Merge pull request #2279 from remy415/main

Add support for libcudart.so for CUDA devices (Adds Jetson support)
This commit is contained in:
Daniel Hiltgen 2024-03-25 12:46:28 -07:00 committed by GitHub
commit 28a64e23ca
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 437 additions and 82 deletions

View file

@ -23,7 +23,8 @@ import (
)
type handles struct {
cuda *C.cuda_handle_t
nvml *C.nvml_handle_t
cudart *C.cudart_handle_t
}
var gpuMutex sync.Mutex
@ -33,7 +34,7 @@ var gpuHandles *handles = nil
var CudaComputeMin = [2]C.int{5, 0}
// Possible locations for the nvidia-ml library
var CudaLinuxGlobs = []string{
var NvmlLinuxGlobs = []string{
"/usr/local/cuda/lib64/libnvidia-ml.so*",
"/usr/lib/x86_64-linux-gnu/nvidia/current/libnvidia-ml.so*",
"/usr/lib/x86_64-linux-gnu/libnvidia-ml.so*",
@ -41,49 +42,98 @@ var CudaLinuxGlobs = []string{
"/usr/lib/wsl/drivers/*/libnvidia-ml.so*",
"/opt/cuda/lib64/libnvidia-ml.so*",
"/usr/lib*/libnvidia-ml.so*",
"/usr/local/lib*/libnvidia-ml.so*",
"/usr/lib/aarch64-linux-gnu/nvidia/current/libnvidia-ml.so*",
"/usr/lib/aarch64-linux-gnu/libnvidia-ml.so*",
"/usr/local/lib*/libnvidia-ml.so*",
// TODO: are these stubs ever valid?
"/opt/cuda/targets/x86_64-linux/lib/stubs/libnvidia-ml.so*",
}
var CudaWindowsGlobs = []string{
var NvmlWindowsGlobs = []string{
"c:\\Windows\\System32\\nvml.dll",
}
var CudartLinuxGlobs = []string{
"/usr/local/cuda/lib64/libcudart.so*",
"/usr/lib/x86_64-linux-gnu/nvidia/current/libcudart.so*",
"/usr/lib/x86_64-linux-gnu/libcudart.so*",
"/usr/lib/wsl/lib/libcudart.so*",
"/usr/lib/wsl/drivers/*/libcudart.so*",
"/opt/cuda/lib64/libcudart.so*",
"/usr/local/cuda*/targets/aarch64-linux/lib/libcudart.so*",
"/usr/lib/aarch64-linux-gnu/nvidia/current/libcudart.so*",
"/usr/lib/aarch64-linux-gnu/libcudart.so*",
"/usr/local/cuda/lib*/libcudart.so*",
"/usr/lib*/libcudart.so*",
"/usr/local/lib*/libcudart.so*",
}
var CudartWindowsGlobs = []string{
"c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll",
}
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK")
// Note: gpuMutex must already be held
func initGPUHandles() {
// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing
gpuHandles = &handles{nil}
var cudaMgmtName string
var cudaMgmtPatterns []string
gpuHandles = &handles{nil, nil}
var nvmlMgmtName string
var nvmlMgmtPatterns []string
var cudartMgmtName string
var cudartMgmtPatterns []string
tmpDir, _ := PayloadsDir()
switch runtime.GOOS {
case "windows":
cudaMgmtName = "nvml.dll"
cudaMgmtPatterns = make([]string, len(CudaWindowsGlobs))
copy(cudaMgmtPatterns, CudaWindowsGlobs)
nvmlMgmtName = "nvml.dll"
nvmlMgmtPatterns = make([]string, len(NvmlWindowsGlobs))
copy(nvmlMgmtPatterns, NvmlWindowsGlobs)
cudartMgmtName = "cudart64_*.dll"
localAppData := os.Getenv("LOCALAPPDATA")
cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", cudartMgmtName)}
