_out,
|
||||||
|
const llama_model_quantize_params * params);
|
||||||
|
|
||||||
|
// Apply a LoRA adapter to a loaded model
|
||||||
|
// path_base_model is the path to a higher quality model to use as a base for
|
||||||
|
// the layers modified by the adapter. Can be NULL to use the current loaded model.
|
||||||
|
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
|
||||||
|
// will be applied on top of the previous one
|
||||||
|
// Returns 0 on success
|
||||||
|
LLAMA_API DEPRECATED(int llama_apply_lora_from_file(
|
||||||
|
struct llama_context * ctx,
|
||||||
|
const char * path_lora,
|
||||||
|
const char * path_base_model,
|
||||||
|
int n_threads),
|
||||||
|
"please use llama_model_apply_lora_from_file instead");
|
||||||
|
|
||||||
|
LLAMA_API int llama_model_apply_lora_from_file(
|
||||||
|
const struct llama_model * model,
|
||||||
|
const char * path_lora,
|
||||||
|
const char * path_base_model,
|
||||||
|
int n_threads);
|
||||||
|
|
||||||
|
// Returns the number of tokens in the KV cache
|
||||||
|
LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
|
||||||
|
|
||||||
|
// Sets the current rng seed.
|
||||||
|
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
|
||||||
|
|
||||||
|
// Returns the maximum size in bytes of the state (rng, logits, embedding
|
||||||
|
// and kv_cache) - will often be smaller after compacting tokens
|
||||||
|
LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
|
||||||
|
|
||||||
|
// Copies the state to the specified destination address.
|
||||||
|
// Destination needs to have allocated enough memory.
|
||||||
|
// Returns the number of bytes copied
|
||||||
|
LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst);
|
||||||
|
|
||||||
|
// Set the state reading from the specified address
|
||||||
|
// Returns the number of bytes read
|
||||||
|
LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src);
|
||||||
|
|
||||||
|
// Save/load session file
|
||||||
|
LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
|
||||||
|
LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
|
||||||
|
|
||||||
|
// Run the llama inference to obtain the logits and probabilities for the next token.
|
||||||
|
// tokens + n_tokens is the provided batch of new tokens to process
|
||||||
|
// n_past is the number of tokens to use from previous eval calls
|
||||||
|
// Returns 0 on success
|
||||||
|
LLAMA_API int llama_eval(
|
||||||
|
struct llama_context * ctx,
|
||||||
|
const llama_token * tokens,
|
||||||
|
int n_tokens,
|
||||||
|
int n_past,
|
||||||
|
int n_threads);
|
||||||
|
|
||||||
|
// Same as llama_eval, but use float matrix input directly.
|
||||||
|
LLAMA_API int llama_eval_embd(
|
||||||
|
struct llama_context * ctx,
|
||||||
|
const float * embd,
|
||||||
|
int n_tokens,
|
||||||
|
int n_past,
|
||||||
|
int n_threads);
|
||||||
|
|
||||||
|
// Export a static computation graph for context of 511 and batch size of 1
|
||||||
|
// NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these
|
||||||
|
// parameters here to keep things simple
|
||||||
|
// IMPORTANT: do not use for anything else other than debugging and testing!
|
||||||
|
LLAMA_API int llama_eval_export(struct llama_context * ctx, const char * fname);
|
||||||
|
|
||||||
|
// Convert the provided text into tokens.
|
||||||
|
// The tokens pointer must be large enough to hold the resulting tokens.
|
||||||
|
// Returns the number of tokens on success, no more than n_max_tokens
|
||||||
|
// Returns a negative number on failure - the number of tokens that would have been returned
|
||||||
|
// TODO: not sure if correct
|
||||||
|
LLAMA_API int llama_tokenize(
|
||||||
|
struct llama_context * ctx,
|
||||||
|
const char * text,
|
||||||
|
llama_token * tokens,
|
||||||
|
int n_max_tokens,
|
||||||
|
bool add_bos);
|
||||||
|
|
||||||
|
LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
|
||||||
|
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
|
||||||
|
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
|
||||||
|
|
||||||
|
// Get the vocabulary as output parameters.
