update llama.cpp
This commit is contained in:
parent
688661ab9b
commit
18ffeeec45
16 changed files with 2607 additions and 1567 deletions
|
@ -1,5 +1,5 @@
|
||||||
/**
|
/**
|
||||||
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
|
* llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
|
||||||
*
|
*
|
||||||
* MIT License
|
* MIT License
|
||||||
*
|
*
|
||||||
|
@ -246,7 +246,7 @@ typedef struct {
|
||||||
static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding");
|
static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding");
|
||||||
|
|
||||||
#define WARP_SIZE 32
|
#define WARP_SIZE 32
|
||||||
#define MATRIX_ROW_PADDING 256 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
|
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
|
||||||
|
|
||||||
#define CUDA_ADD_BLOCK_SIZE 256
|
#define CUDA_ADD_BLOCK_SIZE 256
|
||||||
#define CUDA_MUL_BLOCK_SIZE 256
|
#define CUDA_MUL_BLOCK_SIZE 256
|
||||||
|
@ -358,12 +358,10 @@ static __global__ void norm_f32(const float * x, float * dst, const int ncols) {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols) {
|
static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
|
||||||
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||||
const int tid = threadIdx.x;
|
const int tid = threadIdx.x;
|
||||||
|
|
||||||
const float eps = 1e-6f;
|
|
||||||
|
|
||||||
float tmp = 0.0f; // partial sum for thread in warp
|
float tmp = 0.0f; // partial sum for thread in warp
|
||||||
|
|
||||||
for (int col = tid; col < ncols; col += WARP_SIZE) {
|
for (int col = tid; col < ncols; col += WARP_SIZE) {
|
||||||
|
@ -961,12 +959,18 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx,
|
||||||
uint16_t aux[4];
|
uint16_t aux[4];
|
||||||
const uint8_t * sc = (const uint8_t *)aux;
|
const uint8_t * sc = (const uint8_t *)aux;
|
||||||
|
|
||||||
|
#if K_QUANTS_PER_ITERATION == 2
|
||||||
|
uint32_t q32[4];
|
||||||
|
const uint8_t * q4 = (const uint8_t *)q32;
|
||||||
|
#else
|
||||||
|
uint16_t q16[4];
|
||||||
|
const uint8_t * q4 = (const uint8_t *)q16;
|
||||||
|
#endif
|
||||||
|
|
||||||
float tmp = 0; // partial sum for thread in warp
|
float tmp = 0; // partial sum for thread in warp
|
||||||
|
|
||||||
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
||||||
|
|
||||||
const uint8_t * q1 = x[i].qs + q_offset;
|
|
||||||
const uint8_t * q2 = q1 + 64;
|
|
||||||
const float * y1 = yy + i*QK_K + y_offset;
|
const float * y1 = yy + i*QK_K + y_offset;
|
||||||
const float * y2 = y1 + 128;
|
const float * y2 = y1 + 128;
|
||||||
|
|
||||||
|
@ -979,14 +983,41 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx,
|
||||||
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
||||||
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
||||||
|
|
||||||
|
#if K_QUANTS_PER_ITERATION == 2
|
||||||
|
const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
|
||||||
|
const uint32_t * q2 = q1 + 16;
|
||||||
|
|
||||||
|
q32[0] = q1[0] & 0x0f0f0f0f;
|
||||||
|
q32[1] = q1[0] & 0xf0f0f0f0;
|
||||||
|
q32[2] = q2[0] & 0x0f0f0f0f;
|
||||||
|
q32[3] = q2[0] & 0xf0f0f0f0;
|
||||||
|
|
||||||
float4 s = {0.f, 0.f, 0.f, 0.f};
|
float4 s = {0.f, 0.f, 0.f, 0.f};
|
||||||
float smin = 0;
|
float smin = 0;
|
||||||
for (int l = 0; l < n; ++l) {
|
for (int l = 0; l < 4; ++l) {
|
||||||
s.x += y1[l] * (q1[l] & 0xF); s.y += y1[l+32] * (q1[l] >> 4);
|
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
|
||||||
s.z += y2[l] * (q2[l] & 0xF); s.w += y2[l+32] * (q2[l] >> 4);
|
s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
|
||||||
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
|
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
|
||||||
}
|
}
|
||||||
tmp += dall * (s.x * sc[0] + s.y * sc[1] + s.z * sc[4] + s.w * sc[5]) - dmin * smin;
|
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
|
||||||
|
#else
|
||||||
|
const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
|
||||||
|
const uint16_t * q2 = q1 + 32;
|
||||||
|
|
||||||
|
q16[0] = q1[0] & 0x0f0f;
|
||||||
|
q16[1] = q1[0] & 0xf0f0;
|
||||||
|
q16[2] = q2[0] & 0x0f0f;
|
||||||
|
q16[3] = q2[0] & 0xf0f0;
|
||||||
|
|
||||||
|
float4 s = {0.f, 0.f, 0.f, 0.f};
|
||||||
|
float smin = 0;
|
||||||
|
for (int l = 0; l < 2; ++l) {
|
||||||
|
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
|
||||||
|
s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
|
||||||
|
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
|
||||||
|
}
|
||||||
|
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
|
||||||
|
#endif
|
||||||
|
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
|
@ -1066,10 +1097,12 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx,
|
||||||
uint16_t aux[4];
|
uint16_t aux[4];
|
||||||
const uint8_t * sc = (const uint8_t *)aux;
|
const uint8_t * sc = (const uint8_t *)aux;
|
||||||
|
|
||||||
|
uint16_t q16[8];
|
||||||
|
const uint8_t * q4 = (const uint8_t *)q16;
|
||||||
|
|
||||||
for (int i = ix; i < num_blocks_per_row; i += 2) {
|
for (int i = ix; i < num_blocks_per_row; i += 2) {
|
||||||
|
|
||||||
const uint8_t * ql1 = x[i].qs + q_offset;
|
const uint8_t * ql1 = x[i].qs + q_offset;
|
||||||
const uint8_t * ql2 = ql1 + 64;
|
|
||||||
const uint8_t * qh = x[i].qh + l0;
|
const uint8_t * qh = x[i].qh + l0;
|
||||||
const float * y1 = yy + i*QK_K + y_offset;
|
const float * y1 = yy + i*QK_K + y_offset;
|
||||||
const float * y2 = y1 + 128;
|
const float * y2 = y1 + 128;
|
||||||
|
@ -1085,15 +1118,25 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx,
|
||||||
|
|
||||||
float4 sum = {0.f, 0.f, 0.f, 0.f};
|
float4 sum = {0.f, 0.f, 0.f, 0.f};
|
||||||
float smin = 0;
|
float smin = 0;
|
||||||
|
const uint16_t * q1 = (const uint16_t *)ql1;
|
||||||
|
const uint16_t * q2 = q1 + 32;
|
||||||
|
q16[0] = q1[0] & 0x0f0f;
|
||||||
|
q16[1] = q1[8] & 0x0f0f;
|
||||||
|
q16[2] = (q1[0] >> 4) & 0x0f0f;
|
||||||
|
q16[3] = (q1[8] >> 4) & 0x0f0f;
|
||||||
|
q16[4] = q2[0] & 0x0f0f;
|
||||||
|
q16[5] = q2[8] & 0x0f0f;
|
||||||
|
q16[6] = (q2[0] >> 4) & 0x0f0f;
|
||||||
|
q16[7] = (q2[8] >> 4) & 0x0f0f;
|
||||||
for (int l = 0; l < n; ++l) {
|
for (int l = 0; l < n; ++l) {
|
||||||
sum.x += y1[l+ 0] * ((ql1[l+ 0] & 0xF) + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
|
sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
|
||||||
+ y1[l+16] * ((ql1[l+16] & 0xF) + (qh[l+16] & (hm1 << 0) ? 16 : 0));
|
+ y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
|
||||||
sum.y += y1[l+32] * ((ql1[l+ 0] >> 4) + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
|
sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
|
||||||
+ y1[l+48] * ((ql1[l+16] >> 4) + (qh[l+16] & (hm1 << 1) ? 16 : 0));
|
+ y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
|
||||||
sum.z += y2[l+ 0] * ((ql2[l+ 0] & 0xF) + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
|
sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
|
||||||
+ y2[l+16] * ((ql2[l+16] & 0xF) + (qh[l+16] & (hm2 << 0) ? 16 : 0));
|
+ y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
|
||||||
sum.w += y2[l+32] * ((ql2[l+ 0] >> 4) + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
|
sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
|
||||||
+ y2[l+48] * ((ql2[l+16] >> 4) + (qh[l+16] & (hm2 << 1) ? 16 : 0));
|
+ y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
|
||||||
smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
|
smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
|
||||||
+ (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
|
+ (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
|
||||||
}
|
}
|
||||||
|
@ -1547,33 +1590,95 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
|
||||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||||
const block_q4_K * bq4_K = (const block_q4_K *) vbq;
|
const block_q4_K * bq4_K = (const block_q4_K *) vbq;
|
||||||
|
|
||||||
const int bq8_offset = QR4_K * (iqs / QI8_1);
|
|
||||||
|
|
||||||
float sumf_d = 0.0f;
|
float sumf_d = 0.0f;
|
||||||
float sumf_m = 0.0f;
|
float sumf_m = 0.0f;
|
||||||
|
|
||||||
|
#ifndef GGML_QKK_64
|
||||||
|
|
||||||
|
// iqs is in 0...15. bq8_offset = 2 * (iqs/4) -> bq8_offset = 0, 2, 4, 6
|
||||||
|
const int bq8_offset = QR4_K * (iqs / (QI8_1/2));
|
||||||
|
|
||||||
const float d = bq4_K->d;
|
const float d = bq4_K->d;
|
||||||
const float dmin = bq4_K->dmin;
|
const float dmin = bq4_K->dmin;
|
||||||
|
|
||||||
const int v = *((int *) &bq4_K->qs[sizeof(int) * iqs]);
|
// iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
|
||||||
|
// iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
|
||||||
|
// iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
|
||||||
|
// iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
|
||||||
|
|
||||||
|
const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * (iqs%4));
|
||||||
|
const int v1 = q4[0];
|
||||||
|
const int v2 = q4[4];
|
||||||
|
|
||||||
|
const uint16_t * scales = (const uint16_t *)bq4_K->scales;
|
||||||
|
uint16_t aux[2];
|
||||||
|
const int j = bq8_offset/2;
|
||||||
|
if (j < 2) {
|
||||||
|
aux[0] = scales[j+0] & 0x3f3f;
|
||||||
|
aux[1] = scales[j+2] & 0x3f3f;
|
||||||
|
} else {
|
||||||
|
aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
|
||||||
|
aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
|
||||||
|
}
|
||||||
|
const uint8_t * sc = (const uint8_t *)aux;
|
||||||
|
const uint8_t * m = sc + 2;
|
||||||
|
|
||||||
for (int i = 0; i < QR4_K; ++i) {
|
for (int i = 0; i < QR4_K; ++i) {
|
||||||
const int isc = bq8_offset + i;
|
|
||||||
|
|
||||||
uint8_t sc, m;
|
|
||||||
get_scale_min_k4(isc, bq4_K->scales, sc, m);
|
|
||||||
|
|
||||||
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
|
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
|
||||||
const int ui = *((int*) &bq8i->qs[sizeof(int) * (iqs % QI8_1)]);
|
|
||||||
const float d8i = bq8i->d;
|
const float d8i = bq8i->d;
|
||||||
|
const int * q8 = (const int *)bq8i->qs + (iqs%4);
|
||||||
|
const int ui1 = q8[0];
|
||||||
|
const int ui2 = q8[4];
|
||||||
|
|
||||||
const int vi = (v >> (4*i)) & 0x0F0F0F0F;
|
const int vi1 = (v1 >> (4*i)) & 0x0F0F0F0F;
|
||||||
|
const int vi2 = (v2 >> (4*i)) & 0x0F0F0F0F;
|
||||||
|
|
||||||
sumf_d += d8i * (__dp4a(vi, ui, 0) * sc); // SIMD dot product
|
const int dot1 = __dp4a(vi2, ui2, __dp4a(vi1, ui1, 0)); // SIMD dot product
|
||||||
sumf_m += d8i * (__dp4a(0x01010101, ui, 0) * m); // multiply constant part of q4_K with sum of q8_1 values
|
const int dot2 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
|
||||||
|
|
||||||
|
sumf_d += d8i * (dot1 * sc[i]);
|
||||||
|
sumf_m += d8i * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values
|
||||||
}
|
}
|
||||||
|
|
||||||
return d*sumf_d - dmin*sumf_m;
|
return d*sumf_d - dmin*sumf_m;
|
||||||
|
|
||||||
|
#else
|
||||||
|
|
||||||
|
uint16_t aux16[2];
|
||||||
|
const uint8_t * s = (const uint8_t *)aux16;
|
||||||
|
|
||||||
|
const uint16_t * a = (const uint16_t *)bq4_K->scales;
|
||||||
|
aux16[0] = a[0] & 0x0f0f;
|
||||||
|
aux16[1] = (a[0] >> 4) & 0x0f0f;
|
||||||
|
|
||||||
|
const float dall = bq4_K->d[0];
|
||||||
|
const float dmin = bq4_K->d[1];
|
||||||
|
|
||||||
|
const float d8_1 = bq8_1[0].d;
|
||||||
|
const float d8_2 = bq8_1[1].d;
|
||||||
|
|
||||||
|