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartWindowsGlobs...)
case "linux":
cudaMgmtName = "libnvidia-ml.so"
cudaMgmtPatterns = make([]string, len(CudaLinuxGlobs))
copy(cudaMgmtPatterns, CudaLinuxGlobs)
nvmlMgmtName = "libnvidia-ml.so"
nvmlMgmtPatterns = make([]string, len(NvmlLinuxGlobs))
copy(nvmlMgmtPatterns, NvmlLinuxGlobs)
cudartMgmtName = "libcudart.so*"
if tmpDir != "" {
// TODO - add "payloads" for subprocess
cudartMgmtPatterns = []string{filepath.Join(tmpDir, "cuda*", cudartMgmtName)}
}
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartLinuxGlobs...)
default:
return
}
slog.Info("Detecting GPU type")
cudaLibPaths := FindGPULibs(cudaMgmtName, cudaMgmtPatterns)
if len(cudaLibPaths) > 0 {
cuda := LoadCUDAMgmt(cudaLibPaths)
if cuda != nil {
slog.Info("Nvidia GPU detected")
gpuHandles.cuda = cuda
cudartLibPaths := FindGPULibs(cudartMgmtName, cudartMgmtPatterns)
if len(cudartLibPaths) > 0 {
cudart := LoadCUDARTMgmt(cudartLibPaths)
if cudart != nil {
slog.Info("Nvidia GPU detected via cudart")
gpuHandles.cudart = cudart
return
}
}
// TODO once we build confidence, remove this and the gpu_info_nvml.[ch] files
nvmlLibPaths := FindGPULibs(nvmlMgmtName, nvmlMgmtPatterns)
if len(nvmlLibPaths) > 0 {
nvml := LoadNVMLMgmt(nvmlLibPaths)
if nvml != nil {
slog.Info("Nvidia GPU detected via nvidia-ml")
gpuHandles.nvml = nvml
return
}
}
}
func GetGPUInfo() GpuInfo {
@ -103,23 +153,42 @@ func GetGPUInfo() GpuInfo {
var memInfo C.mem_info_t
resp := GpuInfo{}
if gpuHandles.cuda != nil && (cpuVariant != "" || runtime.GOARCH != "amd64") {
C.cuda_check_vram(*gpuHandles.cuda, &memInfo)
if gpuHandles.nvml != nil && (cpuVariant != "" || runtime.GOARCH != "amd64") {
C.nvml_check_vram(*gpuHandles.nvml, &memInfo)
if memInfo.err != nil {
slog.Info(fmt.Sprintf("error looking up CUDA GPU memory: %s", C.GoString(memInfo.err)))
slog.Info(fmt.Sprintf("[nvidia-ml] error looking up NVML GPU memory: %s", C.GoString(memInfo.err)))
C.free(unsafe.Pointer(memInfo.err))
} else if memInfo.count > 0 {
// Verify minimum compute capability
var cc C.cuda_compute_capability_t
C.cuda_compute_capability(*gpuHandles.cuda, &cc)
var cc C.nvml_compute_capability_t
C.nvml_compute_capability(*gpuHandles.nvml, &cc)
if cc.err != nil {
slog.Info(fmt.Sprintf("error looking up CUDA GPU compute capability: %s", C.GoString(cc.err)))
slog.Info(fmt.Sprintf("[nvidia-ml] error looking up NVML GPU compute capability: %s", C.GoString(cc.err)))
C.free(unsafe.Pointer(cc.err))
} else if cc.major > CudaComputeMin[0] || (cc.major == CudaComputeMin[0] && cc.minor >= CudaComputeMin[1]) {
slog.Info(fmt.Sprintf("CUDA Compute Capability detected: %d.%d", cc.major, cc.minor))
slog.Info(fmt.Sprintf("[nvidia-ml] NVML CUDA Compute Capability detected: %d.%d", cc.major, cc.minor))
resp.Library = "cuda"
} else {
slog.Info(fmt.Sprintf("CUDA GPU is too old. Falling back to CPU mode. Compute Capability detected: %d.%d", cc.major, cc.minor))
