update predict code

This commit is contained in:
Michael Yang 2023-07-19 12:47:15 -07:00
parent 32aec66e6a
commit 3003fc03fc
3 changed files with 176 additions and 181 deletions

View file

@ -134,6 +134,7 @@ type Options struct {
// Model options // Model options
NumCtx int `json:"num_ctx,omitempty"` NumCtx int `json:"num_ctx,omitempty"`
NumKeep int `json:"num_keep,omitempty"`
NumBatch int `json:"num_batch,omitempty"` NumBatch int `json:"num_batch,omitempty"`
NumGPU int `json:"num_gpu,omitempty"` NumGPU int `json:"num_gpu,omitempty"`
MainGPU int `json:"main_gpu,omitempty"` MainGPU int `json:"main_gpu,omitempty"`
@ -158,6 +159,7 @@ type Options struct {
Mirostat int `json:"mirostat,omitempty"` Mirostat int `json:"mirostat,omitempty"`
MirostatTau float32 `json:"mirostat_tau,omitempty"` MirostatTau float32 `json:"mirostat_tau,omitempty"`
MirostatEta float32 `json:"mirostat_eta,omitempty"` MirostatEta float32 `json:"mirostat_eta,omitempty"`
PenalizeNewline bool `json:"penalize_newline,omitempty"`
NumThread int `json:"num_thread,omitempty"` NumThread int `json:"num_thread,omitempty"`
} }
@ -176,7 +178,7 @@ func DefaultOptions() Options {
UseMMap: true, UseMMap: true,
UseMLock: false, UseMLock: false,
RepeatLastN: 512, RepeatLastN: 64,
RepeatPenalty: 1.1, RepeatPenalty: 1.1,
FrequencyPenalty: 0.0, FrequencyPenalty: 0.0,
PresencePenalty: 0.0, PresencePenalty: 0.0,
@ -188,6 +190,7 @@ func DefaultOptions() Options {
Mirostat: 0, Mirostat: 0,
MirostatTau: 5.0, MirostatTau: 5.0,
MirostatEta: 0.1, MirostatEta: 0.1,
PenalizeNewline: true,
NumThread: runtime.NumCPU(), NumThread: runtime.NumCPU(),
} }