const int ui1 = *((const int *)bq8_1[0].qs + iqs);
|
||||||
|
const int ui2 = *((const int *)bq8_1[0].qs + iqs + 4);
|
||||||
|
const int ui3 = *((const int *)bq8_1[1].qs + iqs);
|
||||||
|
const int ui4 = *((const int *)bq8_1[1].qs + iqs + 4);
|
||||||
|
|
||||||
|
const int * q4 = (const int *)bq4_K->qs + iqs;
|
||||||
|
const int v1 = q4[0];
|
||||||
|
const int v2 = q4[4];
|
||||||
|
|
||||||
|
const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
|
||||||
|
const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
|
||||||
|
const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
|
||||||
|
const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
|
||||||
|
|
||||||
|
sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
|
||||||
|
sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
|
||||||
|
|
||||||
|
return dall * sumf_d - dmin * sumf_m;
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
#else
|
#else
|
||||||
return 0.0f; // only to satisfy the compiler
|
return 0.0f; // only to satisfy the compiler
|
||||||
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||||||
|
@ -1585,7 +1690,11 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
|
||||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||||
const block_q5_K * bq5_K = (const block_q5_K *) vbq;
|
const block_q5_K * bq5_K = (const block_q5_K *) vbq;
|
||||||
|
|
||||||
const int bq8_offset = QR5_K * (iqs / QI8_1);
|
#ifndef GGML_QKK_64
|
||||||
|
|
||||||
|
const int bq8_offset = QR5_K * (iqs / (QI8_1/2));
|
||||||
|
const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * (iqs%4));
|
||||||
|
const int * qh = (const int *)(bq5_K->qh + 4 * (iqs%4));
|
||||||
|
|
||||||
float sumf_d = 0.0f;
|
float sumf_d = 0.0f;
|
||||||
float sumf_m = 0.0f;
|
float sumf_m = 0.0f;
|
||||||
|
@ -1593,31 +1702,87 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
|
||||||
const float d = bq5_K->d;
|
const float d = bq5_K->d;
|
||||||
const float dmin = bq5_K->dmin;
|
const float dmin = bq5_K->dmin;
|
||||||
|
|
||||||
const int vl = *((int *) &bq5_K->qs[sizeof(int) * iqs]);
|
const int vl1 = ql[0];
|
||||||
|
const int vl2 = ql[4];
|
||||||
|
|
||||||
const int vh = (*((int *) &bq5_K->qh[sizeof(int) * (iqs % (QI5_K/4))])) >> bq8_offset;
|
const int vh1 = qh[0] >> bq8_offset;
|
||||||
|
const int vh2 = qh[4] >> bq8_offset;
|
||||||
|
|
||||||
|
const uint16_t * scales = (const uint16_t *)bq5_K->scales;
|
||||||
|
uint16_t aux[2];
|
||||||
|
const int j = bq8_offset/2;
|
||||||
|
if (j < 2) {
|
||||||
|
aux[0] = scales[j+0] & 0x3f3f;
|
||||||
|
aux[1] = scales[j+2] & 0x3f3f;
|
||||||
|
} else {
|
||||||
|
aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
|
||||||
|
aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
|
||||||
|
}
|
||||||
|
const uint8_t * sc = (const uint8_t *)aux;
|
||||||
|
const uint8_t * m = sc + 2;
|
||||||
|
|
||||||
for (int i = 0; i < QR5_K; ++i) {
|
for (int i = 0; i < QR5_K; ++i) {
|
||||||
const int isc = bq8_offset + i;
|
|
||||||
|
|
||||||
uint8_t sc, m;
|
|
||||||
get_scale_min_k4(isc, bq5_K->scales, sc, m);
|
|
||||||
|
|
||||||
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
|
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
|
||||||
const int ui = *((int*) &bq8i->qs[sizeof(int) * (iqs % QI8_1)]);
|
|
||||||
const float d8i = bq8i->d;
|
const float d8i = bq8i->d;
|
||||||
|
const int * q8 = (const int *)bq8i->qs + (iqs%4);
|
||||||
|
const int ui1 = q8[0];
|
||||||
|
const int ui2 = q8[4];
|
||||||
|
|
||||||
const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
|
const int vil1 = (vl1 >> (4*i)) & 0x0F0F0F0F;
|
||||||
|
const int vil2 = (vl2 >> (4*i)) & 0x0F0F0F0F;
|
||||||
|
|
||||||
const int vih = ((vh >> i) << 4) & 0x10101010;
|
const int vih1 = ((vh1 >> i) << 4) & 0x10101010;
|
||||||
|
const int vih2 = ((vh2 >> i) << 4) & 0x10101010;
|
||||||
|
|
||||||
const int vi = vil | vih;
|
const int vi1 = vil1 | vih1;
|
||||||
|
const int vi2 = vil2 | vih2;
|
||||||
|
|
||||||
|
const int dot1 = __dp4a(vi2, ui2, __dp4a(vi1, ui1, 0)); // SIMD dot product
|
||||||
|
const int dot2 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
|
||||||
|
|
||||||
|
sumf_d += d8i * (dot1 * sc[i]);
|
||||||
|
sumf_m += d8i * (dot2 * m[i]);
|
||||||
|
|
||||||
sumf_d += d8i * (__dp4a(vi, ui, 0) * sc); // SIMD dot product
|
|
||||||
sumf_m += d8i * (__dp4a(0x01010101, ui, 0) * m); // multiply constant part of q5_K with sum of q8_1 values
|
|
||||||
}
|
}
|
||||||
|
|
||||||
return d*sumf_d - dmin*sumf_m;
|
return d*sumf_d - dmin*sumf_m;
|
||||||
|
|
||||||
|
#else
|
||||||
|
|
||||||
|
const int8_t * s = bq5_K->scales;
|
||||||
|
|
||||||
|
const float d = bq5_K->d;
|
||||||
|
|
||||||
|
const float d8_1 = bq8_1[0].d;
|
||||||
|
const float d8_2 = bq8_1[1].d;
|
||||||
|
|
||||||
|
const int ui1 = *((const int *)bq8_1[0].qs + iqs);
|
||||||
|
const int ui2 = *((const int *)bq8_1[0].qs + iqs + 4);
|
||||||
|
const int ui3 = *((const int *)bq8_1[1].qs + iqs);
|
||||||
|
const int ui4 = *((const int *)bq8_1[1].qs + iqs + 4);
|
||||||
|
|
||||||
|
const int * ql = (const int *)bq5_K->qs + iqs;
|
||||||
|
const int vl1 = ql[0];
|
||||||
|
const int vl2 = ql[4];
|
||||||
|
|
||||||
|
const int step = 4 * iqs; // 0, 4, 8, 12
|
||||||
|
const int im = step/8; // = 0 for iqs = 0, 1, = 1 for iqs = 2, 3
|
||||||
|
const int in = step%8; // 0, 4, 0, 4
|
||||||
|
const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
|
||||||
|
|
||||||
|
const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
|
||||||
|
const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
|
||||||
|
const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
|
||||||
|
const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
|
||||||
|
|
||||||
|
const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
|
||||||
|
+ d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
|
||||||
|
|
||||||
|
return d * sumf_d;
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
#else
|
#else
|
||||||
return 0.0f; // only to satisfy the compiler
|
return 0.0f; // only to satisfy the compiler
|
||||||
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||||||
|
@ -1771,11 +1936,15 @@ static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, cons
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static __global__ void mul_mat_p021_f16_f32(const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int nchannels_x) {
|
static __global__ void mul_mat_p021_f16_f32(
|
||||||
|
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
|
||||||
|
const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
|
||||||
|
|
||||||
const half * x = (const half *) vx;
|
const half * x = (const half *) vx;
|
||||||
|
|
||||||
const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
|
const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
|
||||||
const int channel = blockDim.z*blockIdx.z + threadIdx.z;
|
const int channel = blockDim.z*blockIdx.z + threadIdx.z;
|
||||||
|
const int channel_x = channel / (nchannels_y / nchannels_x);
|
||||||
|
|
||||||
const int nrows_y = ncols_x;
|
const int nrows_y = ncols_x;
|
||||||
const int nrows_dst = nrows_x;
|
const int nrows_dst = nrows_x;
|
||||||
|
@ -1791,7 +1960,7 @@ static __global__ void mul_mat_p021_f16_f32(const void * __restrict__ vx, const
|
||||||
}
|
}
|
||||||
|
|
||||||
// x is transposed and permuted
|
// x is transposed and permuted
|
||||||
const int ix = row_x*nchannels_x*ncols_x + channel*ncols_x + col_x;
|
const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
|
||||||
const float xi = __half2float(x[ix]);
|
const float xi = __half2float(x[ix]);
|
||||||
|
|
||||||
const int row_y = col_x;
|
const int row_y = col_x;
|
||||||
|
@ -1819,12 +1988,13 @@ static __global__ void mul_mat_p021_f16_f32(const void * __restrict__ vx, const
|
||||||
|
|
||||||
static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
|
static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
|
||||||
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
|
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
|
||||||
const int row_stride_x, const int channel_stride_x) {
|
const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
|
||||||
|
|
||||||
const half * x = (const half *) vx;
|
const half * x = (const half *) vx;
|
||||||
|
|
||||||
const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
|
const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
|
||||||
const int channel = blockDim.z*blockIdx.z + threadIdx.z;
|
const int channel = blockDim.z*blockIdx.z + threadIdx.z;
|
||||||
|
const int channel_x = channel / channel_x_divisor;
|
||||||
|
|
||||||
const int nrows_y = ncols_x;
|
const int nrows_y = ncols_x;
|
||||||
const int nrows_dst = nrows_x;
|
const int nrows_dst = nrows_x;
|
||||||
|
@ -1841,7 +2011,7 @@ static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
const int ix = channel*channel_stride_x + row_x*row_stride_x + col_x;
|
const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
|
||||||
const float xi = __half2float(x[ix]);
|
const float xi = __half2float(x[ix]);
|
||||||
|
|
||||||
const int row_y = col_x;
|
const int row_y = col_x;
|
||||||
|
@ -2053,10 +2223,10 @@ static void norm_f32_cuda(const float * x, float * dst, const int ncols, const i
|
||||||
norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
|
norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
|
||||||
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
||||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||||
rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
|
rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void quantize_row_q8_1_cuda(const float * x, void * vy, const int ndata, const int k, cudaStream_t stream) {
|
static void quantize_row_q8_1_cuda(const float * x, void * vy, const int ndata, const int k, cudaStream_t stream) {
|
||||||
|
@ -2285,7 +2455,10 @@ static void mul_mat_vec_q4_K_q8_1_cuda(const void * vx, const void * vy, float *
|
||||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||||
const dim3 block_nums(1, block_num_y, 1);
|
const dim3 block_nums(1, block_num_y, 1);
|
||||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||||
mul_mat_vec_q<QK_K, QI4_K, block_q4_K, vec_dot_q4_K_q8_1>
|
// Note: we use QI4_K/2 instead of QI4_K to make the dot product template require 4 groups of quants to be processed per
|
||||||
|
// kernel call instead of 2. This results in a better perfmance because the cost of computing the k-quant scales
|
||||||
|
// is better amortized.
|
||||||
|
mul_mat_vec_q<QK_K, QI4_K/2, block_q4_K, vec_dot_q4_K_q8_1>
|
||||||
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -2294,7 +2467,10 @@ static void mul_mat_vec_q5_K_q8_1_cuda(const void * vx, const void * vy, float *
|
||||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||||
const dim3 block_nums(1, block_num_y, 1);
|
const dim3 block_nums(1, block_num_y, 1);
|
||||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||||
mul_mat_vec_q<QK_K, QI5_K, block_q5_K, vec_dot_q5_K_q8_1>
|
// Note: we use QI5_K/2 instead of QI5_K to make the dot product template require 4 groups of quants to be processed per
|
||||||
|
// kernel call instead of 2. This results in a better perfmance because the cost of computing the k-quant scales
|
||||||
|
// is better amortized.
