Simple chat example for typescript
Signed-off-by: Matt Williams <m@technovangelist.com>
This commit is contained in:
parent
a2405ec831
commit
1ade380bd7
3 changed files with 110 additions and 0 deletions
78
examples/typescript-simplechat/client.ts
Normal file
78
examples/typescript-simplechat/client.ts
Normal file
|
@ -0,0 +1,78 @@
|
|||
import * as readline from "readline";
|
||||
|
||||
const model = "llama2";
|
||||
type Message = {
|
||||
role: "assistant" | "user" | "system";
|
||||
content: string;
|
||||
}
|
||||
const messages: Message[] = [{
|
||||
role: "system",
|
||||
content: "You are a helpful AI agent."
|
||||
}]
|
||||
|
||||
const rl = readline.createInterface({
|
||||
input: process.stdin,
|
||||
output: process.stdout
|
||||
})
|
||||
|
||||
async function chat(messages: Message[]): Promise<Message> {
|
||||
const body = {
|
||||
model: model,
|
||||
messages: messages
|
||||
}
|
||||
|
||||
const response = await fetch("http://localhost:11434/api/chat", {
|
||||
method: "POST",
|
||||
body: JSON.stringify(body)
|
||||
})
|
||||
|
||||
const reader = response.body?.getReader()
|
||||
if (!reader) {
|
||||
throw new Error("Failed to read response body")
|
||||
}
|
||||
const content: string[] = []
|
||||
while (true) {
|
||||
const { done, value } = await reader.read()
|
||||
if (done) {
|
||||
break;
|
||||
}
|
||||
const rawjson = new TextDecoder().decode(value);
|
||||
const json = JSON.parse(rawjson)
|
||||
|
||||
if (json.done === false) {
|
||||
process.stdout.write(json.message.content);
|
||||
content.push(json.message.content)
|
||||
// messages.push({role: "system", content: text})
|
||||
}
|
||||
|
||||
}
|
||||
return { role: "assistant", content: content.join("") };
|
||||
}
|
||||
|
||||
async function askQuestion(): Promise<void> {
|
||||
return new Promise<void>((resolve) => {
|
||||
rl.question("\n\nAsk a question: (press enter alone to quit)\n\n", async (user_input) => {
|
||||
if (user_input.trim() === "") {
|
||||
rl.close();
|
||||
console.log("Thankyou. Goodbye.\n")
|
||||
console.log("=======\nHere is the message history that was used in this conversation.\n=======\n")
|
||||
messages.forEach(message => {
|
||||
console.log(message)
|
||||
})
|
||||
resolve();
|
||||
} else {
|
||||
console.log();
|
||||
messages.push({ role: "user", content: user_input });
|
||||
messages.push(await chat(messages));
|
||||
await askQuestion(); // Ask the next question
|
||||
}
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
async function main() {
|
||||
await askQuestion();
|
||||
|
||||
}
|
||||
|
||||
main();
|
1
examples/typescript-simplechat/package.json
Normal file
1
examples/typescript-simplechat/package.json
Normal file
|
@ -0,0 +1 @@
|
|||
{ "dependencies": { "@types/node": "^20.10.4", "prompt-sync": "^4.2.0", "readline": "^1.3.0" } }
|
31
examples/typescript-simplechat/readme.md
Normal file
31
examples/typescript-simplechat/readme.md
Normal file
|
@ -0,0 +1,31 @@
|
|||
# Simple Chat Example
|
||||
|
||||
The **chat** endpoint is one of two ways to generate text from an LLM with Ollama. At a high level you provide the endpoint an array of objects with a role and content specified. Then with each output and prompt, you add more of those role/content objects, which builds up the history.
|
||||
|
||||
## Review the Code
|
||||
|
||||
You can see in the **chat** function that actually calling the endpoint is done simply with:
|
||||
|
||||
```typescript
|
||||
const body = {
|
||||
model: model,
|
||||
messages: messages
|
||||
}
|
||||
|
||||
const response = await fetch("http://localhost:11434/api/chat", {
|
||||
method: "POST",
|
||||
body: JSON.stringify(body)
|
||||
})
|
||||
```
|
||||
|
||||
With the **generate** endpoint, you need to provide a `prompt`. But with **chat**, you provide `messages`. And the resulting stream of responses includes a `message` object with a `content` field.
|
||||
|
||||
The final JSON object doesn't provide the full content, so you will need to build the content yourself. In this example, **chat** takes the full array of messages and outputs the resulting message from this call of the chat endpoint.
|
||||
|
||||
In the **askQuestion** function, we collect `user_input` and add it as a message to our messages and that is passed to the chat function. When the LLM is done responding the output is added as another message to the messages array.
|
||||
|
||||
At the end, you will see a printout of all the messages.
|
||||
|
||||
## Next Steps
|
||||
|
||||
In this example, all generations are kept. You might want to experiment with summarizing everything older than 10 conversations to enable longer history with less context being used.
|
Loading…
Reference in a new issue