View file

@ -1,8 +1,8 @@
package llama package llama
/* /*
#cgo CPPFLAGS: -O3 -DNDEBUG=1 -DGGML_USE_K_QUANTS #cgo CPPFLAGS: -O3 -Wall -Wextra -Werror -Wno-unused-function -Wno-unused-variable -DNDEBUG -DGGML_USE_K_QUANTS
#cgo CXXFLAGS: -std=c++11 #cgo CXXFLAGS: -std=gnu++11
#cgo darwin CPPFLAGS: -DGGML_USE_ACCELERATE -DGGML_USE_METAL -DGGML_METAL_NDEBUG #cgo darwin CPPFLAGS: -DGGML_USE_ACCELERATE -DGGML_USE_METAL -DGGML_METAL_NDEBUG
#cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders #cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
#include <stdlib.h> #include <stdlib.h>
@ -21,6 +21,7 @@ struct llama_sample_options
int mirostat; int mirostat;
float mirostat_tau; float mirostat_tau;
float mirostat_eta; float mirostat_eta;
bool penalize_newline;
}; };
llama_token llama_sample( llama_token llama_sample(
@ -37,6 +38,8 @@ llama_token llama_sample(
false, false,
}; };
struct llama_token_data newline = candidates_p.data[llama_token_nl()];
llama_sample_repetition_penalty( llama_sample_repetition_penalty(
ctx, &candidates_p, ctx, &candidates_p,
last_tokens, n_last_tokens, last_tokens, n_last_tokens,
@ -47,6 +50,10 @@ llama_token llama_sample(
last_tokens, n_last_tokens, last_tokens, n_last_tokens,
opts->frequency_penalty, opts->presence_penalty); opts->frequency_penalty, opts->presence_penalty);
if (!opts->penalize_newline) {
candidates_p.data[llama_token_nl()] = newline;
}
if (opts->temperature <= 0) { if (opts->temperature <= 0) {
return llama_sample_token_greedy(ctx, &candidates_p); return llama_sample_token_greedy(ctx, &candidates_p);
} }
@ -82,9 +89,9 @@ import (
"errors" "errors"
"fmt" "fmt"
"io" "io"
"log"
"os" "os"
"strings" "strings"
"time"
"unicode/utf8" "unicode/utf8"
"unsafe" "unsafe"
@ -96,6 +103,10 @@ type LLM struct {
model *C.struct_llama_model model *C.struct_llama_model
ctx *C.struct_llama_context ctx *C.struct_llama_context
last []C.llama_token
embd []C.llama_token
cursor int
api.Options api.Options
} }
@ -152,16 +163,98 @@ func (llm *LLM) Close() {
} }
func (llm *LLM) Predict(ctx []int, prompt string, fn func(api.GenerateResponse)) error { func (llm *LLM) Predict(ctx []int, prompt string, fn func(api.GenerateResponse)) error {
if input := llm.tokenize(prompt); input != nil { C.llama_reset_timings(llm.ctx)
embd := make([]C.llama_token, len(ctx))
for i := range ctx { tokens := make([]C.llama_token, len(ctx))
embd[i] = C.llama_token(ctx[i]) for i := range tokens {
tokens[i] = C.llama_token(ctx[i])
} }
return llm.generate(append(embd, input...), fn) if len(tokens) == 0 {
tokens = llm.tokenize(" ")
} }
return errors.New("llama: tokenize") llm.marshalPrompt(tokens, prompt)
C.llama_set_rng_seed(llm.ctx, C.uint(llm.Seed))
var b bytes.Buffer
for {
token, err := llm.next()
if errors.Is(err, io.EOF) {
break
} else if err != nil {
return err
}
b.WriteString(llm.detokenize(token))
if utf8.Valid(b.Bytes()) || b.Len() >= utf8.UTFMax {
fn(api.GenerateResponse{Response: b.String()})
b.Reset()
}
}
last := make([]int, 0, len(llm.last))
for _, i := range llm.last {
if i != 0 {
last = append(last, int(i))
}
}
timings := C.llama_get_timings(llm.ctx)
fn(api.GenerateResponse{
Done: true,
Context: last,
PromptEvalCount: int(timings.n_p_eval),
PromptEvalDuration: parseDurationMs(float64(timings.t_p_eval_ms)),
EvalCount: int(timings.n_eval),
EvalDuration: parseDurationMs(float64(timings.t_eval_ms)),
})
return nil
}
func (llm *LLM) marshalPrompt(ctx []C.llama_token, prompt string) []C.llama_token {
tokens := append(ctx, llm.tokenize(prompt)...)
if llm.NumKeep < 0 {
llm.NumKeep = len(tokens)
}
// min(llm.NumCtx - 4, llm.NumKeep)
if llm.NumCtx-4 < llm.NumKeep {
llm.NumKeep = llm.NumCtx - 4
}
if len(tokens) >= llm.NumCtx {
// truncate input
numLeft := (llm.NumCtx - llm.NumKeep) / 2
truncated := tokens[:llm.NumKeep]
erasedBlocks := (len(tokens) - llm.NumKeep - numLeft - 1) / numLeft
truncated = append(truncated, tokens[llm.NumKeep+erasedBlocks*numLeft:]...)
copy(llm.last, tokens[len(tokens)-llm.NumCtx:])
tokens = truncated
log.Printf("input truncated: num_ctx=%d num_keep=%d num_left=%d num_tokens=%d", llm.NumCtx, llm.NumKeep, numLeft, len(truncated))
} else {
llm.last = make([]C.llama_token, llm.NumCtx-len(tokens))
llm.last = append(llm.last, tokens...)
}
var i int
for i = 0; i < len(llm.embd) && i < len(tokens) && llm.embd[i] == tokens[i]; i++ {
// noop
}
llm.embd = tokens
if i == len(tokens) {
// evaluate at least one token to generate logits
i--
}
llm.cursor = i
log.Printf("prompt: num_past=%d cached=%v eval=%v", i, len(llm.embd[:i]), len(llm.embd[i:]))
return tokens
} }
func (llm *LLM) tokenize(prompt string) []C.llama_token { func (llm *LLM) tokenize(prompt string) []C.llama_token {
@ -185,98 +278,86 @@ func (llm *LLM) detokenize(tokens ...C.llama_token) string {