slog.Info(fmt.Sprintf("[nvidia-ml] CUDA GPU is too old. Falling back to CPU mode. Compute Capability detected: %d.%d", cc.major, cc.minor))
}
}
} else if gpuHandles.cudart != nil && (cpuVariant != "" || runtime.GOARCH != "amd64") {
C.cudart_check_vram(*gpuHandles.cudart, &memInfo)
if memInfo.err != nil {
slog.Info(fmt.Sprintf("[cudart] error looking up CUDART GPU memory: %s", C.GoString(memInfo.err)))
C.free(unsafe.Pointer(memInfo.err))
} else if memInfo.count > 0 {
// Verify minimum compute capability
var cc C.cudart_compute_capability_t
C.cudart_compute_capability(*gpuHandles.cudart, &cc)
if cc.err != nil {
slog.Info(fmt.Sprintf("[cudart] error looking up CUDA compute capability: %s", C.GoString(cc.err)))
C.free(unsafe.Pointer(cc.err))
} else if cc.major > CudaComputeMin[0] || (cc.major == CudaComputeMin[0] && cc.minor >= CudaComputeMin[1]) {
slog.Info(fmt.Sprintf("[cudart] CUDART CUDA Compute Capability detected: %d.%d", cc.major, cc.minor))
resp.Library = "cuda"
} else {
slog.Info(fmt.Sprintf("[cudart] CUDA GPU is too old. Falling back to CPU mode. Compute Capability detected: %d.%d", cc.major, cc.minor))
}
}
} else {
@ -176,6 +245,11 @@ func CheckVRAM() (int64, error) {
if overhead < gpus*1024*1024*1024 {
overhead = gpus * 1024 * 1024 * 1024
}
// Assigning full reported free memory for Tegras due to OS controlled caching.
if CudaTegra != "" {
// Setting overhead for non-Tegra devices
overhead = 0
}
avail := int64(gpuInfo.FreeMemory - overhead)
slog.Debug(fmt.Sprintf("%s detected %d devices with %dM available memory", gpuInfo.Library, gpuInfo.DeviceCount, avail/1024/1024))
return avail, nil
@ -238,15 +312,32 @@ func FindGPULibs(baseLibName string, patterns []string) []string {
return gpuLibPaths
}
func LoadCUDAMgmt(cudaLibPaths []string) *C.cuda_handle_t {
var resp C.cuda_init_resp_t
func LoadNVMLMgmt(nvmlLibPaths []string) *C.nvml_handle_t {
var resp C.nvml_init_resp_t
resp.ch.verbose = getVerboseState()
for _, libPath := range cudaLibPaths {
for _, libPath := range nvmlLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.cuda_init(lib, &resp)
C.nvml_init(lib, &resp)
if resp.err != nil {
slog.Info(fmt.Sprintf("Unable to load CUDA management library %s: %s", libPath, C.GoString(resp.err)))
slog.Info(fmt.Sprintf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err)))
C.free(unsafe.Pointer(resp.err))
} else {
return &resp.ch
}
}
return nil
}
func LoadCUDARTMgmt(cudartLibPaths []string) *C.cudart_handle_t {
var resp C.cudart_init_resp_t
resp.ch.verbose = getVerboseState()
for _, libPath := range cudartLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.cudart_init(lib, &resp)
if resp.err != nil {
slog.Info(fmt.Sprintf("Unable to load cudart CUDA management library %s: %s", libPath, C.GoString(resp.err)))
C.free(unsafe.Pointer(resp.err))
} else {
return &resp.ch

