Simple chat example for typescript

Signed-off-by: Matt Williams <m@technovangelist.com>
This commit is contained in:
Matt Williams 2023-12-07 11:48:25 -08:00
parent a2405ec831
commit 1ade380bd7
3 changed files with 110 additions and 0 deletions

View file

@ -0,0 +1,78 @@
import * as readline from "readline";
const model = "llama2";
type Message = {
role: "assistant" | "user" | "system";
content: string;
}
const messages: Message[] = [{
role: "system",
content: "You are a helpful AI agent."
}]
const rl = readline.createInterface({
input: process.stdin,
output: process.stdout
})
async function chat(messages: Message[]): Promise<Message> {
const body = {
model: model,
messages: messages
}
const response = await fetch("http://localhost:11434/api/chat", {
method: "POST",
body: JSON.stringify(body)
})
const reader = response.body?.getReader()
if (!reader) {
throw new Error("Failed to read response body")
}
const content: string[] = []
while (true) {
const { done, value } = await reader.read()
if (done) {
break;
}
const rawjson = new TextDecoder().decode(value);
const json = JSON.parse(rawjson)
if (json.done === false) {
process.stdout.write(json.message.content);
content.push(json.message.content)
// messages.push({role: "system", content: text})
}
}
return { role: "assistant", content: content.join("") };
}
async function askQuestion(): Promise<void> {
return new Promise<void>((resolve) => {
rl.question("\n\nAsk a question: (press enter alone to quit)\n\n", async (user_input) => {
if (user_input.trim() === "") {
rl.close();
console.log("Thankyou. Goodbye.\n")
console.log("=======\nHere is the message history that was used in this conversation.\n=======\n")
messages.forEach(message => {
console.log(message)
})
resolve();
} else {
console.log();
messages.push({ role: "user", content: user_input });
messages.push(await chat(messages));
await askQuestion(); // Ask the next question
}
});
});
}
async function main() {
await askQuestion();
}
main();

View file

@ -0,0 +1 @@
{ "dependencies": { "@types/node": "^20.10.4", "prompt-sync": "^4.2.0", "readline": "^1.3.0" } }

View file

@ -0,0 +1,31 @@
# Simple Chat Example
The **chat** endpoint is one of two ways to generate text from an LLM with Ollama. At a high level you provide the endpoint an array of objects with a role and content specified. Then with each output and prompt, you add more of those role/content objects, which builds up the history.
## Review the Code
You can see in the **chat** function that actually calling the endpoint is done simply with:
```typescript
const body = {
model: model,
messages: messages
}
const response = await fetch("http://localhost:11434/api/chat", {
method: "POST",
body: JSON.stringify(body)
})
```
With the **generate** endpoint, you need to provide a `prompt`. But with **chat**, you provide `messages`. And the resulting stream of responses includes a `message` object with a `content` field.
The final JSON object doesn't provide the full content, so you will need to build the content yourself. In this example, **chat** takes the full array of messages and outputs the resulting message from this call of the chat endpoint.
In the **askQuestion** function, we collect `user_input` and add it as a message to our messages and that is passed to the chat function. When the LLM is done responding the output is added as another message to the messages array.
At the end, you will see a printout of all the messages.
## Next Steps
In this example, all generations are kept. You might want to experiment with summarizing everything older than 10 conversations to enable longer history with less context being used.