Reintroduce nvidia nvml library for windows

This library will give us the most reliable free VRAM reporting on windows
to enable concurrent model scheduling.
This commit is contained in:
Daniel Hiltgen 2024-06-03 15:07:50 -07:00
parent 4e2b7e181d
commit 434dfe30c5
8 changed files with 248 additions and 9 deletions

View file

@ -28,6 +28,7 @@ type cudaHandles struct {
deviceCount int deviceCount int
cudart *C.cudart_handle_t cudart *C.cudart_handle_t
nvcuda *C.nvcuda_handle_t nvcuda *C.nvcuda_handle_t
nvml *C.nvml_handle_t
} }
type oneapiHandles struct { type oneapiHandles struct {
@ -50,6 +51,7 @@ var (
nvcudaLibPath string nvcudaLibPath string
cudartLibPath string cudartLibPath string
oneapiLibPath string oneapiLibPath string
nvmlLibPath string
rocmGPUs []RocmGPUInfo rocmGPUs []RocmGPUInfo
oneapiGPUs []OneapiGPUInfo oneapiGPUs []OneapiGPUInfo
) )
@ -81,6 +83,10 @@ var CudartWindowsGlobs = []string{
"c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll", "c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll",
} }
var NvmlWindowsGlobs = []string{
"c:\\Windows\\System32\\nvml.dll",
}
var NvcudaLinuxGlobs = []string{ var NvcudaLinuxGlobs = []string{
"/usr/local/cuda*/targets/*/lib/libcuda.so*", "/usr/local/cuda*/targets/*/lib/libcuda.so*",
"/usr/lib/*-linux-gnu/nvidia/current/libcuda.so*", "/usr/lib/*-linux-gnu/nvidia/current/libcuda.so*",
@ -117,6 +123,10 @@ func initCudaHandles() *cudaHandles {
cHandles := &cudaHandles{} cHandles := &cudaHandles{}
// Short Circuit if we already know which library to use // Short Circuit if we already know which library to use
if nvmlLibPath != "" {
cHandles.nvml, _ = LoadNVMLMgmt([]string{nvmlLibPath})
return cHandles
}
if nvcudaLibPath != "" { if nvcudaLibPath != "" {
cHandles.deviceCount, cHandles.nvcuda, _ = LoadNVCUDAMgmt([]string{nvcudaLibPath}) cHandles.deviceCount, cHandles.nvcuda, _ = LoadNVCUDAMgmt([]string{nvcudaLibPath})
return cHandles return cHandles
@ -131,6 +141,8 @@ func initCudaHandles() *cudaHandles {
var cudartMgmtPatterns []string var cudartMgmtPatterns []string
var nvcudaMgmtName string var nvcudaMgmtName string
var nvcudaMgmtPatterns []string var nvcudaMgmtPatterns []string
var nvmlMgmtName string
var nvmlMgmtPatterns []string
tmpDir, _ := PayloadsDir() tmpDir, _ := PayloadsDir()
switch runtime.GOOS { switch runtime.GOOS {
@ -142,6 +154,12 @@ func initCudaHandles() *cudaHandles {
// Aligned with driver, we can't carry as payloads // Aligned with driver, we can't carry as payloads
nvcudaMgmtName = "nvcuda.dll" nvcudaMgmtName = "nvcuda.dll"
nvcudaMgmtPatterns = NvcudaWindowsGlobs nvcudaMgmtPatterns = NvcudaWindowsGlobs
// Use nvml to refresh free memory on windows only
nvmlMgmtName = "nvml.dll"
nvmlMgmtPatterns = make([]string, len(NvmlWindowsGlobs))
copy(nvmlMgmtPatterns, NvmlWindowsGlobs)
case "linux": case "linux":
cudartMgmtName = "libcudart.so*" cudartMgmtName = "libcudart.so*"
if tmpDir != "" { if tmpDir != "" {
@ -152,10 +170,24 @@ func initCudaHandles() *cudaHandles {
// Aligned with driver, we can't carry as payloads // Aligned with driver, we can't carry as payloads
nvcudaMgmtName = "libcuda.so*" nvcudaMgmtName = "libcuda.so*"
nvcudaMgmtPatterns = NvcudaLinuxGlobs nvcudaMgmtPatterns = NvcudaLinuxGlobs
// nvml omitted on linux
default: default:
return cHandles return cHandles
} }
if len(nvmlMgmtPatterns) > 0 {
nvmlLibPaths := FindGPULibs(nvmlMgmtName, nvmlMgmtPatterns)
if len(nvmlLibPaths) > 0 {
