move to contained directory
This commit is contained in:
parent
41419f7577
commit
1fcf31b8c4
7 changed files with 279 additions and 177 deletions
96
README.md
96
README.md
|
@ -1,66 +1,82 @@
|
||||||
# ollama
|
# Ollama
|
||||||
|
|
||||||
🙊
|
- Run models, fast
|
||||||
|
- Download, manage and import models
|
||||||
|
|
||||||
## Running
|
## Install
|
||||||
|
|
||||||
Install dependencies:
|
|
||||||
|
|
||||||
```
|
```
|
||||||
pip install -r requirements.txt
|
pip install ollama
|
||||||
```
|
```
|
||||||
|
|
||||||
Put your model in `models/` and run:
|
## Example quickstart
|
||||||
|
|
||||||
```
|
```python
|
||||||
python3 ollama.py serve
|
import ollama
|
||||||
|
model_name = "huggingface.co/thebloke/llama-7b-ggml"
|
||||||
|
model = ollama.pull(model_name)
|
||||||
|
ollama.load(model)
|
||||||
|
ollama.generate(model_name, "hi")
|
||||||
```
|
```
|
||||||
|
|
||||||
To run the app:
|
## Reference
|
||||||
|
|
||||||
```
|
### `ollama.load`
|
||||||
cd desktop
|
|
||||||
npm install
|
Load a model from a path or a docker image
|
||||||
npm start
|
|
||||||
|
```python
|
||||||
|
ollama.load("model name")
|
||||||
```
|
```
|
||||||
|
|
||||||
## Building
|
### `ollama.generate("message")`
|
||||||
|
|
||||||
If using Apple silicon, you need a Python version that supports arm64:
|
Generate a completion
|
||||||
|
|
||||||
```bash
|
```python
|
||||||
wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-MacOSX-arm64.sh
|
ollama.generate(model, "hi")
|
||||||
bash Miniforge3-MacOSX-arm64.sh
|
|
||||||
```
|
```
|
||||||
|
|
||||||
Get the dependencies:
|
### `ollama.models`
|
||||||
|
|
||||||
```bash
|
List models
|
||||||
pip install -r requirements.txt
|
|
||||||
```
|
|
||||||
|
|
||||||
Then build a binary for your current platform:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
python3 build.py
|
|
||||||
```
|
|
||||||
|
|
||||||
### Building the app
|
|
||||||
|
|
||||||
```
|
```
|
||||||
cd desktop
|
models = ollama.models()
|
||||||
npm run package
|
|
||||||
```
|
```
|
||||||
|
|
||||||
## API
|
### `ollama.serve`
|
||||||
|
|
||||||
### `GET /models`
|
Serve the ollama http server
|
||||||
|
|
||||||
Returns a list of available models
|
## Cooing Soon
|
||||||
|
|
||||||
### `POST /generate`
|
### `ollama.pull`
|
||||||
|
|
||||||
Generates completions as a series of JSON objects
|
Examples:
|
||||||
|
|
||||||
model: `string` - The name of the model to use in the `models` folder.
|
```python
|
||||||
prompt: `string` - The prompt to use.
|
ollama.pull("huggingface.co/thebloke/llama-7b-ggml")
|
||||||
|
```
|
||||||
|
|
||||||
|
### `ollama.import`
|
||||||
|
|
||||||
|
Import an existing model into the model store
|
||||||
|
|
||||||
|
```python
|
||||||
|
ollama.import("./path/to/model")
|
||||||
|
```
|
||||||
|
|
||||||
|
### `ollama.search`
|
||||||
|
|
||||||
|
Search for compatible models that Ollama can run
|
||||||
|
|
||||||
|
```python
|
||||||
|
ollama.search("llama-7b")
|
||||||
|
```
|
||||||
|
|
||||||
|
## Future CLI
|
||||||
|
|
||||||
|
```
|
||||||
|
ollama run huggingface.co/thebloke/llama-7b-ggml
|
||||||
|
```
|
||||||
|
|
137
ollama.py
137
ollama.py
|
@ -1,137 +0,0 @@
|
||||||
import json
|
|
||||||
import os
|
|
||||||
import threading
|
|
||||||
import click
|
|
||||||
from llama_cpp import Llama
|
|
||||||
from flask import Flask, Response, stream_with_context, request
|
|
||||||
from flask_cors import CORS
|
|
||||||
from template import template
|
|
||||||
|
|
||||||
app = Flask(__name__)
|
|
||||||
CORS(app) # enable CORS for all routes
|
|
||||||
|
|
||||||
# llms tracks which models are loaded
|
|
||||||
llms = {}