|
||||||
|
mul_mat_vec_q<QK_K, QI5_K/2, block_q5_K, vec_dot_q5_K_q8_1>
|
||||||
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -2350,20 +2526,23 @@ static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_mul_mat_p021_f16_f32_cuda(const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nchannels_x, cudaStream_t stream) {
|
static void ggml_mul_mat_p021_f16_f32_cuda(
|
||||||
const dim3 block_nums(1, nrows_x, nchannels_x);
|
const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
|
||||||
|
const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
|
||||||
|
|
||||||
|
const dim3 block_nums(1, nrows_x, nchannels_y);
|
||||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||||
mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x);
|
mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_mul_mat_vec_nc_f16_f32_cuda(
|
static void ggml_mul_mat_vec_nc_f16_f32_cuda(
|
||||||
const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
|
const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
|
||||||
const int nchannels_x, const int channel_stride_x, cudaStream_t stream) {
|
const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
|
||||||
|
|
||||||
const dim3 block_nums(1, nrows_x, nchannels_x);
|
const dim3 block_nums(1, nrows_x, nchannels_y);
|
||||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||||
mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
|
mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
|
||||||
(vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x);
|
(vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_cpy_f32_f32_cuda(
|
static void ggml_cpy_f32_f32_cuda(
|
||||||
|
@ -2449,10 +2628,26 @@ static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
|
||||||
scoped_spin_lock lock(g_cuda_pool_lock);
|
scoped_spin_lock lock(g_cuda_pool_lock);
|
||||||
int id;
|
int id;
|
||||||
CUDA_CHECK(cudaGetDevice(&id));
|
CUDA_CHECK(cudaGetDevice(&id));
|
||||||
|
#ifdef DEBUG_CUDA_MALLOC
|
||||||
|
int nnz = 0;
|
||||||
|
size_t max_size = 0, tot_size = 0;
|
||||||
|
#endif
|
||||||
|
size_t best_diff = 1ull << 36;
|
||||||
|
int ibest = -1;
|
||||||
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
|
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
|
||||||
cuda_buffer& b = g_cuda_buffer_pool[id][i];
|
cuda_buffer& b = g_cuda_buffer_pool[id][i];
|
||||||
if (b.size >= size && b.ptr != nullptr) {
|
if (b.ptr != nullptr) {
|
||||||
|
#ifdef DEBUG_CUDA_MALLOC
|
||||||
|
++nnz;
|
||||||
|
tot_size += b.size;
|
||||||
|
if (b.size > max_size) max_size = b.size;
|
||||||
|
#endif
|
||||||
|
if (b.size >= size) {
|
||||||
|
size_t diff = b.size - size;
|
||||||
|
if (diff < best_diff) {
|
||||||
|
best_diff = diff;
|
||||||
|
ibest = i;
|
||||||
|
if (!best_diff) {
|
||||||
void * ptr = b.ptr;
|
void * ptr = b.ptr;
|
||||||
*actual_size = b.size;
|
*actual_size = b.size;
|
||||||
b.ptr = nullptr;
|
b.ptr = nullptr;
|
||||||
|
@ -2460,9 +2655,26 @@ static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
|
||||||
return ptr;
|
return ptr;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ibest >= 0) {
|
||||||
|
cuda_buffer& b = g_cuda_buffer_pool[id][ibest];
|
||||||
|
void * ptr = b.ptr;
|
||||||
|
*actual_size = b.size;
|
||||||
|
b.ptr = nullptr;
|
||||||
|
b.size = 0;
|
||||||
|
return ptr;
|
||||||
|
}
|
||||||
|
#ifdef DEBUG_CUDA_MALLOC
|
||||||
|
fprintf(stderr, "%s: %d buffers, max_size = %u MB, tot_size = %u MB, requested %u MB\n", __func__, nnz,
|
||||||
|
(uint32_t)(max_size/1024/1024), (uint32_t)(tot_size/1024/1024), (uint32_t)(size/1024/1024));
|
||||||
|
#endif
|
||||||
void * ptr;
|
void * ptr;
|
||||||
CUDA_CHECK(cudaMalloc((void **) &ptr, size));
|
size_t look_ahead_size = (size_t) (1.05 * size);
|
||||||
*actual_size = size;
|
look_ahead_size = 256 * ((look_ahead_size + 255)/256);
|
||||||
|
CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size));
|
||||||
|
*actual_size = look_ahead_size;
|
||||||
return ptr;
|
return ptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -2490,7 +2702,9 @@ static size_t g_scratch_offset = 0;
|
||||||
|
|
||||||
static int g_device_count = -1;
|
static int g_device_count = -1;
|
||||||
static int g_main_device = 0;
|
static int g_main_device = 0;
|
||||||
|
#ifndef GGML_CUDA_FORCE_DMMV
|
||||||
static int g_compute_capabilities[GGML_CUDA_MAX_DEVICES];
|
static int g_compute_capabilities[GGML_CUDA_MAX_DEVICES];
|
||||||
|
#endif
|
||||||
static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0};
|
static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0};
|
||||||
|
|
||||||
static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
|
static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
|
||||||
|
@ -2513,7 +2727,9 @@ void ggml_init_cublas() {
|
||||||
g_tensor_split[id] = total_vram;
|
g_tensor_split[id] = total_vram;
|
||||||
total_vram += prop.totalGlobalMem;
|
total_vram += prop.totalGlobalMem;
|
||||||
|
|
||||||
|
#ifndef GGML_CUDA_FORCE_DMMV
|
||||||
g_compute_capabilities[id] = 100*prop.major + 10*prop.minor;
|
g_compute_capabilities[id] = 100*prop.major + 10*prop.minor;
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
for (int id = 0; id < g_device_count; ++id) {
|
for (int id = 0; id < g_device_count; ++id) {
|
||||||
g_tensor_split[id] /= total_vram;
|
g_tensor_split[id] /= total_vram;
|
||||||
|
@ -2538,6 +2754,9 @@ void ggml_init_cublas() {
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_set_tensor_split(const float * tensor_split) {
|
void ggml_cuda_set_tensor_split(const float * tensor_split) {
|
||||||
|
if (tensor_split == nullptr) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
bool all_zero = true;
|
bool all_zero = true;
|
||||||
for (int i = 0; i < g_device_count; ++i) {
|
for (int i = 0; i < g_device_count; ++i) {
|
||||||
if (tensor_split[i] != 0.0f) {
|
if (tensor_split[i] != 0.0f) {
|
||||||
|
@ -2678,6 +2897,7 @@ inline void ggml_cuda_op_mul(
|
||||||
(void) dst;
|
(void) dst;
|
||||||
(void) src0_ddq_i;
|
(void) src0_ddq_i;
|
||||||
(void) i02;
|
(void) i02;
|
||||||
|
(void) i1;
|
||||||
}
|
}
|
||||||
|
|
||||||
inline void ggml_cuda_op_gelu(
|
inline void ggml_cuda_op_gelu(
|
||||||
|
@ -2757,8 +2977,11 @@ inline void ggml_cuda_op_rms_norm(
|
||||||
const int64_t ne00 = src0->ne[0];
|
const int64_t ne00 = src0->ne[0];
|
||||||
const int64_t i01_diff = i01_high - i01_low;
|
const int64_t i01_diff = i01_high - i01_low;
|
||||||
|
|
||||||
|
float eps;
|
||||||
|
memcpy(&eps, dst->op_params, sizeof(float));
|
||||||
|
|
||||||
// compute
|
// compute
|
||||||
rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
|
rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, eps, cudaStream_main);
|
||||||
|
|
||||||
(void) src1;
|
(void) src1;
|
||||||
(void) dst;
|
(void) dst;
|
||||||
|
@ -2805,8 +3028,8 @@ inline void ggml_cuda_op_mul_mat_vec(
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
if (use_mul_mat_vec_q) {
|
if (use_mul_mat_vec_q) {
|
||||||
int64_t padded_row_size = ne00 + MATRIX_ROW_PADDING - 1;
|
const int64_t padded_row_size = ne00 % MATRIX_ROW_PADDING == 0 ?
|
||||||
padded_row_size -= padded_row_size % MATRIX_ROW_PADDING;
|
ne00 : ne00 - ne00 % MATRIX_ROW_PADDING + MATRIX_ROW_PADDING;
|
||||||
size_t as;
|
size_t as;
|
||||||
void * src1_q8_1 = ggml_cuda_pool_malloc(padded_row_size*sizeof(block_q8_1)/QK8_1, &as);
|
void * src1_q8_1 = ggml_cuda_pool_malloc(padded_row_size*sizeof(block_q8_1)/QK8_1, &as);
|
||||||
quantize_row_q8_1_cuda(src1_ddf_i, src1_q8_1, ne00, padded_row_size, cudaStream_main);
|
quantize_row_q8_1_cuda(src1_ddf_i, src1_q8_1, ne00, padded_row_size, cudaStream_main);
|
||||||
|
@ -2973,13 +3196,18 @@ inline void ggml_cuda_op_rope(
|
||||||
const int64_t ne00 = src0->ne[0];
|
const int64_t ne00 = src0->ne[0];
|
||||||
const int64_t i01_diff = i01_high - i01_low;
|
const int64_t i01_diff = i01_high - i01_low;
|
||||||
|
|
||||||
const int n_past = ((int32_t *) src1->data)[0];
|
const int n_past = ((int32_t *) dst->op_params)[0];
|
||||||
const int n_dims = ((int32_t *) src1->data)[1];
|
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||||||
const int mode = ((int32_t *) src1->data)[2];
|
const int mode = ((int32_t *) dst->op_params)[2];
|
||||||
const int n_ctx = ((int32_t *) src1->data)[3];
|
const int n_ctx = ((int32_t *) dst->op_params)[3];
|
||||||
|
// RoPE alteration for extended context
|
||||||
|
|
||||||
const float theta_scale = powf(10000.0, -2.0f/n_dims);
|
float freq_base, freq_scale;
|
||||||
const float p = ((mode & 1) == 0 ? n_past + i02 : i02);
|
memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
|
||||||
|
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
|
||||||
|
|
||||||
|
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||||
|
const float p = (((mode & 1) == 0 ? n_past + i02 : i02)) * freq_scale;
|
||||||
|
|
||||||
bool is_glm = mode & 4;
|
bool is_glm = mode & 4;
|
||||||
|
|
||||||
|
@ -2992,6 +3220,7 @@ inline void ggml_cuda_op_rope(
|
||||||
rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p, theta_scale, cudaStream_main);
|
rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p, theta_scale, cudaStream_main);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
(void) src1;
|
||||||
(void) dst;
|
(void) dst;
|
||||||
(void) src0_ddq_i;
|
(void) src0_ddq_i;
|
||||||
(void) src1_ddf_i;
|
(void) src1_ddf_i;
|
||||||
|
@ -3010,11 +3239,12 @@ inline void ggml_cuda_op_diag_mask_inf(
|
||||||
const int64_t ne01 = src0->ne[1];
|
const int64_t ne01 = src0->ne[1];
|
||||||
const int64_t i01_diff = i01_high - i01_low;
|
const int64_t i01_diff = i01_high - i01_low;
|
||||||
|
|
||||||
const int n_past = ((int32_t *) src1->data)[0];
|
const int n_past = ((int32_t *) dst->op_params)[0];
|
||||||
|
|
||||||
// compute
|
// compute
|
||||||
diag_mask_inf_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, ne01, n_past, cudaStream_main);
|
diag_mask_inf_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, ne01, n_past, cudaStream_main);
|
||||||
|
|
||||||
|
(void) src1;
|
||||||
(void) dst;
|
(void) dst;
|
||||||
(void) src0_ddq_i;
|
(void) src0_ddq_i;
|
||||||
(void) src1_ddf_i;
|
(void) src1_ddf_i;
|
||||||
|
@ -3082,6 +3312,9 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
|
||||||
const int64_t ne11 = use_src1 ? src1->ne[1] : 1;
|
const int64_t ne11 = use_src1 ? src1->ne[1] : 1;
|
||||||
const int64_t ne12 = use_src1 ? src1->ne[2] : 1;
|
const int64_t ne12 = use_src1 ? src1->ne[2] : 1;
|
||||||
const int64_t ne13 = use_src1 ? src1->ne[3] : 1;
|
const int64_t ne13 = use_src1 ? src1->ne[3] : 1;
|
||||||
|
const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
|
||||||
|
|
||||||
|
GGML_ASSERT(ne03 == ne13);
|
||||||
|
|
||||||
const int64_t ne0 = dst->ne[0];
|
const int64_t ne0 = dst->ne[0];
|
||||||
const int64_t ne1 = dst->ne[1];
|
const int64_t ne1 = dst->ne[1];
|
||||||
|
@ -3093,12 +3326,19 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
|
||||||
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
|
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
|
||||||
|
|
||||||
// strides for iteration over dims 3 and 2
|
// strides for iteration over dims 3 and 2
|
||||||
const int64_t num_iters = flatten_rows ? 1 : ne02 * ne03;
|
const int64_t num_iters_0 = ne02 >= ne12 ? ne02*ne03 : ne12*ne13;
|
||||||
const int64_t stride_mod = flatten_rows ? ne02 * ne03 : 1;
|
const int64_t num_iters = flatten_rows ? 1 : num_iters_0;
|
||||||
|
const int64_t stride_mod = flatten_rows ? num_iters_0 : 1;
|
||||||
const int64_t src0_stride = ne00 * ne01 * stride_mod;
|
const int64_t src0_stride = ne00 * ne01 * stride_mod;
|
||||||
const int64_t src1_stride = ne10 * ne11 * stride_mod;
|
const int64_t src1_stride = ne10 * ne11 * stride_mod;
|
||||||
const int64_t dst_stride = ne0 * ne1 * stride_mod;
|
const int64_t dst_stride = ne0 * ne1 * stride_mod;
|
||||||
|
|
||||||
|
const int64_t rows_per_iter = flatten_rows ? nrows0 : ne01;
|
||||||
|
const int64_t i03_max = flatten_rows ? 1 : ne03;
|
||||||
|
const int64_t i02_max = flatten_rows ? 1 : (ne02 >= ne12 ? ne02 : ne12);
|
||||||
|
const int64_t i02_divisor = ne02 >= ne12 ? 1 : ne12 / ne02;
|
||||||
|
GGML_ASSERT(!(flatten_rows && ne02 < ne12));
|
||||||
|
|
||||||
const size_t src0_ts = ggml_type_size(src0->type);
|
const size_t src0_ts = ggml_type_size(src0->type);
|
||||||
const size_t src0_bs = ggml_blck_size(src0->type);
|
const size_t src0_bs = ggml_blck_size(src0->type);
|
||||||
|
|
||||||
|
@ -3115,6 +3355,7 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
|
||||||
dst->op == GGML_OP_SCALE || dst->op == GGML_OP_DIAG_MASK_INF || dst->op == GGML_OP_ROPE);
|
dst->op == GGML_OP_SCALE || dst->op == GGML_OP_DIAG_MASK_INF || dst->op == GGML_OP_ROPE);
|
||||||
|
|
||||||
const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
|
const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
|
||||||
|
GGML_ASSERT(!(split && ne02 < ne12));
|
||||||
|
|
||||||
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
|
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
|
||||||
|
|
||||||
|
@ -3151,7 +3392,7 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
|
||||||
row_high = id == g_device_count - 1 ? nrows0 : nrows0*g_tensor_split[id + 1];
|
row_high = id == g_device_count - 1 ? nrows0 : nrows0*g_tensor_split[id + 1];
|
||||||
} else {
|
} else {
|
||||||
row_low = 0;
|
row_low = 0;
|
||||||
row_high = nrows0;
|
row_high = nrows0*i02_divisor;
|
||||||
}
|
}
|
||||||
if (row_low == row_high) {
|
if (row_low == row_high) {
|
||||||
continue;
|
continue;
|
||||||
|
@ -3199,16 +3440,12 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
|
||||||
dst_ddf[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_asf[id]);
|
dst_ddf[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_asf[id]);
|
||||||
}
|
}
|
||||||
|
|
||||||
const int64_t i03_max = flatten_rows ? 1 : ne03;
|
|
||||||
const int64_t i02_max = flatten_rows ? 1 : ne02;
|
|
||||||