nvml, libPath := LoadNVMLMgmt(nvmlLibPaths)
if nvml != nil {
slog.Debug("nvidia-ml loaded", "library", libPath)
cHandles.nvml = nvml
nvmlLibPath = libPath
}
}
}
nvcudaLibPaths := FindGPULibs(nvcudaMgmtName, nvcudaMgmtPatterns) nvcudaLibPaths := FindGPULibs(nvcudaMgmtName, nvcudaMgmtPatterns)
if len(nvcudaLibPaths) > 0 { if len(nvcudaLibPaths) > 0 {
deviceCount, nvcuda, libPath := LoadNVCUDAMgmt(nvcudaLibPaths) deviceCount, nvcuda, libPath := LoadNVCUDAMgmt(nvcudaLibPaths)
@ -230,6 +262,9 @@ func GetGPUInfo() GpuInfoList {
if cHandles.nvcuda != nil { if cHandles.nvcuda != nil {
C.nvcuda_release(*cHandles.nvcuda) C.nvcuda_release(*cHandles.nvcuda)
} }
if cHandles.nvml != nil {
C.nvml_release(*cHandles.nvml)
}
} }
if oHandles != nil { if oHandles != nil {
if oHandles.oneapi != nil { if oHandles.oneapi != nil {
@ -365,10 +400,17 @@ func GetGPUInfo() GpuInfoList {
cHandles = initCudaHandles() cHandles = initCudaHandles()
} }
for i, gpu := range cudaGPUs { for i, gpu := range cudaGPUs {
if cHandles.cudart != nil { if cHandles.nvml != nil {
C.nvml_get_free(*cHandles.nvml, C.int(gpu.index), &memInfo.free, &memInfo.total, &memInfo.used)
} else if cHandles.cudart != nil {
C.cudart_bootstrap(*cHandles.cudart, C.int(gpu.index), &memInfo) C.cudart_bootstrap(*cHandles.cudart, C.int(gpu.index), &memInfo)
} else if cHandles.nvcuda != nil {
C.nvcuda_get_free(*cHandles.nvcuda, C.int(gpu.index), &memInfo.free, &memInfo.total)
memInfo.used = memInfo.total - memInfo.free
} else { } else {
C.nvcuda_get_free(*cHandles.nvcuda, C.int(gpu.index), &memInfo.free) // shouldn't happen
slog.Warn("no valid cuda library loaded to refresh vram usage")
break
} }
if memInfo.err != nil { if memInfo.err != nil {
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err)) slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
@ -379,7 +421,21 @@ func GetGPUInfo() GpuInfoList {
slog.Warn("error looking up nvidia GPU memory") slog.Warn("error looking up nvidia GPU memory")
continue continue
} }
slog.Debug("updating cuda free memory", "gpu", gpu.ID, "name", gpu.Name, "before", format.HumanBytes2(gpu.FreeMemory), "now", format.HumanBytes2(uint64(memInfo.free))) slog.Debug("updating cuda memory data",
"gpu", gpu.ID,
"name", gpu.Name,
slog.Group(
"before",
"total", format.HumanBytes2(gpu.TotalMemory),
"free", format.HumanBytes2(gpu.FreeMemory),
),
slog.Group(
"now",
"total", format.HumanBytes2(uint64(memInfo.total)),
"free", format.HumanBytes2(uint64(memInfo.free)),
"used", format.HumanBytes2(uint64(memInfo.used)),
),
)
cudaGPUs[i].FreeMemory = uint64(memInfo.free) cudaGPUs[i].FreeMemory = uint64(memInfo.free)
} }
@ -530,6 +586,23 @@ func LoadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string) {
return 0, nil, "" return 0, nil, ""
} }
func LoadNVMLMgmt(nvmlLibPaths []string) (*C.nvml_handle_t, string) {
var resp C.nvml_init_resp_t
resp.ch.verbose = getVerboseState()
for _, libPath := range nvmlLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.nvml_init(lib, &resp)
if resp.err != nil {
slog.Info(fmt.Sprintf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err)))
C.free(unsafe.Pointer(resp.err))
} else {
return &resp.ch, libPath
}
}
return nil, ""
}
func LoadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string) { func LoadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string) {
var resp C.oneapi_init_resp_t var resp C.oneapi_init_resp_t
num_devices := 0 num_devices := 0