View file

@ -52,7 +52,8 @@ void cpu_check_ram(mem_info_t *resp);
}
#endif
#include "gpu_info_cuda.h"
#include "gpu_info_nvml.h"
#include "gpu_info_cudart.h"
#endif // __GPU_INFO_H__
#endif // __APPLE__

190
gpu/gpu_info_cudart.c Normal file
View file

@ -0,0 +1,190 @@
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
#include <string.h>
#include "gpu_info_cudart.h"
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
cudartReturn_t ret;
resp->err = NULL;
const int buflen = 256;
char buf[buflen + 1];
int i;
struct lookup {
char *s;
void **p;
} l[] = {
{"cudaSetDevice", (void *)&resp->ch.cudaSetDevice},
{"cudaDeviceSynchronize", (void *)&resp->ch.cudaDeviceSynchronize},
{"cudaDeviceReset", (void *)&resp->ch.cudaDeviceReset},
{"cudaMemGetInfo", (void *)&resp->ch.cudaMemGetInfo},
{"cudaGetDeviceCount", (void *)&resp->ch.cudaGetDeviceCount},
{"cudaDeviceGetAttribute", (void *)&resp->ch.cudaDeviceGetAttribute},
{"cudaDriverGetVersion", (void *)&resp->ch.cudaDriverGetVersion},
{NULL, NULL},
};
resp->ch.handle = LOAD_LIBRARY(cudart_lib_path, RTLD_LAZY);
if (!resp->ch.handle) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "library %s load err: %s\n", cudart_lib_path, msg);
snprintf(buf, buflen,
"Unable to load %s library to query for Nvidia GPUs: %s",
cudart_lib_path, msg);
free(msg);
resp->err = strdup(buf);
return;
}
// TODO once we've squashed the remaining corner cases remove this log
LOG(resp->ch.verbose, "wiring cudart library functions in %s\n", cudart_lib_path);
for (i = 0; l[i].s != NULL; i++) {
// TODO once we've squashed the remaining corner cases remove this log
LOG(resp->ch.verbose, "dlsym: %s\n", l[i].s);
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
if (!l[i].p) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "dlerr: %s\n", msg);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "symbol lookup for %s failed: %s", l[i].s,
msg);
free(msg);
resp->err = strdup(buf);
return;
}
}
ret = (*resp->ch.cudaSetDevice)(0);
if (ret != CUDART_SUCCESS) {
LOG(resp->ch.verbose, "cudaSetDevice err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "cudart init failure: %d", ret);
resp->err = strdup(buf);
return;
}
int version = 0;
cudartDriverVersion_t driverVersion;
driverVersion.major = 0;
driverVersion.minor = 0;
// Report driver version if we're in verbose mode, ignore errors
ret = (*resp->ch.cudaDriverGetVersion)(&version);
if (ret != CUDART_SUCCESS) {
LOG(resp->ch.verbose, "cudaDriverGetVersion failed: %d\n", ret);
} else {
driverVersion.major = version / 1000;
driverVersion.minor = (version - (driverVersion.major * 1000)) / 10;
LOG(resp->ch.verbose, "CUDA driver version: %d-%d\n", driverVersion.major, driverVersion.minor);
}
}
void cudart_check_vram(cudart_handle_t h, mem_info_t *resp) {
resp->err = NULL;
cudartMemory_t memInfo = {0,0,0};
cudartReturn_t ret;
const int buflen = 256;
char buf[buflen + 1];
int i;
if (h.handle == NULL) {
resp->err = strdup("cudart handle isn't initialized");
return;
}
// cudaGetDeviceCount takes int type, resp-> count is uint
int deviceCount;
ret = (*h.cudaGetDeviceCount)(&deviceCount);
if (ret != CUDART_SUCCESS) {
snprintf(buf, buflen, "unable to get device count: %d", ret);
resp->err = strdup(buf);
return;
} else {
resp->count = (unsigned int)deviceCount;
}
resp->total = 0;
resp->free = 0;
for (i = 0; i < resp-> count; i++) {
ret = (*h.cudaSetDevice)(i);
if (ret != CUDART_SUCCESS) {
snprintf(buf, buflen, "cudart device failed to initialize");
resp->err = strdup(buf);
return;
}
ret = (*h.cudaMemGetInfo)(&memInfo.free, &memInfo.total);
if (ret != CUDART_SUCCESS) {
snprintf(buf, buflen, "cudart device memory info lookup failure %d", ret);
resp->err = strdup(buf);
return;
}
LOG(h.verbose, "[%d] CUDA totalMem %lu\n", i, memInfo.total);
LOG(h.verbose, "[%d] CUDA freeMem %lu\n", i, memInfo.free);
resp->total += memInfo.total;
resp->free += memInfo.free;
}
}
void cudart_compute_capability(cudart_handle_t h, cudart_compute_capability_t *resp) {
resp->err = NULL;
resp->major = 0;
resp->minor = 0;
int major = 0;
int minor = 0;
cudartReturn_t ret;
const int buflen = 256;
char buf[buflen + 1];
int i;
if (h.handle == NULL) {
resp->err = strdup("cudart handle not initialized");
return;
}
int devices;
ret = (*h.cudaGetDeviceCount)(&devices);
if (ret != CUDART_SUCCESS) {
snprintf(buf, buflen, "unable to get cudart device count: %d", ret);
resp->err = strdup(buf);
return;
}
for (i = 0; i < devices; i++) {
ret = (*h.cudaSetDevice)(i);
if (ret != CUDART_SUCCESS) {
snprintf(buf, buflen, "cudart device failed to initialize");
resp->err = strdup(buf);
return;
}
ret = (*h.cudaDeviceGetAttribute)(&major, cudartDevAttrComputeCapabilityMajor, i);
if (ret != CUDART_SUCCESS) {
snprintf(buf, buflen, "device compute capability lookup failure %d: %d", i, ret);
resp->err = strdup(buf);
return;
}
ret = (*h.cudaDeviceGetAttribute)(&minor, cudartDevAttrComputeCapabilityMinor, i);
if (ret != CUDART_SUCCESS) {
snprintf(buf, buflen, "device compute capability lookup failure %d: %d", i, ret);
resp->err = strdup(buf);
return;
}
// Report the lowest major.minor we detect as that limits our compatibility
if (resp->major == 0 || resp->major > major ) {
resp->major = major;
resp->minor = minor;
} else if ( resp->major == major && resp->minor > minor ) {
resp->minor = minor;
}
}
}
#endif // __APPLE__