const int64_t rows_per_iter = flatten_rows ? nrows0 : ne01;
|
|
||||||
|
|
||||||
for (int64_t i03 = 0; i03 < i03_max; i03++) {
|
for (int64_t i03 = 0; i03 < i03_max; i03++) {
|
||||||
const int64_t i13 = i03 % ne13;
|
const int64_t i13 = i03 % ne13;
|
||||||
for (int64_t i02 = 0; i02 < i02_max; i02++) {
|
for (int64_t i02 = 0; i02 < i02_max; i02++) {
|
||||||
const int64_t i12 = i02 % ne12;
|
const int64_t i12 = i02 % ne12;
|
||||||
|
|
||||||
const int64_t i0 = i03*ne02 + i02;
|
const int64_t i0 = i03*i02_max + i02;
|
||||||
|
|
||||||
// i0 values that contain the lower/upper rows for a split tensor when using multiple GPUs
|
// i0 values that contain the lower/upper rows for a split tensor when using multiple GPUs
|
||||||
const int64_t i0_offset_low = row_low/rows_per_iter;
|
const int64_t i0_offset_low = row_low/rows_per_iter;
|
||||||
|
@ -3242,8 +3479,8 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
|
||||||
const int64_t i11 = i13*ne12 + i12;
|
const int64_t i11 = i13*ne12 + i12;
|
||||||
|
|
||||||
// for split tensors the data begins at i0 == i0_offset_low
|
// for split tensors the data begins at i0 == i0_offset_low
|
||||||
char * src0_ddq_i = src0_ddq[id] + (i0 - i0_offset_low)*src0_stride*src0_ts/src0_bs;
|
char * src0_ddq_i = src0_ddq[id] + (i0/i02_divisor - i0_offset_low)*src0_stride*src0_ts/src0_bs;
|
||||||
float * src0_ddf_i = src0_ddf[id] + (i0 - i0_offset_low)*src0_stride;
|
float * src0_ddf_i = src0_ddf[id] + (i0/i02_divisor - i0_offset_low)*src0_stride;
|
||||||
float * src1_ddf_i = src1_ddf[id] + i11*src1_stride;
|
float * src1_ddf_i = src1_ddf[id] + i11*src1_stride;
|
||||||
float * dst_ddf_i = dst_ddf[id] + (i0 - i0_offset_low)*dst_stride;
|
float * dst_ddf_i = dst_ddf[id] + (i0 - i0_offset_low)*dst_stride;
|
||||||
|
|
||||||
|
@ -3284,11 +3521,11 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (!src0_on_device || !src0_is_contiguous) {
|
if ((!src0_on_device || !src0_is_contiguous) && i02 % i02_divisor == 0) {
|
||||||
if (src0_is_f32) {
|
if (src0_is_f32) {
|
||||||
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf_i, src0, i03, i02, i01_low, i01_high, cudaStream_main));
|
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf_i, src0, i03, i02/i02_divisor, i01_low, i01_high, cudaStream_main));
|
||||||
} else {
|
} else {
|
||||||
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddq_i, src0, i03, i02, i01_low, i01_high, cudaStream_main));
|
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddq_i, src0, i03, i02/i02_divisor, i01_low, i01_high, cudaStream_main));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -3442,6 +3679,8 @@ void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * sr
|
||||||
const int64_t ne01 = src0->ne[1];
|
const int64_t ne01 = src0->ne[1];
|
||||||
const int64_t ne02 = src0->ne[2];
|
const int64_t ne02 = src0->ne[2];
|
||||||
|
|
||||||
|
const int64_t ne12 = src1->ne[2];
|
||||||
|
|
||||||
CUDA_CHECK(cudaSetDevice(g_main_device));
|
CUDA_CHECK(cudaSetDevice(g_main_device));
|
||||||
cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];
|
cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];
|
||||||
|
|
||||||
|
@ -3454,7 +3693,7 @@ void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * sr
|
||||||
struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||||
float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
|
float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
|
||||||
|
|
||||||
ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, cudaStream_main);
|
ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, cudaStream_main);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
|
void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
|
||||||
|
@ -3468,6 +3707,8 @@ void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1
|
||||||
const int64_t ne01 = src0->ne[1];
|
const int64_t ne01 = src0->ne[1];
|
||||||
const int64_t ne02 = src0->ne[2];
|
const int64_t ne02 = src0->ne[2];
|
||||||
|
|
||||||
|
const int64_t ne12 = src1->ne[2];
|
||||||
|
|
||||||
const int64_t nb01 = src0->nb[1];
|
const int64_t nb01 = src0->nb[1];
|
||||||
const int64_t nb02 = src0->nb[2];
|
const int64_t nb02 = src0->nb[2];
|
||||||
|
|
||||||
|
@ -3486,7 +3727,7 @@ void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1
|
||||||
const int row_stride_x = nb01 / sizeof(half);
|
const int row_stride_x = nb01 / sizeof(half);
|
||||||
const int channel_stride_x = nb02 / sizeof(half);
|
const int channel_stride_x = nb02 / sizeof(half);
|
||||||
|
|
||||||
ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, channel_stride_x, cudaStream_main);
|
ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, cudaStream_main);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
|
@ -3627,7 +3868,7 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
|
||||||
size_t size = ggml_nbytes_split(tensor, nrows_split);
|
size_t size = ggml_nbytes_split(tensor, nrows_split);
|
||||||
const size_t original_size = size;
|
const size_t original_size = size;
|
||||||
|
|
||||||
// pad last row to a multiple of 256 elements to avoid out-of-bounds memory accesses
|
// pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
|
||||||
if (ne0 % MATRIX_ROW_PADDING != 0) {
|
if (ne0 % MATRIX_ROW_PADDING != 0) {
|
||||||
size += (MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING)
|
size += (MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING)
|
||||||
* ggml_type_size(tensor->type)/ggml_blck_size(tensor->type);
|
* ggml_type_size(tensor->type)/ggml_blck_size(tensor->type);
|
||||||
|
@ -3643,7 +3884,7 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
CUDA_CHECK(cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice));
|
CUDA_CHECK(cudaMemcpy(buf, buf_host, original_size, cudaMemcpyHostToDevice));
|
||||||
|
|
||||||
extra->data_device[id] = buf;
|
extra->data_device[id] = buf;
|
||||||
|
|
||||||
|
@ -3723,7 +3964,7 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bo
|
||||||
char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
|
char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
|
||||||
size_t offset = 0;
|
size_t offset = 0;
|
||||||
if (tensor->op == GGML_OP_VIEW) {
|
if (tensor->op == GGML_OP_VIEW) {
|
||||||
memcpy(&offset, tensor->src[2]->data, sizeof(size_t));
|
memcpy(&offset, tensor->op_params, sizeof(size_t));
|
||||||
}
|
}
|
||||||
extra = ggml_cuda_alloc_temp_tensor_extra();
|
extra = ggml_cuda_alloc_temp_tensor_extra();
|
||||||
extra->data_device[g_main_device] = src0_ddc + offset;
|
extra->data_device[g_main_device] = src0_ddc + offset;
|
||||||
|
@ -3825,18 +4066,23 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
|
||||||
}
|
}
|
||||||
func = ggml_cuda_mul;
|
func = ggml_cuda_mul;
|
||||||
break;
|
break;
|
||||||
case GGML_OP_GELU:
|
case GGML_OP_UNARY:
|
||||||
|
switch (ggml_get_unary_op(tensor)) {
|
||||||
|
case GGML_UNARY_OP_GELU:
|
||||||
if (!any_on_device) {
|
if (!any_on_device) {
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
func = ggml_cuda_gelu;
|
func = ggml_cuda_gelu;
|
||||||
break;
|
break;
|
||||||
case GGML_OP_SILU:
|
case GGML_UNARY_OP_SILU:
|
||||||
if (!any_on_device) {
|
if (!any_on_device) {
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
func = ggml_cuda_silu;
|
func = ggml_cuda_silu;
|
||||||
break;
|
break;
|
||||||
|
default:
|
||||||
|
return false;
|
||||||
|
} break;
|
||||||
case GGML_OP_NORM:
|
case GGML_OP_NORM:
|
||||||
if (!any_on_device) {
|
if (!any_on_device) {
|
||||||
return false;
|
return false;
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
/**
|
/**
|
||||||
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
|
* llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
|
||||||
*
|
*
|
||||||
* MIT License
|
* MIT License
|
||||||
*
|
*
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
//go:build darwin
|
//go:build darwin
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
|
* llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
|
||||||
*
|
*
|
||||||
* MIT License
|
* MIT License
|
||||||
*
|
*
|
||||||
|
@ -89,6 +89,13 @@ void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor *
|
||||||
// get data from the device into host memory
|
// get data from the device into host memory
|
||||||
void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
|
void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
|
||||||
|
|
||||||
|
// try to find operations that can be run concurrently in the graph
|
||||||
|
// you should run it again if the topology of your graph changes
|
||||||
|
void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
|
||||||
|
|
||||||
|
// if the graph has been optimized for concurrently dispatch
|
||||||
|
bool ggml_metal_if_optimized(struct ggml_metal_context * ctx);
|
||||||
|
|
||||||
// same as ggml_graph_compute but uses Metal
|
// same as ggml_graph_compute but uses Metal
|
||||||
// creates gf->n_threads command buffers in parallel
|
// creates gf->n_threads command buffers in parallel
|
||||||
void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
|
void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
//go:build darwin
|
//go:build darwin
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
|
* llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
|
||||||
*
|
*
|
||||||
* MIT License
|
* MIT License
|
||||||
*
|
*
|
||||||
|
@ -64,12 +64,16 @@ struct ggml_metal_context {
|
||||||
int n_buffers;
|
int n_buffers;
|
||||||
struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
|
struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
|
||||||
|
|
||||||
|
int concur_list[GGML_MAX_NODES];
|
||||||
|
int concur_list_len;
|
||||||
|
|
||||||
// custom kernels
|
// custom kernels
|
||||||
#define GGML_METAL_DECL_KERNEL(name) \
|
#define GGML_METAL_DECL_KERNEL(name) \
|
||||||
id<MTLFunction> function_##name; \
|
id<MTLFunction> function_##name; \
|
||||||
id<MTLComputePipelineState> pipeline_##name
|
id<MTLComputePipelineState> pipeline_##name
|
||||||
|
|
||||||
GGML_METAL_DECL_KERNEL(add);
|
GGML_METAL_DECL_KERNEL(add);
|
||||||
|
GGML_METAL_DECL_KERNEL(add_row); // TODO: avoid this extra kernel, instead extend the "add" kernel to support broadcast
|
||||||
GGML_METAL_DECL_KERNEL(mul);
|
GGML_METAL_DECL_KERNEL(mul);
|
||||||
GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast
|
GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast
|
||||||
GGML_METAL_DECL_KERNEL(scale);
|
GGML_METAL_DECL_KERNEL(scale);
|
||||||
|
@ -125,6 +129,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||||
ctx->device = MTLCreateSystemDefaultDevice();
|
ctx->device = MTLCreateSystemDefaultDevice();
|
||||||
ctx->queue = [ctx->device newCommandQueue];
|
ctx->queue = [ctx->device newCommandQueue];
|
||||||
ctx->n_buffers = 0;
|
ctx->n_buffers = 0;
|
||||||
|
ctx->concur_list_len = 0;
|
||||||
|
|
||||||
// determine if we can use MPS
|
// determine if we can use MPS
|
||||||
if (MPSSupportsMTLDevice(ctx->device)) {
|
if (MPSSupportsMTLDevice(ctx->device)) {
|
||||||
|
@ -185,6 +190,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||||
fprintf(stderr, "%s: loaded %-32s %16p\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name);
|
fprintf(stderr, "%s: loaded %-32s %16p\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name);
|
||||||
|
|
||||||
GGML_METAL_ADD_KERNEL(add);
|
GGML_METAL_ADD_KERNEL(add);
|
||||||
|
GGML_METAL_ADD_KERNEL(add_row);
|
||||||
GGML_METAL_ADD_KERNEL(mul);
|
GGML_METAL_ADD_KERNEL(mul);
|
||||||
GGML_METAL_ADD_KERNEL(mul_row);
|
GGML_METAL_ADD_KERNEL(mul_row);
|
||||||
GGML_METAL_ADD_KERNEL(scale);
|
GGML_METAL_ADD_KERNEL(scale);
|
||||||
|
@ -243,6 +249,13 @@ void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) {
|
||||||
ctx->n_cb = n_cb;
|
ctx->n_cb = n_cb;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool ggml_metal_if_optimized(struct ggml_metal_context * ctx) {
|
||||||
|
if (ctx->concur_list_len) {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
// finds the Metal buffer that contains the tensor data on the GPU device
|
// finds the Metal buffer that contains the tensor data on the GPU device
|
||||||
// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
|
// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
|
||||||
// Metal buffer based on the host memory pointer
|
// Metal buffer based on the host memory pointer
|
||||||
|
@ -381,11 +394,98 @@ void ggml_metal_get_tensor(
|
||||||
memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t));
|
memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void ggml_metal_graph_find_concurrency(
|
||||||
|
struct ggml_metal_context * ctx,
|
||||||
|
struct ggml_cgraph * gf) {
|
||||||
|
int search_depth = gf->n_nodes; //we only find concurrency in this range to avoid wasting too much time
|
||||||
|
int nodes_unused[GGML_MAX_NODES];
|
||||||
|
|
||||||
|
for (int i = 0; i < GGML_MAX_NODES; i++) {ctx->concur_list[i] = 0;}
|
||||||
|
for (int i = 0; i < gf->n_nodes; i++) {nodes_unused[i] = 1;}
|
||||||
|
ctx->concur_list_len = 0;
|
||||||
|
|
||||||
|
int n_left = gf->n_nodes;
|
||||||
|
int n_start = 0; // all nodes before n_start at nodes_unused array have been sorted and store back to ctx->concur_list
|
||||||
|
int level_pos = 0; // at ctx->concur_list, the last layer (level) ends at level_pos
|
||||||
|
|
||||||
|
while (n_left > 0) {
|
||||||
|
// number of nodes at a layer (that can be issued concurrently)
|
||||||
|
int concurrency = 0;
|
||||||
|
for (int i = n_start; i < ((n_start + search_depth > gf->n_nodes) ? gf->n_nodes : n_start + search_depth); i++) {
|
||||||
|
if (nodes_unused[i]) {
|
||||||
|
// if the requirements for gf->nodes[i] are satisfied
|
||||||
|
int exe_flag=1;
|
||||||
|
// scan all srcs
|
||||||
|
for (int src_ind = 0; src_ind < GGML_MAX_SRC; src_ind++) {
|
||||||
|
struct ggml_tensor * src_cur = gf->nodes[i]->src[src_ind];
|
||||||
|
if (src_cur) {
|
||||||
|
// if is leaf nodes it's satisfied.
