pr comments
- default to embeddings enabled - move embedding logic for loaded model to request - allow embedding full directory - close llm on reload
This commit is contained in:
parent
a6f6d18f83
commit
21ddcaa1f1
3 changed files with 97 additions and 82 deletions
|
@ -275,6 +275,7 @@ func DefaultOptions() Options {
|
|||
UseMLock: false,
|
||||
RopeFrequencyBase: 10000.0,
|
||||
RopeFrequencyScale: 1.0,
|
||||
EmbeddingOnly: true,
|
||||
|
||||
RepeatLastN: 64,
|
||||
RepeatPenalty: 1.1,
|
||||
|
|
160
server/images.go
160
server/images.go
|
@ -23,7 +23,6 @@ import (
|
|||
"github.com/jmorganca/ollama/llama"
|
||||
"github.com/jmorganca/ollama/parser"
|
||||
"github.com/jmorganca/ollama/vector"
|
||||
"gonum.org/v1/gonum/mat"
|
||||
)
|
||||
|
||||
type RegistryOptions struct {
|
||||
|
@ -42,7 +41,7 @@ type Model struct {
|
|||
Embeddings []vector.Embedding
|
||||
}
|
||||
|
||||
func (m *Model) Prompt(request api.GenerateRequest) (string, error) {
|
||||
func (m *Model) Prompt(request api.GenerateRequest, embedding string) (string, error) {
|
||||
t := m.Template
|
||||
if request.Template != "" {
|
||||
t = request.Template
|
||||
|
@ -67,26 +66,12 @@ func (m *Model) Prompt(request api.GenerateRequest) (string, error) {
|
|||
vars.System = m.System
|
||||
vars.Prompt = request.Prompt
|
||||
vars.Context = request.Context
|
||||
vars.Embed = embedding
|
||||
|
||||
if request.System != "" {
|
||||
vars.System = request.System
|
||||
}
|
||||
|
||||
if len(m.Embeddings) > 0 {
|
||||
promptEmbed, err := loaded.llm.Embedding(request.Prompt)
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("failed to get embedding for prompt: %v", err)
|
||||
}
|
||||
// TODO: set embed_top from specified parameters in modelfile
|
||||
embed_top := 3
|
||||
embed := vector.TopK(embed_top, mat.NewVecDense(len(promptEmbed), promptEmbed), loaded.Embeddings)
|
||||
toEmbed := ""
|
||||
for _, e := range embed {
|
||||
toEmbed = fmt.Sprintf("%s %s", toEmbed, e.Embedding.Data)
|
||||
}
|
||||
vars.Embed = toEmbed
|
||||
}
|
||||
|
||||
var sb strings.Builder
|
||||
if err := tmpl.Execute(&sb, vars); err != nil {
|
||||
return "", err
|
||||
|
@ -432,85 +417,98 @@ func embeddingLayers(e EmbeddingParams) ([]*LayerReader, error) {
|
|||
return nil, fmt.Errorf("load model to generate embeddings: %v", err)
|
||||
}
|
||||
|
||||
for _, filePath := range e.files {
|
||||
// TODO: check if txt file type
|
||||
f, err := os.Open(filePath)
|
||||
addedFiles := make(map[string]bool) // keep track of files that have already been added
|
||||
for _, filePattern := range e.files {
|
||||
matchingFiles, err := filepath.Glob(filePattern)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("could not open embed file: %w", err)
|
||||
return nil, fmt.Errorf("could not find files with pattern %s: %w", filePattern, err)
|
||||
}
|
||||
scanner := bufio.NewScanner(f)
|
||||
scanner.Split(bufio.ScanLines)
|
||||
|
||||
data := []string{}
|
||||
for scanner.Scan() {
|
||||
data = append(data, scanner.Text())
|
||||
}
|
||||
f.Close()
|
||||
|
||||
// the digest of the file is set here so that the client knows a new operation is in progress
|
||||
fileDigest, _ := GetSHA256Digest(bytes.NewReader([]byte(filePath)))
|
||||
|
||||
embeddings := []vector.Embedding{}
|
||||
for i, d := range data {
|
||||
if strings.TrimSpace(d) == "" {
|
||||
for _, filePath := range matchingFiles {
|
||||
if addedFiles[filePath] {
|
||||
continue
|
||||
}
|
||||
e.fn(api.ProgressResponse{
|
||||
Status: fmt.Sprintf("creating embeddings for file %s", filePath),
|
||||
Digest: fileDigest,
|
||||
Total: len(data) - 1,
|
||||
Completed: i,
|
||||
})
|
||||
retry := 0
|
||||
generate:
|
||||
if retry > 3 {
|
||||
log.Printf("failed to generate embedding for '%s' line %d: %v", filePath, i+1, err)
|
||||
continue
|
||||
}
|
||||
embed, err := llm.Embedding(d)
|
||||
addedFiles[filePath] = true
|
||||
// TODO: check file type
|
||||
f, err := os.Open(filePath)
|
||||
if err != nil {
|
||||
log.Printf("retrying embedding generation for '%s' line %d: %v", filePath, i+1, err)
|
||||
retry++
|
||||
goto generate
|
||||
return nil, fmt.Errorf("could not open embed file: %w", err)
|
||||
}
|
||||
// Check for NaN and Inf in the embedding, which can't be stored
|
||||
for _, value := range embed {
|
||||
if math.IsNaN(value) || math.IsInf(value, 0) {
|
||||
log.Printf("reloading model, embedding contains NaN or Inf")
|
||||
// reload the model to get a new embedding
|
||||