return sb.String() return sb.String()
} }
func (llm *LLM) generate(input []C.llama_token, fn func(api.GenerateResponse)) error { func (llm *LLM) next() (C.llama_token, error) {
var opts C.struct_llama_sample_options if len(llm.embd) >= llm.NumCtx {
opts.repeat_penalty = C.float(llm.RepeatPenalty) numLeft := (llm.NumCtx - llm.NumKeep) / 2
opts.frequency_penalty = C.float(llm.FrequencyPenalty) truncated := llm.embd[:llm.NumKeep]
opts.presence_penalty = C.float(llm.PresencePenalty) truncated = append(truncated, llm.embd[len(llm.embd)-numLeft:]...)
opts.temperature = C.float(llm.Temperature)
opts.top_k = C.int(llm.TopK)
opts.top_p = C.float(llm.TopP)
opts.tfs_z = C.float(llm.TFSZ)
opts.typical_p = C.float(llm.TypicalP)
opts.mirostat = C.int(llm.Mirostat)
opts.mirostat_tau = C.float(llm.MirostatTau)
opts.mirostat_eta = C.float(llm.MirostatEta)
output := deque[C.llama_token]{capacity: llm.NumCtx} llm.embd = truncated
llm.cursor = llm.NumKeep
context := deque[int]{capacity: llm.NumCtx / 2} log.Printf("input truncated: num_ctx=%d num_keep=%d num_left=%d num_tokens=%d cursor=%d", llm.NumCtx, llm.NumKeep, numLeft, len(truncated), llm.cursor)
for _, in := range input {
context.PushLeft(int(in))
} }
var b bytes.Buffer for {
for C.llama_get_kv_cache_token_count(llm.ctx) < C.int(llm.NumCtx) { if llm.cursor >= len(llm.embd) {
if retval := C.llama_eval(llm.ctx, unsafe.SliceData(input), C.int(len(input)), C.llama_get_kv_cache_token_count(llm.ctx), C.int(llm.NumThread)); retval != 0 {
return errors.New("llama: eval")
}
token, err := llm.sample(output, &opts)
if errors.Is(err, io.EOF) {
break break
} else if err != nil {
return err
} }
b.WriteString(llm.detokenize(token)) numEval := len(llm.embd) - llm.cursor
if utf8.Valid(b.Bytes()) || b.Len() >= utf8.UTFMax { if numEval > llm.NumBatch {
// call the callback numEval = llm.NumBatch
fn(api.GenerateResponse{
Response: b.String(),
})
output.PushLeft(token)
context.PushLeft(int(token))
b.Reset()
} }
input = []C.llama_token{token} if retval := C.llama_eval(llm.ctx, unsafe.SliceData(llm.embd[llm.cursor:]), C.int(numEval), C.int(llm.cursor), C.int(llm.NumThread)); retval != 0 {
return 0, fmt.Errorf("llama_eval: %d", retval)
} }
dur := func(ms float64) time.Duration { llm.cursor += numEval
d, err := time.ParseDuration(fmt.Sprintf("%fms", ms))
if err != nil {
panic(err)
} }
return d var sampleOpts C.struct_llama_sample_options
} sampleOpts.repeat_penalty = C.float(llm.RepeatPenalty)
sampleOpts.frequency_penalty = C.float(llm.FrequencyPenalty)
sampleOpts.presence_penalty = C.float(llm.PresencePenalty)
sampleOpts.temperature = C.float(llm.Temperature)
sampleOpts.top_k = C.int(llm.TopK)
sampleOpts.top_p = C.float(llm.TopP)
sampleOpts.tfs_z = C.float(llm.TFSZ)
sampleOpts.typical_p = C.float(llm.TypicalP)
sampleOpts.mirostat = C.int(llm.Mirostat)
sampleOpts.mirostat_tau = C.float(llm.MirostatTau)
sampleOpts.mirostat_eta = C.float(llm.MirostatEta)
sampleOpts.penalize_newline = C.bool(llm.PenalizeNewline)
timings := C.llama_get_timings(llm.ctx) numVocab := C.llama_n_vocab(llm.ctx)
fn(api.GenerateResponse{
Done: true,
Context: context.Data(),
PromptEvalCount: int(timings.n_p_eval),
PromptEvalDuration: dur(float64(timings.t_p_eval_ms)),
EvalCount: int(timings.n_eval),
EvalDuration: dur(float64(timings.t_eval_ms)),
})
return nil
}
func (llm *LLM) sample(output deque[C.llama_token], opts *C.struct_llama_sample_options) (C.llama_token, error) {
numVocab := int(C.llama_n_vocab(llm.ctx))
logits := unsafe.Slice(C.llama_get_logits(llm.ctx), numVocab) logits := unsafe.Slice(C.llama_get_logits(llm.ctx), numVocab)
candidates := deque[C.struct_llama_token_data]{capacity: numVocab} // TODO: logit bias
for i := 0; i < candidates.Cap(); i++ {
candidates.PushLeft(C.struct_llama_token_data{ candidates := make([]C.llama_token_data, numVocab)
for i := range logits {
candidates[i] = C.llama_token_data{
id: C.int(i), id: C.int(i),
logit: logits[i], logit: logits[i],
p: 0, p: 0,
})
} }
}
repeatLastN := llm.RepeatLastN
if len(llm.last) < repeatLastN {
repeatLastN = len(llm.last)
}
if llm.NumCtx < repeatLastN {
repeatLastN = llm.NumCtx
}
lastN := llm.last[len(llm.last)-repeatLastN:]
token := C.llama_sample( token := C.llama_sample(
llm.ctx, llm.ctx,
unsafe.SliceData(candidates.Data()), C.size_t(candidates.Len()), unsafe.SliceData(candidates), C.size_t(len(candidates)),
unsafe.SliceData(output.Data()), C.size_t(output.Len()), unsafe.SliceData(lastN), C.size_t(len(lastN)),
opts) &sampleOpts,
if token != C.llama_token_eos() { )
return token, nil
llm.last = append(llm.last, token)
llm.embd = append(llm.embd, token)
if token == C.llama_token_eos() {
return 0, io.EOF
} }
return 0, io.EOF return token, nil
} }