|
||||||
|
if (src_cur->op == GGML_OP_NONE && src_cur->grad == NULL) {continue;}
|
||||||
|
|
||||||
|
// otherwise this src should be the output from previous nodes.
|
||||||
|
int is_found = 0;
|
||||||
|
// scan 2*search_depth back because we inserted barrier.
|
||||||
|
for (int j = ((level_pos - 2*search_depth) < 0 ? 0 : (level_pos - 2*search_depth)); j < level_pos; j++) {
|
||||||
|
if (gf->nodes[ctx->concur_list[j]] == src_cur) {is_found = 1; break;}
|
||||||
|
}
|
||||||
|
if (is_found == 0) {exe_flag = 0; break;}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (exe_flag) {
|
||||||
|
// check if nodes[i]'s data will be overwritten by a node before nodes[i].
|
||||||
|
// if node[5] and node[3] write to the same memory region, then we can't issue node[5] before node[3]
|
||||||
|
int64_t data_start = (int64_t) gf->nodes[i]->data;
|
||||||
|
int64_t length = (int64_t) ggml_nbytes(gf->nodes[i]);
|
||||||
|
for (int j = n_start; j < i; j++) {
|
||||||
|
if (nodes_unused[j] && gf->nodes[j]->op != GGML_OP_RESHAPE \
|
||||||
|
&& gf->nodes[j]->op != GGML_OP_VIEW \
|
||||||
|
&& gf->nodes[j]->op != GGML_OP_TRANSPOSE \
|
||||||
|
&& gf->nodes[j]->op != GGML_OP_PERMUTE) {
|
||||||
|
if (((int64_t)gf->nodes[j]->data) >= data_start + length || \
|
||||||
|
((int64_t)gf->nodes[j]->data) + (int64_t) ggml_nbytes(gf->nodes[j]) <= data_start) {
|
||||||
|
continue;
|
||||||
|
} else {
|
||||||
|
exe_flag = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (exe_flag) {
|
||||||
|
ctx->concur_list[level_pos + concurrency] = i;
|
||||||
|
nodes_unused[i] = 0;
|
||||||
|
concurrency++;
|
||||||
|
ctx->concur_list_len++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
n_left -= concurrency;
|
||||||
|
// adding a barrier different layer
|
||||||
|
ctx->concur_list[level_pos + concurrency] = -1;
|
||||||
|
ctx->concur_list_len++;
|
||||||
|
// jump all sorted nodes at nodes_bak
|
||||||
|
while (!nodes_unused[n_start]) {n_start++;}
|
||||||
|
level_pos += concurrency + 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (ctx->concur_list_len > GGML_MAX_NODES) {
|
||||||
|
fprintf(stderr, "%s: too many elements for metal ctx->concur_list!\n", __func__);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
void ggml_metal_graph_compute(
|
void ggml_metal_graph_compute(
|
||||||
struct ggml_metal_context * ctx,
|
struct ggml_metal_context * ctx,
|
||||||
struct ggml_cgraph * gf) {
|
struct ggml_cgraph * gf) {
|
||||||
metal_printf("%s: evaluating graph\n", __func__);
|
metal_printf("%s: evaluating graph\n", __func__);
|
||||||
|
|
||||||
|
// if there is ctx->concur_list, dispatch concurrently
|
||||||
|
// else fallback to serial dispatch
|
||||||
|
MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor;
|
||||||
|
|
||||||
|
const bool has_concur = ctx->concur_list_len && ctx->concur_list_len <= GGML_MAX_NODES;
|
||||||
|
|
||||||
|
const int n_nodes = has_concur ? ctx->concur_list_len : gf->n_nodes;
|
||||||
|
edesc.dispatchType = has_concur ? MTLDispatchTypeConcurrent : MTLDispatchTypeSerial;
|
||||||
|
|
||||||
// create multiple command buffers and enqueue them
|
// create multiple command buffers and enqueue them
|
||||||
// then, we encode the graph into the command buffers in parallel
|
// then, we encode the graph into the command buffers in parallel
|
||||||
|
|
||||||
|
@ -404,7 +504,7 @@ void ggml_metal_graph_compute(
|
||||||
dispatch_queue_t queue = dispatch_queue_create("llama.cpp", DISPATCH_QUEUE_CONCURRENT);
|
dispatch_queue_t queue = dispatch_queue_create("llama.cpp", DISPATCH_QUEUE_CONCURRENT);
|
||||||
|
|
||||||
for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
|
for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
|
||||||
const int n_nodes_per_cb = (gf->n_nodes + n_cb - 1) / n_cb;
|
const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb;
|
||||||
|
|
||||||
dispatch_async(queue, ^{
|
dispatch_async(queue, ^{
|
||||||
size_t offs_src0 = 0;
|
size_t offs_src0 = 0;
|
||||||
|
@ -416,9 +516,20 @@ void ggml_metal_graph_compute(
|
||||||
id<MTLComputeCommandEncoder> encoder = nil;
|
id<MTLComputeCommandEncoder> encoder = nil;
|
||||||
|
|
||||||
const int node_start = (cb_idx + 0) * n_nodes_per_cb;
|
const int node_start = (cb_idx + 0) * n_nodes_per_cb;
|
||||||
const int node_end = (cb_idx == n_cb - 1) ? gf->n_nodes : (cb_idx + 1) * n_nodes_per_cb;
|
const int node_end = (cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb;
|
||||||
|
|
||||||
|
for (int ind = node_start; ind < node_end; ++ind) {
|
||||||
|
const int i = has_concur ? ctx->concur_list[ind] : ind;
|
||||||
|
|
||||||
|
if (i == -1) {
|
||||||
|
if (encoder == nil) {
|
||||||
|
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
[encoder memoryBarrierWithScope:MTLBarrierScopeBuffers];
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
for (int i = node_start; i < node_end; ++i) {
|
|
||||||
metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
|
metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
|
||||||
|
|
||||||
struct ggml_tensor * src0 = gf->nodes[i]->src[0];
|
struct ggml_tensor * src0 = gf->nodes[i]->src[0];
|
||||||
|
@ -489,13 +600,19 @@ void ggml_metal_graph_compute(
|
||||||
case GGML_OP_ADD:
|
case GGML_OP_ADD:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
if (encoder == nil) {
|
||||||
encoder = [command_buffer computeCommandEncoder];
|
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (ggml_nelements(src1) == ne10) {
|
||||||
|
// src1 is a row
|
||||||
|
[encoder setComputePipelineState:ctx->pipeline_add_row];
|
||||||
|
} else {
|
||||||
[encoder setComputePipelineState:ctx->pipeline_add];
|
[encoder setComputePipelineState:ctx->pipeline_add];
|
||||||
|
}
|
||||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||||
|
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
||||||
|
|
||||||
const int64_t n = ggml_nelements(dst);
|
const int64_t n = ggml_nelements(dst);
|
||||||
|
|
||||||
|
@ -504,7 +621,7 @@ void ggml_metal_graph_compute(
|
||||||
case GGML_OP_MUL:
|
case GGML_OP_MUL:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
if (encoder == nil) {
|
||||||
encoder = [command_buffer computeCommandEncoder];
|
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||||
}
|
}
|
||||||
|
|
||||||
if (ggml_nelements(src1) == ne10) {
|
if (ggml_nelements(src1) == ne10) {
|
||||||
|
@ -525,7 +642,7 @@ void ggml_metal_graph_compute(
|
||||||
case GGML_OP_SCALE:
|
case GGML_OP_SCALE:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
if (encoder == nil) {
|
||||||
encoder = [command_buffer computeCommandEncoder];
|
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||||
}
|
}
|
||||||
|
|
||||||
const float scale = *(const float *) src1->data;
|
const float scale = *(const float *) src1->data;
|
||||||
|
@ -539,10 +656,12 @@ void ggml_metal_graph_compute(
|
||||||
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_SILU:
|
case GGML_OP_UNARY:
|
||||||
|
switch (ggml_get_unary_op(gf->nodes[i])) {
|
||||||
|
case GGML_UNARY_OP_SILU:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
if (encoder == nil) {
|
||||||
encoder = [command_buffer computeCommandEncoder];
|
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||||
}
|
}
|
||||||
|
|
||||||
[encoder setComputePipelineState:ctx->pipeline_silu];
|
[encoder setComputePipelineState:ctx->pipeline_silu];
|
||||||
|
@ -553,10 +672,10 @@ void ggml_metal_graph_compute(
|
||||||
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_RELU:
|
case GGML_UNARY_OP_RELU:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
if (encoder == nil) {
|
||||||
encoder = [command_buffer computeCommandEncoder];
|
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||||
}
|
}
|
||||||
|
|
||||||
[encoder setComputePipelineState:ctx->pipeline_relu];
|
[encoder setComputePipelineState:ctx->pipeline_relu];
|
||||||
|
@ -567,10 +686,10 @@ void ggml_metal_graph_compute(
|
||||||
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_GELU:
|
case GGML_UNARY_OP_GELU:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
if (encoder == nil) {
|
||||||
encoder = [command_buffer computeCommandEncoder];
|
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||||
}
|
}
|
||||||
|
|
||||||
[encoder setComputePipelineState:ctx->pipeline_gelu];
|
[encoder setComputePipelineState:ctx->pipeline_gelu];
|
||||||
|
@ -581,10 +700,16 @@ void ggml_metal_graph_compute(
|
||||||
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||||
} break;
|
} break;
|
||||||
|
default:
|
||||||
|
{
|
||||||
|
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
}
|
||||||
|
} break;
|
||||||
case GGML_OP_SOFT_MAX:
|
case GGML_OP_SOFT_MAX:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
if (encoder == nil) {
|
||||||
encoder = [command_buffer computeCommandEncoder];
|
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||||
}
|
}
|
||||||
|
|
||||||
const int nth = 32;
|
const int nth = 32;
|
||||||
|
@ -602,10 +727,10 @@ void ggml_metal_graph_compute(
|
||||||
case GGML_OP_DIAG_MASK_INF:
|
case GGML_OP_DIAG_MASK_INF:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
if (encoder == nil) {
|
||||||
encoder = [command_buffer computeCommandEncoder];
|
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||||
}
|
}
|
||||||
|
|
||||||
const int n_past = ((int32_t *)(src1->data))[0];
|
const int n_past = ((int32_t *)(dst->op_params))[0];
|
||||||
|
|
||||||
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
|
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
|
||||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
|
@ -665,7 +790,7 @@ void ggml_metal_graph_compute(
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
if (encoder == nil) {
|
if (encoder == nil) {
|
||||||
encoder = [command_buffer computeCommandEncoder];
|
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||||
}
|
}
|
||||||
|
|
||||||
int nth0 = 32;
|
int nth0 = 32;
|
||||||
|
@ -704,8 +829,8 @@ void ggml_metal_graph_compute(
|
||||||
GGML_ASSERT(ne02 == 1);
|
GGML_ASSERT(ne02 == 1);
|
||||||
GGML_ASSERT(ne12 == 1);
|
GGML_ASSERT(ne12 == 1);
|
||||||
|
|
||||||
nth0 = 4;
|
nth0 = 2;
|
||||||
nth1 = 16;
|
nth1 = 32;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_K_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_K_f32];
|
||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_Q3_K:
|
case GGML_TYPE_Q3_K:
|
||||||
|
@ -713,8 +838,8 @@ void ggml_metal_graph_compute(
|
||||||
GGML_ASSERT(ne02 == 1);
|
GGML_ASSERT(ne02 == 1);
|
||||||
GGML_ASSERT(ne12 == 1);
|
GGML_ASSERT(ne12 == 1);
|
||||||
|
|
||||||
nth0 = 4;
|
nth0 = 2;
|
||||||
nth1 = 16;
|
nth1 = 32;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_K_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_K_f32];
|
||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_Q4_K:
|
case GGML_TYPE_Q4_K:
|
||||||
|
@ -768,19 +893,21 @@ void ggml_metal_graph_compute(
|
||||||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14];
|
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14];
|
||||||
|
|
||||||
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
|
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
|