59
gpu/gpu_info_cudart.h Normal file
View file

@ -0,0 +1,59 @@
#ifndef __APPLE__
#ifndef __GPU_INFO_CUDART_H__
#define __GPU_INFO_CUDART_H__
#include "gpu_info.h"
// Just enough typedef's to dlopen/dlsym for memory information
typedef enum cudartReturn_enum {
CUDART_SUCCESS = 0,
CUDART_UNSUPPORTED = 1,
// Other values omitted for now...
} cudartReturn_t;
typedef enum cudartDeviceAttr_enum {
cudartDevAttrComputeCapabilityMajor = 75,
cudartDevAttrComputeCapabilityMinor = 76,
} cudartDeviceAttr_t;
typedef void *cudartDevice_t; // Opaque is sufficient
typedef struct cudartMemory_st {
size_t total;
size_t free;
size_t used;
} cudartMemory_t;
typedef struct cudartDriverVersion {
int major;
int minor;
} cudartDriverVersion_t;
typedef struct cudart_handle {
void *handle;
uint16_t verbose;
cudartReturn_t (*cudaSetDevice)(int device);
cudartReturn_t (*cudaDeviceSynchronize)(void);
cudartReturn_t (*cudaDeviceReset)(void);
cudartReturn_t (*cudaMemGetInfo)(size_t *, size_t *);
cudartReturn_t (*cudaGetDeviceCount)(int *);
cudartReturn_t (*cudaDeviceGetAttribute)(int* value, cudartDeviceAttr_t attr, int device);
cudartReturn_t (*cudaDriverGetVersion) (int *driverVersion);
} cudart_handle_t;
typedef struct cudart_init_resp {
char *err; // If err is non-null handle is invalid
cudart_handle_t ch;
} cudart_init_resp_t;
typedef struct cudart_compute_capability {
char *err;
int major;
int minor;
} cudart_compute_capability_t;
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp);
void cudart_check_vram(cudart_handle_t ch, mem_info_t *resp);
void cudart_compute_capability(cudart_handle_t th, cudart_compute_capability_t *cc);
#endif // __GPU_INFO_CUDART_H__
#endif // __APPLE__

