Simple chat example
Signed-off-by: Matt Williams <m@technovangelist.com>
This commit is contained in:
parent
32f62fbb8e
commit
43027789dc
2 changed files with 72 additions and 0 deletions
48
examples/python-simplechat/client.py
Normal file
48
examples/python-simplechat/client.py
Normal file
|
@ -0,0 +1,48 @@
|
|||
import json
|
||||
import requests
|
||||
|
||||
# NOTE: ollama must be running for this to work, start the ollama app or run `ollama serve`
|
||||
model = "llama2" # TODO: update this for whatever model you wish to use
|
||||
|
||||
|
||||
def chat(messages):
|
||||
r = requests.post(
|
||||
"http://0.0.0.0:11434/api/chat",
|
||||
json={"model": model, "messages": messages, "stream": True},
|
||||
)
|
||||
r.raise_for_status()
|
||||
output = ""
|
||||
|
||||
for line in r.iter_lines():
|
||||
body = json.loads(line)
|
||||
if body.get("done") is False:
|
||||
message = body.get("message", "")
|
||||
content = message.get("content", "")
|
||||
output += content
|
||||
# the response streams one token at a time, print that as we receive it
|
||||
print(content, end="", flush=True)
|
||||
|
||||
if "error" in body:
|
||||
raise Exception(body["error"])
|
||||
|
||||
if body.get("done", False):
|
||||
message["content"] = output
|
||||
return message
|
||||
|
||||
|
||||
def main():
|
||||
messages = []
|
||||
context = (
|
||||
[]
|
||||
) # the context stores a conversation history, you can use this to make the model more context aware
|
||||
while True:
|
||||
user_input = input("Enter a prompt: ")
|
||||
print()
|
||||
messages.append({"role": "user", "content": user_input})
|
||||
message = chat(messages)
|
||||
messages.append(message)
|
||||
print("\n\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
24
examples/python-simplechat/readme.md
Normal file
24
examples/python-simplechat/readme.md
Normal file
|
@ -0,0 +1,24 @@
|
|||
# Simple Chat Example
|
||||
|
||||
The **chat** endpoint is one of two ways to generate text from an LLM with Ollama. At a high level you provide the endpoint an array of objects with a role and content specified. Then with each output and prompt, you add more of those role/content objects, which builds up the memory.
|
||||
|
||||
## Review the Code
|
||||
|
||||
You can see in the **chat** function that actually calling the endpoint is done simply with:
|
||||
|
||||
```python
|
||||
r = requests.post(
|
||||
"http://0.0.0.0:11434/api/chat",
|
||||
json={"model": model, "messages": messages, "stream": True},
|
||||
)
|
||||
```
|
||||
|
||||
With the **generate** endpoint, you need to provide a `prompt`. But with **chat**, you provide `messages`. And the resulting stream of responses includes a `message` object with a `content` field.
|
||||
|
||||
The final JSON object doesn't provide the full content, so you will need to build the content yourself.
|
||||
|
||||
In the **main** function, we collect `user_input` and add it as a message to our messages and that is passed to the chat function. And the output is added as another message.
|
||||
|
||||
## Next Steps
|
||||
|
||||
In this example, all generations are kept. You might want to experiment with summarizing everything older than 10 conversations to enable longer history with less context being used.
|
Loading…
Add table
Reference in a new issue