||||||
src0t == GGML_TYPE_Q4_K) {
|
src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_Q4_K) {
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7) / 8, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7) / 8, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
}
|
}
|
||||||
|
else if (src0t == GGML_TYPE_Q3_K) {
|
||||||
|
#ifdef GGML_QKK_64
|
||||||
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
|
#else
|
||||||
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01+3)/4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
|
#endif
|
||||||
|
}
|
||||||
else if (src0t == GGML_TYPE_Q5_K) {
|
else if (src0t == GGML_TYPE_Q5_K) {
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3) / 4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3) / 4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
}
|
}
|
||||||
else if (src0t == GGML_TYPE_Q6_K) {
|
else if (src0t == GGML_TYPE_Q6_K) {
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
}
|
|
||||||
else if (src0t == GGML_TYPE_Q2_K ||
|
|
||||||
src0t == GGML_TYPE_Q3_K) {
|
|
||||||
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
|
||||||
} else {
|
} else {
|
||||||
[encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
|
[encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
|
@ -790,7 +917,7 @@ void ggml_metal_graph_compute(
|
||||||
case GGML_OP_GET_ROWS:
|
case GGML_OP_GET_ROWS:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
if (encoder == nil) {
|
||||||
encoder = [command_buffer computeCommandEncoder];
|
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||||
}
|
}
|
||||||
|
|
||||||
switch (src0->type) {
|
switch (src0->type) {
|
||||||
|
@ -819,10 +946,11 @@ void ggml_metal_graph_compute(
|
||||||
case GGML_OP_RMS_NORM:
|
case GGML_OP_RMS_NORM:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
if (encoder == nil) {
|
||||||
encoder = [command_buffer computeCommandEncoder];
|
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||||
}
|
}
|
||||||
|
|
||||||
const float eps = 1e-6f;
|
float eps;
|
||||||
|
memcpy(&eps, dst->op_params, sizeof(float));
|
||||||
|
|
||||||
const int nth = 512;
|
const int nth = 512;
|
||||||
|
|
||||||
|
@ -841,7 +969,7 @@ void ggml_metal_graph_compute(
|
||||||
case GGML_OP_NORM:
|
case GGML_OP_NORM:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
if (encoder == nil) {
|
||||||
encoder = [command_buffer computeCommandEncoder];
|
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||||
}
|
}
|
||||||
|
|
||||||
const float eps = 1e-5f;
|
const float eps = 1e-5f;
|
||||||
|
@ -863,14 +991,15 @@ void ggml_metal_graph_compute(
|
||||||
case GGML_OP_ALIBI:
|
case GGML_OP_ALIBI:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
if (encoder == nil) {
|
||||||
encoder = [command_buffer computeCommandEncoder];
|
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||||
}
|
}
|
||||||
|
|
||||||
GGML_ASSERT((src0t == GGML_TYPE_F32));
|
GGML_ASSERT((src0t == GGML_TYPE_F32));
|
||||||
|
|
||||||
const int n_past = ((int32_t *) src1->data)[0]; UNUSED(n_past);
|
const int n_past = ((int32_t *) dst->op_params)[0]; UNUSED(n_past);
|
||||||
const int n_head = ((int32_t *) src1->data)[1];
|
const int n_head = ((int32_t *) dst->op_params)[1];
|
||||||
const float max_bias = ((float *) src1->data)[2];
|
float max_bias;
|
||||||
|
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
|
||||||
|
|
||||||
if (__builtin_popcount(n_head) != 1) {
|
if (__builtin_popcount(n_head) != 1) {
|
||||||
GGML_ASSERT(false && "only power-of-two n_head implemented");
|
GGML_ASSERT(false && "only power-of-two n_head implemented");
|
||||||
|
@ -905,18 +1034,17 @@ void ggml_metal_graph_compute(
|
||||||
case GGML_OP_ROPE:
|
case GGML_OP_ROPE:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
if (encoder == nil) {
|
||||||
encoder = [command_buffer computeCommandEncoder];
|
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||||
}
|
}
|
||||||
|
|
||||||
const int n_dims = ((int32_t *) src1->data)[1];
|
const int n_past = ((int32_t *) dst->op_params)[0];
|
||||||
const int mode = ((int32_t *) src1->data)[2];
|
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||||||
|
const int mode = ((int32_t *) dst->op_params)[2];
|
||||||
const int n_past = ((int32_t *)(src1->data))[0];
|
|
||||||
|
|
||||||
float freq_base;
|
float freq_base;
|
||||||
float freq_scale;
|
float freq_scale;
|
||||||
memcpy(&freq_base, (int32_t *) src1->data + 4, sizeof(float));
|
memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
|
||||||
memcpy(&freq_scale, (int32_t *) src1->data + 5, sizeof(float));
|
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
|
||||||
|
|
||||||
[encoder setComputePipelineState:ctx->pipeline_rope];
|
[encoder setComputePipelineState:ctx->pipeline_rope];
|
||||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
|
@ -945,10 +1073,12 @@ void ggml_metal_graph_compute(
|
||||||
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||||
} break;
|
} break;
|
||||||
|
case GGML_OP_DUP:
|
||||||
case GGML_OP_CPY:
|
case GGML_OP_CPY:
|
||||||
|
case GGML_OP_CONT:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
if (encoder == nil) {
|
||||||
encoder = [command_buffer computeCommandEncoder];
|
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||||
}
|
}
|
||||||
|
|
||||||
const int nth = 32;
|
const int nth = 32;
|
||||||
|
@ -995,10 +1125,12 @@ void ggml_metal_graph_compute(
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||||
} break;
|
} break;
|
||||||
default:
|
default:
|
||||||
|
{
|
||||||
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
|
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if (encoder != nil) {
|
if (encoder != nil) {
|
||||||
[encoder endEncoding];
|
[encoder endEncoding];
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
//go:build darwin
|
//go:build darwin
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
|
* llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
|
||||||
*
|
*
|
||||||
* MIT License
|
* MIT License
|
||||||
*
|
*
|
||||||
|
@ -95,6 +95,17 @@ kernel void kernel_add(
|
||||||
dst[tpig] = src0[tpig] + src1[tpig];
|
dst[tpig] = src0[tpig] + src1[tpig];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// assumption: src1 is a row
|
||||||
|
// broadcast src1 into src0
|
||||||
|
kernel void kernel_add_row(
|
||||||
|
device const float * src0,
|
||||||
|
device const float * src1,
|
||||||
|
device float * dst,
|
||||||
|
constant int64_t & ne00,
|
||||||
|
uint tpig[[thread_position_in_grid]]) {
|
||||||
|
dst[tpig] = src0[tpig] + src1[tpig % ne00];
|
||||||
|
}
|
||||||
|
|
||||||
kernel void kernel_mul(
|
kernel void kernel_mul(
|
||||||
device const float * src0,
|
device const float * src0,
|
||||||
device const float * src1,
|
device const float * src1,
|
||||||
|
@ -379,7 +390,7 @@ kernel void kernel_rms_norm(
|
||||||
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||||
// broadcast, simd group number is ntg / 32
|
// broadcast, simd group number is ntg / 32
|
||||||
for (int i = ntg / 32 / 2; i > 0; i /= 2) {
|
for (uint i = ntg / 32 / 2; i > 0; i /= 2) {
|
||||||
if (tpitg < i) {
|
if (tpitg < i) {
|
||||||
sum[tpitg] += sum[tpitg + i];
|
sum[tpitg] += sum[tpitg + i];
|
||||||
}
|
}
|
||||||
|
@ -404,87 +415,90 @@ kernel void kernel_rms_norm(
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// function for calculate inner product between a q4_0 block and 32 floats (yl), sumy is SUM(yl[i])
|
// function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i])
|
||||||
float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl) {
|
// il indicates where the q4 quants begin (0 or QK4_0/4)
|
||||||
|
// we assume that the yl's have been multiplied with the appropriate scale factor
|
||||||
|
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
|
||||||
|
inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl, int il) {
|
||||||
float d = qb_curr->d;
|
float d = qb_curr->d;
|
||||||
float4 acc = 0.f;
|
float2 acc = 0.f;
|
||||||
device uint16_t * qs = ((device uint16_t *)qb_curr + 1);
|
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 1 + il/2);
|
||||||
for (int i = 0; i < 16; i+=2) {
|
for (int i = 0; i < 8; i+=2) {
|
||||||
acc[0] += yl[i] * (qs[i / 2] & 0x000F);
|
acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
|
||||||
acc[1] += yl[i + 16] * (qs[i / 2] & 0x00F0);
|
+ yl[i + 1] * (qs[i / 2] & 0x0F00);
|
||||||
acc[2] += yl[i + 1] * (qs[i / 2] & 0x0F00);
|
acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
|
||||||
acc[3] += yl[i + 17] * (qs[i / 2] & 0xF000);
|
+ yl[i + 9] * (qs[i / 2] & 0xF000);
|
||||||
}
|
}
|
||||||
return d * (sumy * -8.f + acc[0] + acc[1]/16.f + acc[2]/256.f + acc[3]/4096.f);
|
return d * (sumy * -8.f + acc[0] + acc[1]);
|
||||||
}
|
}
|
||||||
|
|
||||||
// function for calculate inner product between a q4_1 block and 32 floats (yl), sumy is SUM(yl[i])
|
// function for calculate inner product between half a q4_1 block and 16 floats (yl), sumy is SUM(yl[i])
|
||||||
float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl) {
|
// il indicates where the q4 quants begin (0 or QK4_0/4)
|
||||||
|
// we assume that the yl's have been multiplied with the appropriate scale factor
|
||||||
|
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
|
||||||
|
inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl, int il) {
|
||||||
float d = qb_curr->d;
|
float d = qb_curr->d;
|
||||||
float m = qb_curr->m;
|
float m = qb_curr->m;
|
||||||
float4 acc = 0.f;
|
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 2 + il/2);
|
||||||
device uint16_t * qs = ((device uint16_t *)qb_curr + 2);
|
float2 acc = 0.f;
|
||||||
for (int i = 0; i < 16; i+=2) {
|
for (int i = 0; i < 8; i+=2) {
|
||||||
acc[0] += yl[i] * (qs[i / 2] & 0x000F);
|
acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
|
||||||
acc[1] += yl[i + 16] * (qs[i / 2] & 0x00F0);
|
+ yl[i + 1] * (qs[i / 2] & 0x0F00);
|
||||||
acc[2] += yl[i + 1] * (qs[i / 2] & 0x0F00);
|
acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
|
||||||
acc[3] += yl[i + 17] * (qs[i / 2] & 0xF000);
|
+ yl[i + 9] * (qs[i / 2] & 0xF000);
|
||||||
}
|
}
|
||||||
return d * (acc[0] + acc[1]/16.f + acc[2]/256.f + acc[3]/4096.f) + sumy * m;
|
return d * (acc[0] + acc[1]) + sumy * m;
|
||||||
}
|
}
|
||||||
|
|
||||||
// putting them in the kernel cause a significant performance penalty
|
// putting them in the kernel cause a significant performance penalty
|
||||||
#define N_DST 4 // each SIMD group works on 4 rows
|
#define N_DST 4 // each SIMD group works on 4 rows
|
||||||
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
|
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
|
||||||
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
|
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
|
||||||
template<typename block_q_type>
|
//Note: This is a template, but strictly speaking it only applies to
|
||||||
|
// quantizations where the block size is 32. It also does not
|
||||||
|
// giard against the number of rows not being divisible by
|
||||||
|
// N_DST, so this is another explicit assumption of the implementation.