|
|
||||||
lock = threading.Lock()
|
|
||||||
|
|
||||||
|
|
||||||
def load(model):
|
|
||||||
with lock:
|
|
||||||
if not os.path.exists(f"{model}"):
|
|
||||||
return {"error": "The model does not exist."}
|
|
||||||
if model not in llms:
|
|
||||||
llms[model] = Llama(model_path=f"{model}")
|
|
||||||
return None
|
|
||||||
|
|
||||||
|
|
||||||
def unload(model):
|
|
||||||
with lock:
|
|
||||||
if not os.path.exists(f"{model}"):
|
|
||||||
return {"error": "The model does not exist."}
|
|
||||||
llms.pop(model, None)
|
|
||||||
return None
|
|
||||||
|
|
||||||
|
|
||||||
def query(model, prompt):
|
|
||||||
# auto load
|
|
||||||
error = load(model)
|
|
||||||
if error is not None:
|
|
||||||
return error
|
|
||||||
generated = llms[model](
|
|
||||||
str(prompt), # TODO: optimize prompt based on model
|
|
||||||
max_tokens=4096,
|
|
||||||
stop=["Q:", "\n"],
|
|
||||||
echo=True,
|
|
||||||
stream=True,
|
|
||||||
)
|
|
||||||
for output in generated:
|
|
||||||
yield json.dumps(output)
|
|
||||||
|
|
||||||
|
|
||||||
def models():
|
|
||||||
all_files = os.listdir("./models")
|
|
||||||
bin_files = [
|
|
||||||
file.replace(".bin", "") for file in all_files if file.endswith(".bin")
|
|
||||||
]
|
|
||||||
return bin_files
|
|
||||||
|
|
||||||
|
|
||||||
@app.route("/load", methods=["POST"])
|
|
||||||
def load_route_handler():
|
|
||||||
data = request.get_json()
|
|
||||||
model = data.get("model")
|
|
||||||
if not model:
|
|
||||||
return Response("Model is required", status=400)
|
|
||||||
error = load(model)
|
|
||||||
if error is not None:
|
|
||||||
return error
|
|
||||||
return Response(status=204)
|
|
||||||
|
|
||||||
|
|
||||||
@app.route("/unload", methods=["POST"])
|
|
||||||
def unload_route_handler():
|
|
||||||
data = request.get_json()
|
|
||||||
model = data.get("model")
|
|
||||||
if not model:
|
|
||||||
return Response("Model is required", status=400)
|
|
||||||
error = unload(model)
|
|
||||||
if error is not None:
|
|
||||||
return error
|
|
||||||
return Response(status=204)
|
|
||||||
|
|
||||||
|
|
||||||
@app.route("/generate", methods=["POST"])
|
|
||||||
def generate_route_handler():
|
|
||||||
data = request.get_json()
|
|
||||||
model = data.get("model")
|
|
||||||
prompt = data.get("prompt")
|
|
||||||
if not model:
|
|
||||||
return Response("Model is required", status=400)
|
|
||||||
if not prompt:
|
|
||||||
return Response("Prompt is required", status=400)
|
|
||||||
if not os.path.exists(f"{model}"):
|
|
||||||
return {"error": "The model does not exist."}, 400
|
|
||||||
return Response(
|
|
||||||
stream_with_context(query(model, prompt)), mimetype="text/event-stream"
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@app.route("/models", methods=["GET"])
|
|
||||||
def models_route_handler():
|
|
||||||
bin_files = models()
|
|
||||||
return Response(json.dumps(bin_files), mimetype="application/json")
|
|
||||||
|
|
||||||
|
|
||||||
@click.group(invoke_without_command=True)
|
|
||||||
@click.pass_context
|
|
||||||
def cli(ctx):
|
|
||||||
# allows the script to respond to command line input when executed directly
|
|
||||||
if ctx.invoked_subcommand is None:
|
|
||||||
click.echo(ctx.get_help())
|
|
||||||
|
|
||||||
|
|
||||||
@cli.command()
|
|
||||||
@click.option("--port", default=5000, help="Port to run the server on")
|
|
||||||
@click.option("--debug", default=False, help="Enable debug mode")
|
|
||||||
def serve(port, debug):
|
|
||||||
print("Serving on http://localhost:{port}")
|
|
||||||
app.run(host="0.0.0.0", port=port, debug=debug)
|
|
||||||
|
|
||||||
|
|
||||||
@cli.command()
|
|
||||||