View file

@ -1,10 +1,10 @@
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
#include "gpu_info_cuda.h"
#include <string.h>
void cuda_init(char *cuda_lib_path, cuda_init_resp_t *resp) {
#include "gpu_info_nvml.h"
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp) {
nvmlReturn_t ret;
resp->err = NULL;
const int buflen = 256;
@ -30,20 +30,20 @@ void cuda_init(char *cuda_lib_path, cuda_init_resp_t *resp) {
{NULL, NULL},
};
resp->ch.handle = LOAD_LIBRARY(cuda_lib_path, RTLD_LAZY);
resp->ch.handle = LOAD_LIBRARY(nvml_lib_path, RTLD_LAZY);
if (!resp->ch.handle) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "library %s load err: %s\n", cuda_lib_path, msg);
LOG(resp->ch.verbose, "library %s load err: %s\n", nvml_lib_path, msg);
snprintf(buf, buflen,
"Unable to load %s library to query for Nvidia GPUs: %s",
cuda_lib_path, msg);
nvml_lib_path, msg);
free(msg);
resp->err = strdup(buf);
return;
}
// TODO once we've squashed the remaining corner cases remove this log
LOG(resp->ch.verbose, "wiring nvidia management library functions in %s\n", cuda_lib_path);
LOG(resp->ch.verbose, "wiring nvidia management library functions in %s\n", nvml_lib_path);
for (i = 0; l[i].s != NULL; i++) {
// TODO once we've squashed the remaining corner cases remove this log
@ -82,7 +82,7 @@ void cuda_init(char *cuda_lib_path, cuda_init_resp_t *resp) {
}
}
void cuda_check_vram(cuda_handle_t h, mem_info_t *resp) {
void nvml_check_vram(nvml_handle_t h, mem_info_t *resp) {
resp->err = NULL;
nvmlDevice_t device;
nvmlMemory_t memInfo = {0};
@ -92,7 +92,7 @@ void cuda_check_vram(cuda_handle_t h, mem_info_t *resp) {
int i;
if (h.handle == NULL) {
resp->err = strdup("nvml handle sn't initialized");
resp->err = strdup("nvml handle isn't initialized");
return;
}
@ -155,15 +155,15 @@ void cuda_check_vram(cuda_handle_t h, mem_info_t *resp) {
}
}
LOG(h.verbose, "[%d] CUDA totalMem %llu\n", i, memInfo.total);
LOG(h.verbose, "[%d] CUDA usedMem %llu\n", i, memInfo.used);
LOG(h.verbose, "[%d] CUDA totalMem %ld\n", i, memInfo.total);
LOG(h.verbose, "[%d] CUDA freeMem %ld\n", i, memInfo.free);
resp->total += memInfo.total;
resp->free += memInfo.free;
}
}
void cuda_compute_capability(cuda_handle_t h, cuda_compute_capability_t *resp) {
void nvml_compute_capability(nvml_handle_t h, nvml_compute_capability_t *resp) {
resp->err = NULL;
resp->major = 0;
resp->minor = 0;