|
||||||
|
template<typename block_q_type, int nr, int nsg, int nw>
|
||||||
void mul_vec_q_n_f32(device const void * src0, device const float * src1, device float * dst,
|
void mul_vec_q_n_f32(device const void * src0, device const float * src1, device float * dst,
|
||||||
int64_t ne00, int64_t ne10, int64_t ne0, int64_t ne01,
|
int64_t ne00, int64_t ne10, int64_t ne0, int64_t ne01,
|
||||||
uint2 tgpig, uint tiisg, uint sgitg) {
|
uint2 tgpig, uint tiisg, uint sgitg) {
|
||||||
const int nb = ne00/QK4_0;
|
const int nb = ne00/QK4_0;
|
||||||
const int r0 = tgpig.x;
|
const int r0 = tgpig.x;
|
||||||
const int r1 = tgpig.y;
|
const int r1 = tgpig.y;
|
||||||
device const block_q_type * x = (device const block_q_type *) src0 + (r0 * N_SIMDGROUP + sgitg) * N_DST * nb;
|
const int first_row = (r0 * nsg + sgitg) * nr;
|
||||||
|
device const block_q_type * x = (device const block_q_type *) src0 + first_row * nb;
|
||||||
device const float * y = (device const float *) src1 + r1*ne10;
|
device const float * y = (device const float *) src1 + r1*ne10;
|
||||||
float4 y_curr[8]; // src1 vector cache
|
float yl[16]; // src1 vector cache
|
||||||
float sumf[N_DST]={0.f}, all_sum;
|
float sumf[nr]={0.f};
|
||||||
thread float * yl=(thread float *)y_curr;
|
|
||||||
|
|
||||||
// each thread in a SIMD group deals with 1 block.
|
const int ix = tiisg/2;
|
||||||
for (int column = 0; column < nb / N_SIMDWIDTH; column++) {
|
const int il = 8*(tiisg%2);
|
||||||
|
|
||||||
|
device const float * yb = y + ix * QK4_0 + il;
|
||||||
|
|
||||||
|
// each thread in a SIMD group deals with half a block.
|
||||||
|
for (int ib = ix; ib < nb; ib += nw/2) {
|
||||||
float sumy = 0;
|
float sumy = 0;
|
||||||
for (int i = 0; i < QK4_0 / 4; i++) {
|
for (int i = 0; i < 8; i += 2) {
|
||||||
y_curr[i] = *((device float4 *)(y + N_SIMDWIDTH * (tiisg + column * QK4_0)) + i);
|
sumy += yb[i] + yb[i+1];
|
||||||
sumy += y_curr[i][0] + y_curr[i][1] + y_curr[i][2] + y_curr[i][3];
|
yl[i+0] = yb[i+ 0];
|
||||||
|
yl[i+1] = yb[i+ 1]/256.f;
|
||||||
|
sumy += yb[i+16] + yb[i+17];
|
||||||
|
yl[i+8] = yb[i+16]/16.f;
|
||||||
|
yl[i+9] = yb[i+17]/4096.f;
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int row = 0; row < N_DST; row++) {
|
for (int row = 0; row < nr; row++) {
|
||||||
sumf[row] += block_q_n_dot_y(x+(tiisg + row * nb + column * N_SIMDWIDTH), sumy, yl);
|
sumf[row] += block_q_n_dot_y(x+ib+row*nb, sumy, yl, il);
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// from now loads two rows every time and 16 blocks per row
|
yb += QK4_0 * 16;
|
||||||
int ir = tiisg / (N_SIMDWIDTH / 2);
|
|
||||||
int ib = tiisg % (N_SIMDWIDTH / 2);
|
|
||||||
for (int ind = 0; ind < (nb % N_SIMDWIDTH + N_SIMDWIDTH / 2 - 1)/(N_SIMDWIDTH / 2); ind++) {
|
|
||||||
int nb_start = (nb / N_SIMDWIDTH) * N_SIMDWIDTH + ind * (N_SIMDWIDTH / 2); //where the left blocks start
|
|
||||||
float sumy = 0;
|
|
||||||
for (int i = 0; i < QK4_0 / 4; i++) {
|
|
||||||
y_curr[i] = *((device float4 *)(y + (nb_start + ib) * QK4_0) + i);
|
|
||||||
sumy += y_curr[i][0] + y_curr[i][1] + y_curr[i][2] + y_curr[i][3];
|
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int row = 0; row < N_DST; row+=2) {
|
for (int row = 0; row < nr; ++row) {
|
||||||
if (nb_start + ib < nb) {
|
const float tot = simd_sum(sumf[row]);
|
||||||
sumf[row + ir] += block_q_n_dot_y(x + (nb_start + ib + (row + ir) * nb), sumy, yl);
|
if (tiisg == 0 && first_row + row < ne01) {
|
||||||
}
|
dst[r1*ne0 + first_row + row] = tot;
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int row = 0; row < N_DST; ++row) {
|
|
||||||
all_sum = simd_sum(sumf[row]);
|
|
||||||
if (tiisg == 0 && ((r0 * N_SIMDGROUP + sgitg) * N_DST + row) < ne01) {
|
|
||||||
dst[r1*ne0 + (r0 * N_SIMDGROUP + sgitg) * N_DST + row] = all_sum;
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -500,7 +514,7 @@ kernel void kernel_mul_mat_q4_0_f32(
|
||||||
uint2 tgpig[[threadgroup_position_in_grid]],
|
uint2 tgpig[[threadgroup_position_in_grid]],
|
||||||
uint tiisg[[thread_index_in_simdgroup]],
|
uint tiisg[[thread_index_in_simdgroup]],
|
||||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||||
mul_vec_q_n_f32<block_q4_0>(src0,src1,dst,ne00,ne10,ne0,ne01,tgpig,tiisg,sgitg);
|
mul_vec_q_n_f32<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne10,ne0,ne01,tgpig,tiisg,sgitg);
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel void kernel_mul_mat_q4_1_f32(
|
kernel void kernel_mul_mat_q4_1_f32(
|
||||||
|
@ -514,7 +528,7 @@ kernel void kernel_mul_mat_q4_1_f32(
|
||||||
uint2 tgpig[[threadgroup_position_in_grid]],
|
uint2 tgpig[[threadgroup_position_in_grid]],
|
||||||
uint tiisg[[thread_index_in_simdgroup]],
|
uint tiisg[[thread_index_in_simdgroup]],
|
||||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||||
mul_vec_q_n_f32<block_q4_1>(src0,src1,dst,ne00,ne10,ne0,ne01,tgpig,tiisg,sgitg);
|
mul_vec_q_n_f32<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne10,ne0,ne01,tgpig,tiisg,sgitg);
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel void kernel_mul_mat_f16_f32(
|
kernel void kernel_mul_mat_f16_f32(
|
||||||
|
@ -1237,111 +1251,137 @@ kernel void kernel_mul_mat_q2_K_f32(
|
||||||
constant int64_t & ne00,
|
constant int64_t & ne00,
|
||||||
constant int64_t & ne10,
|
constant int64_t & ne10,
|
||||||
constant int64_t & ne0,
|
constant int64_t & ne0,
|
||||||
threadgroup float * sum [[threadgroup(0)]],
|
constant int64_t & ne01[[buffer(4)]],
|
||||||
uint2 tgpig[[threadgroup_position_in_grid]],
|
uint2 tgpig[[threadgroup_position_in_grid]],
|
||||||
uint2 tpitg[[thread_position_in_threadgroup]],
|
uint tiisg[[thread_index_in_simdgroup]],
|
||||||
uint2 tptg[[threads_per_threadgroup]]) {
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||||
|
|
||||||
const int nb = ne00/QK_K;
|
const int nb = ne00/QK_K;
|
||||||
|
const int r0 = tgpig.x;
|
||||||
|
const int r1 = tgpig.y;
|
||||||
|
|
||||||
const int64_t r0 = tgpig.x;
|
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
|
||||||
const int64_t r1 = tgpig.y;
|
const int ib_row = first_row * nb;
|
||||||
|
device const block_q2_K * x = (device const block_q2_K *) src0 + ib_row;
|
||||||
|
device const float * y = (device const float *) src1 + r1*ne10;
|
||||||
|
float yl[32];
|
||||||
|
float sumf[N_DST]={0.f}, all_sum;
|
||||||
|
|
||||||
device const block_q2_K * x = (device const block_q2_K *) src0 + r0*nb;
|
const int step = sizeof(block_q2_K) * nb;
|
||||||
device const float * yy = (device const float *) src1 + r1*ne10;
|
|
||||||
|
|
||||||
const int nth = tptg.x*tptg.y;
|
|
||||||
const int ith = tptg.y*tpitg.x + tpitg.y;
|
|
||||||
|
|
||||||
float sumf = 0;
|
|
||||||
|
|
||||||
#if QK_K == 256
|
#if QK_K == 256
|
||||||
const int tid = tpitg.y; // 0...16
|
const int ix = tiisg/8; // 0...3
|
||||||
const int il = tid/4; // 0...3
|
const int it = tiisg%8; // 0...7
|
||||||
const int ir = tid%4; // 0...3
|
const int im = it/4; // 0 or 1
|
||||||
const int ip = il/2; // 0 or 1
|
const int ir = it%4; // 0...3
|
||||||
const int shift1 = 4*(il%2);// 0 or 4
|
const int is = (8*ir)/16;// 0 or 1
|
||||||
const int shift2 = shift1+2;// 2 or 6
|
|
||||||
const int n = 8;
|
|
||||||
const int is = 4*il + (n*ir)/16;
|
|
||||||
|
|
||||||
const int y_offset = 64*il + n*ir;
|
device const float * y4 = y + ix * QK_K + 128 * im + 8 * ir;
|
||||||
const int q_offset = 32*ip + n*ir;
|
|
||||||
|
|
||||||
for (int i = tpitg.x; i < nb; i += tptg.x) {
|
for (int ib = ix; ib < nb; ib += 4) {
|
||||||
|
|
||||||
device const uint8_t * q = x[i].qs + q_offset;
|
float4 sumy = {0.f, 0.f, 0.f, 0.f};
|
||||||
device const uint8_t * scales = x[i].scales + is;
|
for (int i = 0; i < 8; ++i) {
|
||||||
|
yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
|
||||||
uint8_t d1 = scales[0] & 0xF;
|
yl[i+ 8] = y4[i+32]; sumy[1] += yl[i+ 8];
|
||||||
uint8_t d2 = scales[2] & 0xF;
|
yl[i+16] = y4[i+64]; sumy[2] += yl[i+16];
|
||||||
uint8_t m1 = scales[0] >> 4;
|
yl[i+24] = y4[i+96]; sumy[3] += yl[i+24];
|
||||||
uint8_t m2 = scales[2] >> 4;
|
|
||||||
|
|
||||||
device const float * y = yy + i*QK_K + y_offset;
|
|
||||||
|
|
||||||
float2 s = {0.f, 0.f};
|
|
||||||
float smin = 0;
|
|
||||||
for (int l = 0; l < n; ++l) {
|
|
||||||
s[0] += y[l+ 0] * ((q[l] >> shift1) & 3);
|
|
||||||
s[1] += y[l+32] * ((q[l] >> shift2) & 3);
|
|
||||||
smin += y[l+ 0] * m1 + y[l+32] * m2;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
const float dall = (float)x[i].d;
|
device const uint8_t * sc = (device const uint8_t *)x[ib].scales + 8*im + is;
|
||||||
const float dmin = (float)x[i].dmin;
|
device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 16 * im + 4 * ir;
|
||||||
|
device const half * dh = &x[ib].d;
|
||||||
|
|
||||||
sumf += dall * (s[0] * d1 + s[1] * d2) - dmin * smin;
|
for (int row = 0; row < N_DST; row++) {
|
||||||
|
|
||||||
|
float4 acc1 = {0.f, 0.f, 0.f, 0.f};
|
||||||
|
float4 acc2 = {0.f, 0.f, 0.f, 0.f};
|
||||||
|
for (int i = 0; i < 8; i += 2) {
|
||||||
|
acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
|
||||||
|
acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
|
||||||
|
acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
|
||||||
|
acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
|
||||||
|
acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
|
||||||
|
acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
|
||||||
|
acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
|
||||||
|
acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
|
||||||
|
}
|
||||||
|
float dall = dh[0];
|
||||||
|
float dmin = dh[1] * 1.f/16.f;
|
||||||
|
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
|
||||||
|
(acc1[1] + 1.f/256.f * acc2[1]) * (sc[2] & 0xF) * 1.f/ 4.f +