@click.option("--model", default="vicuna-7b-v1.3.ggmlv3.q8_0", help="The model to use")
|
|
||||||
@click.option("--prompt", default="", help="The prompt for the model")
|
|
||||||
def generate(model, prompt):
|
|
||||||
if prompt == "":
|
|
||||||
prompt = input("Prompt: ")
|
|
||||||
output = ""
|
|
||||||
prompt = template(model, prompt)
|
|
||||||
for generated in query(model, prompt):
|
|
||||||
generated_json = json.loads(generated)
|
|
||||||
text = generated_json["choices"][0]["text"]
|
|
||||||
output += text
|
|
||||||
print(f"\r{output}", end="", flush=True)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
cli()
|
|
223
ollama/ollama.py
Normal file
223
ollama/ollama.py
Normal file
|
@ -0,0 +1,223 @@
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import threading
|
||||||
|
import click
|
||||||
|
from transformers import AutoModel
|
||||||
|
from tqdm import tqdm
|
||||||
|
from pathlib import Path
|
||||||
|
from llama_cpp import Llama
|
||||||
|
from flask import Flask, Response, stream_with_context, request
|
||||||
|
from flask_cors import CORS
|
||||||
|
from template import template
|
||||||
|
|
||||||
|
app = Flask(__name__)
|
||||||
|
CORS(app) # enable CORS for all routes
|
||||||
|
|
||||||
|
# llms tracks which models are loaded
|
||||||
|
llms = {}
|
||||||
|
lock = threading.Lock()
|
||||||
|
|
||||||
|
|
||||||
|
def models_directory():
|
||||||
|
home_dir = Path.home()
|
||||||
|
models_dir = home_dir / ".ollama/models"
|
||||||
|
|
||||||
|
if not models_dir.exists():
|
||||||
|
models_dir.mkdir(parents=True)
|
||||||
|
|
||||||
|
return models_dir
|
||||||
|
|
||||||
|
|
||||||
|
def load(model=None, path=None):
|
||||||
|
"""
|
||||||
|
Load a model.
|
||||||
|
|
||||||
|
The model can be specified by providing either the path or the model name,
|
||||||
|
but not both. If both are provided, this function will raise a ValueError.
|
||||||
|
If the model does not exist or could not be loaded, this function returns an error.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model (str, optional): The name of the model to load.
|
||||||
|
path (str, optional): The path to the model file.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
dict or None: If the model cannot be loaded, a dictionary with an 'error' key is returned.
|
||||||
|
If the model is successfully loaded, None is returned.
|
||||||
|
"""
|
||||||
|
|
||||||
|
with lock:
|
||||||
|
if path is not None and model is not None:
|
||||||
|
raise ValueError(
|
||||||
|
"Both path and model are specified. Please provide only one of them."
|
||||||
|
)
|
||||||
|
elif path is not None:
|
||||||
|
name = os.path.basename(path)
|
||||||
|
load_from = path
|
||||||
|
elif model is not None:
|
||||||
|
name = model
|
||||||
|
dir = models_directory()
|
||||||
|
load_from = str(dir / f"{model}.bin")
|
||||||
|
else:
|
||||||
|
raise ValueError("Either path or model must be specified.")
|
||||||
|
|
||||||
|
if not os.path.exists(load_from):
|
||||||
|
return {"error": f"The model at {load_from} does not exist."}
|
||||||
|
|
||||||
|
if name not in llms:
|
||||||
|
# TODO: download model from a repository if it does not exist
|
||||||
|
llms[name] = Llama(model_path=load_from)
|
||||||
|
|
||||||
|
# TODO: this should start a persistent instance of ollama with the model loaded
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def unload(model):
|
||||||
|
"""
|
||||||
|
Unload a model.
|
||||||
|
|
||||||
|
Remove a model from the list of loaded models. If the model is not loaded, this is a no-op.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model (str): The name of the model to unload.