View file

@ -1,6 +1,6 @@
#ifndef __APPLE__
#ifndef __GPU_INFO_CUDA_H__
#define __GPU_INFO_CUDA_H__
#ifndef __GPU_INFO_NVML_H__
#define __GPU_INFO_NVML_H__
#include "gpu_info.h"
// Just enough typedef's to dlopen/dlsym for memory information
@ -20,7 +20,7 @@ typedef enum nvmlBrandType_enum
NVML_BRAND_UNKNOWN = 0,
} nvmlBrandType_t;
typedef struct cuda_handle {
typedef struct nvml_handle {
void *handle;
uint16_t verbose;
nvmlReturn_t (*nvmlInit_v2)(void);
@ -35,22 +35,22 @@ typedef struct cuda_handle {
nvmlReturn_t (*nvmlDeviceGetVbiosVersion) (nvmlDevice_t device, char* version, unsigned int length);
nvmlReturn_t (*nvmlDeviceGetBoardPartNumber) (nvmlDevice_t device, char* partNumber, unsigned int length);
nvmlReturn_t (*nvmlDeviceGetBrand) (nvmlDevice_t device, nvmlBrandType_t* type);
} cuda_handle_t;
} nvml_handle_t;
typedef struct cuda_init_resp {
typedef struct nvml_init_resp {
char *err; // If err is non-null handle is invalid
cuda_handle_t ch;
} cuda_init_resp_t;
nvml_handle_t ch;
} nvml_init_resp_t;
typedef struct cuda_compute_capability {
typedef struct nvml_compute_capability {
char *err;
int major;
int minor;
} cuda_compute_capability_t;
} nvml_compute_capability_t;
void cuda_init(char *cuda_lib_path, cuda_init_resp_t *resp);
void cuda_check_vram(cuda_handle_t ch, mem_info_t *resp);
void cuda_compute_capability(cuda_handle_t ch, cuda_compute_capability_t *cc);
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp);
void nvml_check_vram(nvml_handle_t ch, mem_info_t *resp);
void nvml_compute_capability(nvml_handle_t ch, nvml_compute_capability_t *cc);
#endif // __GPU_INFO_CUDA_H__
#endif // __GPU_INFO_NVML_H__
#endif // __APPLE__

View file

@ -90,6 +90,10 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
compress_libs
fi
if [ "${ARCH}" == "x86_64" ]; then
#
# ARM chips in M1/M2/M3-based MACs and NVidia Tegra devices do not currently support avx extensions.
#
if [ -z "${OLLAMA_CPU_TARGET}" -o "${OLLAMA_CPU_TARGET}" = "cpu_avx" ]; then
#
# ~2011 CPU Dynamic library with more capabilities turned on to optimize performance
@ -116,6 +120,7 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
compress_libs
fi
fi
fi
else
echo "Skipping CPU generation step as requested"
fi
@ -142,12 +147,21 @@ if [ -d "${CUDA_LIB_DIR}" ]; then
if [ -n "${CUDA_MAJOR}" ]; then
CUDA_VARIANT=_v${CUDA_MAJOR}
fi
CMAKE_DEFS="-DLLAMA_CUBLAS=on -DLLAMA_CUDA_FORCE_MMQ=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} ${COMMON_CMAKE_DEFS} ${CMAKE_DEFS}"
if [ "${ARCH}" == "arm64" ]; then
echo "ARM CPU detected - disabling unsupported AVX instructions"
# ARM-based CPUs such as M1 and Tegra do not support AVX extensions.
#
# CUDA compute < 6.0 lacks proper FP16 support on ARM.
# Disabling has minimal performance effect while maintaining compatibility.
ARM64_DEFS="-DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_CUDA_F16=off"
fi
CMAKE_DEFS="-DLLAMA_CUBLAS=on -DLLAMA_CUDA_FORCE_MMQ=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} ${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} ${ARM64_DEFS}"
BUILD_DIR="${LLAMACPP_DIR}/build/linux/${ARCH}/cuda${CUDA_VARIANT}"
EXTRA_LIBS="-L${CUDA_LIB_DIR} -lcudart -lcublas -lcublasLt -lcuda"
build
# Cary the CUDA libs as payloads to help reduce dependency burden on users
# Carry the CUDA libs as payloads to help reduce dependency burden on users
#
# TODO - in the future we may shift to packaging these separately and conditionally
# downloading them in the install script.