llm, err = llama.New(model.ModelPath, e.opts)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("load model to generate embeddings: %v", err)
|
||||
}
|
||||
scanner := bufio.NewScanner(f)
|
||||
scanner.Split(bufio.ScanLines)
|
||||
|
||||
data := []string{}
|
||||
for scanner.Scan() {
|
||||
data = append(data, scanner.Text())
|
||||
}
|
||||
f.Close()
|
||||
|
||||
// the digest of the file is set here so that the client knows a new operation is in progress
|
||||
fileDigest, _ := GetSHA256Digest(bytes.NewReader([]byte(filePath)))
|
||||
|
||||
embeddings := []vector.Embedding{}
|
||||
for i, d := range data {
|
||||
if strings.TrimSpace(d) == "" {
|
||||
continue
|
||||
}
|
||||
e.fn(api.ProgressResponse{
|
||||
Status: fmt.Sprintf("creating embeddings for file %s", filePath),
|
||||
Digest: fileDigest,
|
||||
Total: len(data) - 1,
|
||||
Completed: i,
|
||||
})
|
||||
retry := 0
|
||||
generate:
|
||||
if retry > 3 {
|
||||
log.Printf("failed to generate embedding for '%s' line %d: %v", filePath, i+1, err)
|
||||
continue
|
||||
}
|
||||
embed, err := llm.Embedding(d)
|
||||
if err != nil {
|
||||
log.Printf("retrying embedding generation for '%s' line %d: %v", filePath, i+1, err)
|
||||
retry++
|
||||
goto generate
|
||||
}
|
||||
// Check for NaN and Inf in the embedding, which can't be stored
|
||||
for _, value := range embed {
|
||||
if math.IsNaN(value) || math.IsInf(value, 0) {
|
||||
log.Printf("reloading model, embedding contains NaN or Inf")
|
||||
// reload the model to get a new embedding, the seed can effect these outputs and reloading changes it
|
||||
llm.Close()
|
||||
llm, err = llama.New(model.ModelPath, e.opts)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("load model to generate embeddings: %v", err)
|
||||
}
|
||||
retry++
|
||||
goto generate
|
||||
}
|
||||
}
|
||||
embeddings = append(embeddings, vector.Embedding{Data: d, Vector: embed})
|
||||
}
|
||||
embeddings = append(embeddings, vector.Embedding{Data: d, Vector: embed})
|
||||
}
|
||||
|
||||
b, err := json.Marshal(embeddings)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed to encode embeddings: %w", err)
|
||||
}
|
||||
r := bytes.NewReader(b)
|
||||
b, err := json.Marshal(embeddings)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed to encode embeddings: %w", err)
|
||||
}
|
||||
r := bytes.NewReader(b)
|
||||
|
||||
digest, size := GetSHA256Digest(r)
|
||||
// Reset the position of the reader after calculating the digest
|
||||
if _, err := r.Seek(0, 0); err != nil {
|
||||
return nil, fmt.Errorf("could not reset embed reader: %w", err)
|
||||
}
|
||||
digest, size := GetSHA256Digest(r)
|
||||
// Reset the position of the reader after calculating the digest
|
||||
if _, err := r.Seek(0, io.SeekStart); err != nil {
|
||||
return nil, fmt.Errorf("could not reset embed reader: %w", err)
|
||||
}
|
||||
|
||||
layer := &LayerReader{
|
||||
Layer: Layer{
|
||||
MediaType: "application/vnd.ollama.image.embed",
|
||||
Digest: digest,
|
||||
Size: size,
|
||||
},
|
||||
Reader: r,
|
||||
}
|
||||
layer := &LayerReader{
|
||||
Layer: Layer{
|
||||
MediaType: "application/vnd.ollama.image.embed",
|
||||
Digest: digest,
|
||||
Size: size,
|
||||
},
|
||||
Reader: r,
|
||||
}
|
||||
|
||||
layers = append(layers, layer)
|
||||
layers = append(layers, layer)
|
||||
}
|
||||
}
|
||||
}
|
||||
return layers, nil
|
||||
|
|
|
@ -17,6 +17,7 @@ import (
|
|||
|
||||
"github.com/gin-contrib/cors"
|
||||
"github.com/gin-gonic/gin"
|
||||
"gonum.org/v1/gonum/mat"
|
||||
|
||||
"github.com/jmorganca/ollama/api"
|
||||
"github.com/jmorganca/ollama/llama"
|
||||
|
@ -114,7 +115,22 @@ func GenerateHandler(c *gin.Context) {
|
|||
|
||||
checkpointLoaded := time.Now()
|
||||
|
||||
prompt, err := model.Prompt(req)
|
||||
embedding := ""
|
||||
if model.Embeddings != nil && len(model.Embeddings) > 0 {
|
||||
promptEmbed, err := loaded.llm.Embedding(req.Prompt)
|
||||
if err != nil {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
// TODO: set embed_top from specified parameters in modelfile
|
||||
embed_top := 3
|
||||
topK := vector.TopK(embed_top, mat.NewVecDense(len(promptEmbed), promptEmbed), loaded.Embeddings)
|
||||
for _, e := range topK {
|
||||
embedding = fmt.Sprintf("%s %s", embedding, e.Embedding.Data)
|
||||
}
|
||||
}
|
||||
|
||||
prompt, err := model.Prompt(req, embedding)
|
||||
if err != nil {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
|
|
Loading…
Add table
Reference in a new issue