|
||||||
|
// Returns number of results.
|
||||||
|
LLAMA_API int llama_get_vocab(
|
||||||
|
const struct llama_context * ctx,
|
||||||
|
const char * * strings,
|
||||||
|
float * scores,
|
||||||
|
int capacity);
|
||||||
|
|
||||||
|
// Token logits obtained from the last call to llama_eval()
|
||||||
|
// The logits for the last token are stored in the last row
|
||||||
|
// Can be mutated in order to change the probabilities of the next token
|
||||||
|
// Rows: n_tokens
|
||||||
|
// Cols: n_vocab
|
||||||
|
LLAMA_API float * llama_get_logits(struct llama_context * ctx);
|
||||||
|
|
||||||
|
// Get the embeddings for the input
|
||||||
|
// shape: [n_embd] (1-dimensional)
|
||||||
|
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
|
||||||
|
|
||||||
|
// Token Id -> String. Uses the vocabulary in the provided context
|
||||||
|
LLAMA_API const char * llama_token_to_str(const struct llama_context * ctx, llama_token token);
|
||||||
|
|
||||||
|
// Special tokens
|
||||||
|
LLAMA_API llama_token llama_token_bos(); // beginning-of-sentence
|
||||||
|
LLAMA_API llama_token llama_token_eos(); // end-of-sentence
|
||||||
|
LLAMA_API llama_token llama_token_nl(); // next-line
|
||||||
|
|
||||||
|
// Sampling functions
|
||||||
|
|
||||||
|
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
|
||||||
|
LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
|
||||||
|
|
||||||
|
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
|
||||||
|
LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
|
||||||
|
|
||||||
|
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
|
||||||
|
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
|
||||||
|
/// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
|
||||||
|
/// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
|
||||||
|
/// @params smooth_factor Smooth factor between guidance logits and original logits. 1.0f means only use guidance logits. 0.0f means only original logits.
|
||||||
|
LLAMA_API void llama_sample_classifier_free_guidance(
|
||||||
|
struct llama_context * ctx,
|
||||||
|
llama_token_data_array * candidates,
|
||||||
|
struct llama_context * guidance_ctx,
|
||||||
|
float scale,
|
||||||
|
float smooth_factor);
|
||||||
|
|
||||||
|
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
||||||
|
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||||
|
|
||||||
|
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||||
|
LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep);
|
||||||
|
|
||||||
|
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||||
|
LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
|
||||||
|
|
||||||
|
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
|
||||||
|
LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep);
|
||||||
|
|
||||||
|
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
|
||||||
|
LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
|
||||||
|
LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
|
||||||
|
|
||||||
|
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||||||
|
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||||||
|
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
||||||
|
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
||||||
|
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
|
||||||
|
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
||||||
|
LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu);
|
||||||
|
|
||||||
|
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||||||
|
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||||||
|
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
||||||
|
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
||||||
|
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
||||||
|
LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu);
|
||||||
|
|
||||||
|
/// @details Selects the token with the highest probability.
|
||||||
|
LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||||
|
|
||||||
|
/// @details Randomly selects a token from the candidates based on their probabilities.
|
||||||
|
LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||||
|
|
||||||
|
// Performance information
|
||||||
|
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
|
||||||
|
LLAMA_API void llama_print_timings(struct llama_context * ctx);
|
||||||
|
LLAMA_API void llama_reset_timings(struct llama_context * ctx);
|
||||||
|
|
||||||
|
// Print system information
|
||||||
|
LLAMA_API const char * llama_print_system_info(void);
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
|
||||||
|
#ifdef LLAMA_API_INTERNAL
|
||||||
|
|
||||||
|
#include <vector>
|
||||||
|
#include <string>
|
||||||
|
struct ggml_tensor;
|
||||||
|
|
||||||
|
const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#endif // LLAMA_H
|
Loading…
Reference in a new issue