|
||||||
|
"""
|
||||||
|
llms.pop(model, None)
|
||||||
|
|
||||||
|
|
||||||
|
def generate(model, prompt):
|
||||||
|
# auto load
|
||||||
|
error = load(model)
|
||||||
|
print(error)
|
||||||
|
if error is not None:
|
||||||
|
return error
|
||||||
|
generated = llms[model](
|
||||||
|
str(prompt), # TODO: optimize prompt based on model
|
||||||
|
max_tokens=4096,
|
||||||
|
stop=["Q:", "\n"],
|
||||||
|
stream=True,
|
||||||
|
)
|
||||||
|
for output in generated:
|
||||||
|
yield json.dumps(output)
|
||||||
|
|
||||||
|
|
||||||
|
def models():
|
||||||
|
dir = models_directory()
|
||||||
|
all_files = os.listdir(dir)
|
||||||
|
bin_files = [
|
||||||
|
file.replace(".bin", "") for file in all_files if file.endswith(".bin")
|
||||||
|
]
|
||||||
|
return bin_files
|
||||||
|
|
||||||
|
|
||||||
|
@app.route("/load", methods=["POST"])
|
||||||
|
def load_route_handler():
|
||||||
|
data = request.get_json()
|
||||||
|
model = data.get("model")
|
||||||
|
if not model:
|
||||||
|
return Response("Model is required", status=400)
|
||||||
|
error = load(model)
|
||||||
|
if error is not None:
|
||||||
|
return error
|
||||||
|
return Response(status=204)
|
||||||
|
|
||||||
|
|
||||||
|
@app.route("/unload", methods=["POST"])
|
||||||
|
def unload_route_handler():
|
||||||
|
data = request.get_json()
|
||||||
|
model = data.get("model")
|
||||||
|
if not model:
|
||||||
|
return Response("Model is required", status=400)
|
||||||
|
unload(model)
|
||||||
|
return Response(status=204)
|
||||||
|
|
||||||
|
|
||||||
|
@app.route("/generate", methods=["POST"])
|
||||||
|
def generate_route_handler():
|
||||||
|
data = request.get_json()
|
||||||
|
model = data.get("model")
|
||||||
|
prompt = data.get("prompt")
|
||||||
|
if not model:
|
||||||
|
return Response("Model is required", status=400)
|
||||||
|
if not prompt:
|
||||||
|
return Response("Prompt is required", status=400)
|
||||||
|
if not os.path.exists(f"{model}"):
|
||||||
|
return {"error": "The model does not exist."}, 400
|
||||||
|
return Response(
|
||||||
|
stream_with_context(generate(model, prompt)), mimetype="text/event-stream"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@app.route("/models", methods=["GET"])
|
||||||
|
def models_route_handler():
|
||||||
|
bin_files = models()
|
||||||
|
return Response(json.dumps(bin_files), mimetype="application/json")
|
||||||
|
|
||||||
|
|
||||||
|
@click.group(invoke_without_command=True)
|
||||||
|
@click.pass_context
|
||||||
|
def cli(ctx):
|
||||||
|
# allows the script to respond to command line input when executed directly
|
||||||
|
if ctx.invoked_subcommand is None:
|
||||||
|
click.echo(ctx.get_help())
|
||||||
|
|
||||||
|
|
||||||
|
@cli.command()
|
||||||
|
@click.option("--port", default=5000, help="Port to run the server on")
|
||||||
|
@click.option("--debug", default=False, help="Enable debug mode")
|
||||||
|
def serve(port, debug):
|
||||||
|
print("Serving on http://localhost:{port}")
|
||||||
|
app.run(host="0.0.0.0", port=port, debug=debug)
|
||||||
|
|
||||||
|
|
||||||
|
@cli.command(name="load")
|
||||||
|
@click.argument("model")
|
||||||
|
@click.option("--file", default=False, help="Indicates that a file path is provided")
|
||||||
|
def load_cli(model, file):
|
||||||
|
if file:
|
||||||
|
error = load(path=model)
|
||||||
|
else:
|
||||||
|
error = load(model)
|
||||||
|
if error is not None:
|
||||||
|
print(error)
|
||||||
|
return
|
||||||
|
print("Model loaded")
|
||||||
|
|
||||||
|
|
||||||
|
@cli.command(name="generate")
|
||||||
|
@click.argument("model")
|
||||||
|
@click.option("--prompt", default="", help="The prompt for the model")
|
||||||
|
def generate_cli(model, prompt):
|
||||||
|
if prompt == "":
|
||||||
|
prompt = input("Prompt: ")
|
||||||
|
output = ""
|
||||||
|
prompt = template(model, prompt)
|
||||||
|
for generated in generate(model, prompt):
|
||||||
|
generated_json = json.loads(generated)
|
||||||
|
text = generated_json["choices"][0]["text"]
|
||||||
|
output += text
|
||||||
|
print(f"\r{output}", end="", flush=True)
|
||||||
|
|
||||||
|
|
||||||
|
def download_model(model_name):
|
||||||
|
dir = models_directory()
|
||||||
|
AutoModel.from_pretrained(model_name, cache_dir=dir)
|
||||||
|
|
||||||
|
|
||||||
|
@cli.command(name="models")
|
||||||
|
def models_cli():
|
||||||
|
print(models())
|
||||||
|
|
||||||
|
|
||||||
|
@cli.command(name="pull")
|
||||||
|
@click.argument("model")
|
||||||
|
def pull_cli(model):
|
||||||
|
print("not implemented")
|
||||||
|
|
||||||
|
|
||||||
|
@cli.command(name="import")
|
||||||
|
@click.argument("model")
|
||||||
|
def import_cli(model):
|
||||||
|
print("not implemented")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
cli()
|
Loading…
Reference in a new issue