View file

@ -1,104 +1,15 @@
package llama package llama
type node[T any] struct { import (
t T "fmt"
next *node[T] "time"
prev *node[T] )
}
type deque[T any] struct { func parseDurationMs(ms float64) time.Duration {
head *node[T] dur, err := time.ParseDuration(fmt.Sprintf("%fms", ms))
tail *node[T] if err != nil {
size int panic(err)
capacity int
}
func (d *deque[T]) Empty() bool {
return d.size == 0
}
func (d *deque[T]) Len() int {
return d.size
}
func (d *deque[T]) Cap() int {
return d.capacity
}
func (d *deque[T]) Push(t T) {
if d.capacity > 0 && d.size >= d.capacity {
d.PopLeft()
} }
n := node[T]{t: t} return dur
if d.head != nil {
n.next = d.head
d.head.prev = &n
d.head = &n
} else {
d.head = &n
d.tail = &n
}
d.size++
}
func (d *deque[T]) PushLeft(t T) {
if d.capacity > 0 && d.size >= d.capacity {
d.Pop()
}
n := node[T]{t: t}
if d.tail != nil {
n.prev = d.tail
d.tail.next = &n
d.tail = &n
} else {
d.head = &n
d.tail = &n
}
d.size++
}
func (d *deque[T]) Pop() *T {
if d.Empty() {
return nil
}
head := d.head
d.head = head.next
if d.head != nil {
d.head.prev = nil
} else {
d.tail = nil
}
d.size--
return &head.t
}
func (d *deque[T]) PopLeft() *T {
if d.Empty() {
return nil
}
tail := d.tail
d.tail = tail.prev
if d.tail != nil {
d.tail.next = nil
} else {
d.head = nil
}
d.size--
return &tail.t
}
func (d *deque[T]) Data() (data []T) {
for n := d.head; n != nil; n = n.next {
data = append(data, n.t)
}
return data
} }