View file

@ -47,6 +47,7 @@ typedef struct mem_info {
char gpu_name[GPU_NAME_LEN]; char gpu_name[GPU_NAME_LEN];
uint64_t total; uint64_t total;
uint64_t free; uint64_t free;
uint64_t used;
// Compute Capability // Compute Capability
int major; int major;
@ -62,6 +63,7 @@ void cpu_check_ram(mem_info_t *resp);
#include "gpu_info_cudart.h" #include "gpu_info_cudart.h"
#include "gpu_info_nvcuda.h" #include "gpu_info_nvcuda.h"
#include "gpu_info_nvml.h"
#include "gpu_info_oneapi.h" #include "gpu_info_oneapi.h"
#endif // __GPU_INFO_H__ #endif // __GPU_INFO_H__

View file

@ -166,9 +166,11 @@ void cudart_bootstrap(cudart_handle_t h, int i, mem_info_t *resp) {
resp->total = memInfo.total; resp->total = memInfo.total;
resp->free = memInfo.free; resp->free = memInfo.free;
resp->used = memInfo.used;
LOG(h.verbose, "[%s] CUDA totalMem %lu\n", resp->gpu_id, resp->total); LOG(h.verbose, "[%s] CUDA totalMem %lu\n", resp->gpu_id, resp->total);
LOG(h.verbose, "[%s] CUDA freeMem %lu\n", resp->gpu_id, resp->free); LOG(h.verbose, "[%s] CUDA freeMem %lu\n", resp->gpu_id, resp->free);
LOG(h.verbose, "[%s] CUDA usedMem %lu\n", resp->gpu_id, resp->used);
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor); LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
} }

View file

@ -197,12 +197,12 @@ void nvcuda_bootstrap(nvcuda_handle_t h, int i, mem_info_t *resp) {
} }
} }
void nvcuda_get_free(nvcuda_handle_t h, int i, uint64_t *free) { void nvcuda_get_free(nvcuda_handle_t h, int i, uint64_t *free, uint64_t *total) {
CUresult ret; CUresult ret;
CUcontext ctx = NULL; CUcontext ctx = NULL;
CUdevice device = -1; CUdevice device = -1;
*free = 0; *free = 0;
uint64_t total = 0; *total = 0;
ret = (*h.cuDeviceGet)(&device, i); ret = (*h.cuDeviceGet)(&device, i);
if (ret != CUDA_SUCCESS) { if (ret != CUDA_SUCCESS) {
@ -218,7 +218,7 @@ void nvcuda_get_free(nvcuda_handle_t h, int i, uint64_t *free) {
return; return;
} }
ret = (*h.cuMemGetInfo_v2)(free, &total); ret = (*h.cuMemGetInfo_v2)(free, total);
if (ret != CUDA_SUCCESS) { if (ret != CUDA_SUCCESS) {
LOG(1, "nvcuda device memory info lookup failure %d", ret); LOG(1, "nvcuda device memory info lookup failure %d", ret);
// Best effort on failure... // Best effort on failure...

View file

@ -68,7 +68,7 @@ typedef struct nvcuda_init_resp {
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp); void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp);
void nvcuda_bootstrap(nvcuda_handle_t ch, int device_id, mem_info_t *resp); void nvcuda_bootstrap(nvcuda_handle_t ch, int device_id, mem_info_t *resp);
void nvcuda_get_free(nvcuda_handle_t ch, int device_id, uint64_t *free); void nvcuda_get_free(nvcuda_handle_t ch, int device_id, uint64_t *free, uint64_t *total);
void nvcuda_release(nvcuda_handle_t ch); void nvcuda_release(nvcuda_handle_t ch);
#endif // __GPU_INFO_NVCUDA_H__ #endif // __GPU_INFO_NVCUDA_H__

112
gpu/gpu_info_nvml.c Normal file
View file

@ -0,0 +1,112 @@
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
#include <string.h>
#include "gpu_info_nvml.h"
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp) {
nvmlReturn_t ret;
resp->err = NULL;
const int buflen = 256;
char buf[buflen + 1];
int i;
LOG(1, "XXX starting nvml_init %s\n", nvml_lib_path);
struct lookup {
char *s;
void **p;
} l[] = {
{"nvmlInit_v2", (void *)&resp->ch.nvmlInit_v2},
{"nvmlShutdown", (void *)&resp->ch.nvmlShutdown},
{"nvmlDeviceGetHandleByIndex", (void *)&resp->ch.nvmlDeviceGetHandleByIndex},
{"nvmlDeviceGetMemoryInfo", (void *)&resp->ch.nvmlDeviceGetMemoryInfo},
{NULL, NULL},
};
resp->ch.handle = LOAD_LIBRARY(nvml_lib_path, RTLD_LAZY);
if (!resp->ch.handle) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "library %s load err: %s\n", nvml_lib_path, msg);
snprintf(buf, buflen,
"Unable to load %s library to query for Nvidia GPUs: %s",
nvml_lib_path, msg);
free(msg);
resp->err = strdup(buf);
return;
}
// TODO once we've squashed the remaining corner cases remove this log
// LOG(resp->ch.verbose, "wiring nvidia management library functions in %s\n", nvml_lib_path);
LOG(1, "XXX wiring functions nvml_init\n");
for (i = 0; l[i].s != NULL; i++) {
// TODO once we've squashed the remaining corner cases remove this log
LOG(resp->ch.verbose, "dlsym: %s\n", l[i].s);
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
if (!l[i].p) {
resp->ch.handle = NULL;
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "dlerr: %s\n", msg);
UNLOAD_LIBRARY(resp->ch.handle);
snprintf(buf, buflen, "symbol lookup for %s failed: %s", l[i].s,
msg);
free(msg);
resp->err = strdup(buf);
return;
}
}
LOG(1, "XXX calling init_v2\n");
ret = (*resp->ch.nvmlInit_v2)();
if (ret != NVML_SUCCESS) {
LOG(resp->ch.verbose, "nvmlInit_v2 err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "nvml vram init failure: %d", ret);
resp->err = strdup(buf);
return;
}
LOG(1, "XXX nvml_init done\n");
}
void nvml_get_free(nvml_handle_t h, int device_id, uint64_t *free, uint64_t *total, uint64_t *used) {
nvmlDevice_t device;
nvmlMemory_t memInfo = {0};
nvmlReturn_t ret;
LOG(1, "XXX in nvml_get_free\n");
ret = (*h.nvmlDeviceGetHandleByIndex)(device_id, &device);
if (ret != NVML_SUCCESS) {
LOG(1, "unable to get device handle %d: %d", device_id, ret);
*free = 0;
return;
}
ret = (*h.nvmlDeviceGetMemoryInfo)(device, &memInfo);
if (ret != NVML_SUCCESS) {
LOG(1, "device memory info lookup failure %d: %d", device_id, ret);
*free = 0;
return;
}
*free = memInfo.free;
*total = memInfo.total;
*used = memInfo.used;
}
void nvml_release(nvml_handle_t h) {
LOG(h.verbose, "releasing nvml library\n");
nvmlReturn_t ret;
ret = (*h.nvmlShutdown)();
if (ret != NVML_SUCCESS) {
LOG(1, "error during nvmlShutdown %d", ret);
}
UNLOAD_LIBRARY(h.handle);
h.handle = NULL;
}
#endif // __APPLE__

48
gpu/gpu_info_nvml.h Normal file
View file

@ -0,0 +1,48 @@
#ifndef __APPLE__
#ifndef __GPU_INFO_NVML_H__
#define __GPU_INFO_NVML_H__
#include "gpu_info.h"
// Just enough typedef's to dlopen/dlsym for memory information
typedef enum nvmlReturn_enum {
NVML_SUCCESS = 0,
// Other values omitted for now...
} nvmlReturn_t;
typedef void *nvmlDevice_t; // Opaque is sufficient
typedef struct nvmlMemory_st {
unsigned long long total;
unsigned long long free;
unsigned long long used;
} nvmlMemory_t;
typedef enum nvmlBrandType_enum
{
NVML_BRAND_UNKNOWN = 0,
} nvmlBrandType_t;
typedef struct nvml_handle {
void *handle;
uint16_t verbose;
nvmlReturn_t (*nvmlInit_v2)(void);
nvmlReturn_t (*nvmlShutdown)(void);
nvmlReturn_t (*nvmlDeviceGetHandleByIndex)(unsigned int, nvmlDevice_t *);
nvmlReturn_t (*nvmlDeviceGetMemoryInfo)(nvmlDevice_t, nvmlMemory_t *);
} nvml_handle_t;
typedef struct nvml_init_resp {
char *err; // If err is non-null handle is invalid
nvml_handle_t ch;
} nvml_init_resp_t;
typedef struct nvml_compute_capability {
char *err;
int major;
int minor;
} nvml_compute_capability_t;
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp);
void nvml_get_free(nvml_handle_t ch, int device_id, uint64_t *free, uint64_t *total, uint64_t *used);
void nvml_release(nvml_handle_t ch);
#endif // __GPU_INFO_NVML_H__
#endif // __APPLE__

View file

@ -487,8 +487,10 @@ func (runner *runnerRef) needsReload(ctx context.Context, req *LlmRequest) bool
func (runner *runnerRef) waitForVRAMRecovery() chan interface{} { func (runner *runnerRef) waitForVRAMRecovery() chan interface{} {
finished := make(chan interface{}, 1) finished := make(chan interface{}, 1)
// CPU or Metal don't need checking, so no waiting required, windows can page VRAM, and the APIs we query tend to be optimistic on free space // CPU or Metal don't need checking, so no waiting required
if (len(runner.gpus) == 1 && (runner.gpus[0].Library == "cpu" || runner.gpus[0].Library == "metal")) || runtime.GOOS == "windows" { // windows can page VRAM, only cuda currently can report accurate used vram usage
if (len(runner.gpus) == 1 && (runner.gpus[0].Library == "cpu" || runner.gpus[0].Library == "metal")) ||
(runtime.GOOS == "windows" && runner.gpus[0].Library != "cuda") {
finished <- struct{}{} finished <- struct{}{}
return finished return finished
} }