|
||||||
|
(acc1[2] + 1.f/256.f * acc2[2]) * (sc[4] & 0xF) * 1.f/16.f +
|
||||||
|
(acc1[3] + 1.f/256.f * acc2[3]) * (sc[6] & 0xF) * 1.f/64.f) -
|
||||||
|
dmin * (sumy[0] * (sc[0] & 0xF0) + sumy[1] * (sc[2] & 0xF0) + sumy[2] * (sc[4] & 0xF0) + sumy[3] * (sc[6] & 0xF0));
|
||||||
|
|
||||||
|
qs += step/2;
|
||||||
|
sc += step;
|
||||||
|
dh += step/2;
|
||||||
|
}
|
||||||
|
|
||||||
|
y4 += 4 * QK_K;
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
const int il = 4 * tpitg.x;
|
const int ix = tiisg/2; // 0...15
|
||||||
|
const int it = tiisg%2; // 0...1
|
||||||
|
|
||||||
uint32_t aux[2];
|
device const float * y4 = y + ix * QK_K + 8 * it;
|
||||||
thread const uint8_t * d = (thread const uint8_t *)aux;
|
|
||||||
thread const uint8_t * m = (thread const uint8_t *)aux + 4;
|
|
||||||
|
|
||||||
for (int i = tpitg.y; i < nb; i += tptg.y) {
|
for (int ib = ix; ib < nb; ib += 16) {
|
||||||
|
|
||||||
device const uint8_t * q = x[i].qs + il;
|
float4 sumy = {0.f, 0.f, 0.f, 0.f};
|
||||||
device const float * y = yy + i*QK_K + il;
|
for (int i = 0; i < 8; ++i) {
|
||||||
|
yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
|
||||||
const float dall = (float)x[i].d;
|
yl[i+ 8] = y4[i+16]; sumy[1] += yl[i+ 8];
|
||||||
const float dmin = (float)x[i].dmin;
|
yl[i+16] = y4[i+32]; sumy[2] += yl[i+16];
|
||||||
|
yl[i+24] = y4[i+48]; sumy[3] += yl[i+24];
|
||||||
device const uint32_t * a = (device const uint32_t *)x[i].scales;
|
|
||||||
aux[0] = a[0] & 0x0f0f0f0f;
|
|
||||||
aux[1] = (a[0] >> 4) & 0x0f0f0f0f;
|
|
||||||
|
|
||||||
for (int l = 0; l < 4; ++l) {
|
|
||||||
sumf += y[l+ 0] * (dall * d[0] * ((q[l] >> 0) & 3) - dmin * m[0])
|
|
||||||
+ y[l+16] * (dall * d[1] * ((q[l] >> 2) & 3) - dmin * m[1])
|
|
||||||
+ y[l+32] * (dall * d[2] * ((q[l] >> 4) & 3) - dmin * m[2])
|
|
||||||
+ y[l+48] * (dall * d[3] * ((q[l] >> 6) & 3) - dmin * m[3]);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
device const uint8_t * sc = (device const uint8_t *)x[ib].scales;
|
||||||
|
device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
|
||||||
|
device const half * dh = &x[ib].d;
|
||||||
|
|
||||||
|
for (int row = 0; row < N_DST; row++) {
|
||||||
|
|
||||||
|
float4 acc1 = {0.f, 0.f, 0.f, 0.f};
|
||||||
|
float4 acc2 = {0.f, 0.f, 0.f, 0.f};
|
||||||
|
for (int i = 0; i < 8; i += 2) {
|
||||||
|
acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
|
||||||
|
acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
|
||||||
|
acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
|
||||||
|
acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
|
||||||
|
acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
|
||||||
|
acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
|
||||||
|
acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
|
||||||
|
acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
|
||||||
|
}
|
||||||
|
|
||||||
|
float dall = dh[0];
|
||||||
|
float dmin = dh[1];
|
||||||
|
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
|
||||||
|
(acc1[1] + 1.f/256.f * acc2[1]) * (sc[1] & 0xF) * 1.f/ 4.f +
|
||||||
|
(acc1[2] + 1.f/256.f * acc2[2]) * (sc[2] & 0xF) * 1.f/16.f +
|
||||||
|
(acc1[3] + 1.f/256.f * acc2[3]) * (sc[3] & 0xF) * 1.f/64.f) -
|
||||||
|
dmin * (sumy[0] * (sc[0] >> 4) + sumy[1] * (sc[1] >> 4) + sumy[2] * (sc[2] >> 4) + sumy[3] * (sc[3] >> 4));
|
||||||
|
|
||||||
|
qs += step/2;
|
||||||
|
sc += step;
|
||||||
|
dh += step/2;
|
||||||
|
}
|
||||||
|
|
||||||
|
y4 += 16 * QK_K;
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
sum[ith] = sumf;
|
for (int row = 0; row < N_DST; ++row) {
|
||||||
|
all_sum = simd_sum(sumf[row]);
|
||||||
//
|
if (tiisg == 0) {
|
||||||
// Accumulate the sum from all threads in the threadgroup
|
dst[r1*ne0 + first_row + row] = all_sum;
|
||||||
//
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
if (ith%4 == 0) {
|
|
||||||
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
|
|
||||||
}
|
}
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
if (ith%16 == 0) {
|
|
||||||
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
|
|
||||||
}
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
if (ith == 0) {
|
|
||||||
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
|
|
||||||
dst[r1*ne0 + r0] = sum[0];
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#if QK_K == 256
|
||||||
kernel void kernel_mul_mat_q3_K_f32(
|
kernel void kernel_mul_mat_q3_K_f32(
|
||||||
device const void * src0,
|
device const void * src0,
|
||||||
device const float * src1,
|
device const float * src1,
|
||||||
|
@ -1350,40 +1390,41 @@ kernel void kernel_mul_mat_q3_K_f32(
|
||||||
constant int64_t & ne10,
|
constant int64_t & ne10,
|
||||||
constant int64_t & ne0,
|
constant int64_t & ne0,
|
||||||
constant int64_t & ne1,
|
constant int64_t & ne1,
|
||||||
threadgroup float * sum [[threadgroup(0)]],
|
|
||||||
uint2 tgpig[[threadgroup_position_in_grid]],
|
uint2 tgpig[[threadgroup_position_in_grid]],
|
||||||
uint2 tpitg[[thread_position_in_threadgroup]],
|
uint tiisg[[thread_index_in_simdgroup]],
|
||||||
uint2 tptg[[threads_per_threadgroup]]) {
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||||
|
|
||||||
const int nb = ne00/QK_K;
|
const int nb = ne00/QK_K;
|
||||||
|
|
||||||
const int64_t r0 = tgpig.x;
|
const int64_t r0 = tgpig.x;
|
||||||
const int64_t r1 = tgpig.y;
|
const int64_t r1 = tgpig.y;
|
||||||
|
|
||||||
device const block_q3_K * x = (device const block_q3_K *) src0 + r0*nb;
|
const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
|
||||||
|
|
||||||
|
device const block_q3_K * x = (device const block_q3_K *) src0 + first_row*nb;
|
||||||
device const float * yy = (device const float *) src1 + r1*ne10;
|
device const float * yy = (device const float *) src1 + r1*ne10;
|
||||||
|
|
||||||
const int nth = tptg.x*tptg.y;
|
float yl[16];
|
||||||
const int ith = tptg.y*tpitg.x + tpitg.y;
|
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
|
|
||||||
const uint8_t m3 = 3;
|
|
||||||
const int8_t m4 = 4;
|
|
||||||
|
|
||||||
const uint16_t kmask1 = 0x0303;
|
const uint16_t kmask1 = 0x0303;
|
||||||
const uint16_t kmask2 = 0x0f0f;
|
const uint16_t kmask2 = 0x0f0f;
|
||||||
|
|
||||||
const int tid = tpitg.y; // expecting 16
|
const int tid = tiisg/2;
|
||||||
|
const int ix = tiisg%2;
|
||||||
const int ip = tid/8; // 0 or 1
|
const int ip = tid/8; // 0 or 1
|
||||||
const int il = tid/2 - 4*ip; // 0...3
|
const int il = tid/2 - 4*ip; // 0...3
|
||||||
const int ir = tid%2;
|
const int ir = tid%2;
|
||||||
const int n = 8;
|
const int n = 8;
|
||||||
const int l0 = n*ir;
|
const int l0 = n*ir;
|
||||||
|
|
||||||
const uint8_t m = 1 << (4*ip + il);
|
const uint16_t m1 = 1 << (4*ip + il);
|
||||||
|
const uint16_t m2 = m1 << 8;
|
||||||
|
|
||||||
const int shift = 2*il;
|
const int shift = 2*il;
|
||||||
|
const uint16_t qm1 = 0x0003 << shift;
|
||||||
|
const uint16_t qm2 = 0x0300 << shift;
|
||||||
|
const int32_t v1 = 4 << shift;
|
||||||
|
const int32_t v2 = 1024 << shift;
|
||||||
|
|
||||||
const uint16_t s_shift1 = 4*ip;
|
const uint16_t s_shift1 = 4*ip;
|
||||||
const uint16_t s_shift2 = s_shift1 + 2*(il/2);
|
const uint16_t s_shift2 = s_shift1 + 2*(il/2);
|
||||||
|
@ -1392,93 +1433,132 @@ kernel void kernel_mul_mat_q3_K_f32(
|
||||||
const int q_offset = 32*ip + l0;
|
const int q_offset = 32*ip + l0;
|
||||||
const int y_offset = 128*ip + 32*il + l0;
|
const int y_offset = 128*ip + 32*il + l0;
|
||||||
|
|
||||||
//float sumf = 0;
|
const int step = sizeof(block_q3_K) * nb / 2;
|
||||||
float sumf1 = 0, sumf2 = 0;
|
|
||||||
for (int i = tpitg.x; i < nb; i += tptg.x) {
|
|
||||||
|
|
||||||
const float d_all = (float)(x[i].d);
|
device const float * y1 = yy + ix*QK_K + y_offset;
|
||||||
|
|
||||||
device const uint8_t * q = x[i].qs + q_offset;
|
float sumf1[2] = {0.f}, sumf2[2] = {0.f};
|
||||||
device const uint8_t * h = x[i].hmask + l0;
|
for (int i = ix; i < nb; i += 2) {
|
||||||
device const float * y = yy + i * QK_K + y_offset;
|
|
||||||
|
|
||||||
device const uint16_t * a = (device const uint16_t *)x[i].scales;
|
for (int l = 0; l < 8; ++l) {
|
||||||
|
yl[l+0] = y1[l+ 0];
|
||||||
|
yl[l+8] = y1[l+16];
|
||||||
|
}
|
||||||
|
|
||||||
|
device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset);
|
||||||
|
device const uint16_t * h = (device const uint16_t *)(x[i].hmask + l0);
|
||||||
|
device const uint16_t * a = (device const uint16_t *)(x[i].scales);
|
||||||
|
device const half * dh = &x[i].d;
|
||||||
|
|
||||||
|
for (int row = 0; row < 2; ++row) {
|
||||||
|
|
||||||
|
const float d_all = (float)dh[0];
|
||||||
const char2 scales = as_type<char2>((uint16_t)(((a[il] >> s_shift1) & kmask2) | (((a[ik] >> s_shift2) & kmask1) << 4)));
|
const char2 scales = as_type<char2>((uint16_t)(((a[il] >> s_shift1) & kmask2) | (((a[ik] >> s_shift2) & kmask1) << 4)));
|
||||||
|
|
||||||
float s = 0;
|
float s1 = 0, s2 = 0;
|
||||||
for (int l = 0; l < n; ++l) {
|
for (int l = 0; l < n; l += 2) {
|
||||||
s += y[l+ 0] * ((int8_t)((q[l+ 0] >> shift) & m3) - ((h[l+ 0] & m) ? 0 : m4));
|
const uint16_t qs = q[l/2];
|
||||||
|
s1 += yl[l+0] * ((int32_t)(qs & qm1) - ((h[l/2] & m1) ? 0 : v1));
|
||||||
|
s2 += yl[l+1] * ((int32_t)(qs & qm2) - ((h[l/2] & m2) ? 0 : v2));
|
||||||
}
|
}
|
||||||
float d = d_all * s;
|
float d = d_all * (s1 + 1.f/256.f * s2);
|
||||||
sumf1 += d * scales[0];
|
sumf1[row] += d * scales[0];
|
||||||
sumf2 += d;
|
sumf2[row] += d;
|
||||||
//sumf += d_all * s * (scales[0] - 32);
|
|
||||||
|
|
||||||
s = 0;
|
s1 = s2 = 0;
|
||||||
for (int l = 0; l < n; ++l) {
|
for (int l = 0; l < n; l += 2) {
|
||||||
s += y[l+16] * ((int8_t)((q[l+16] >> shift) & m3) - ((h[l+16] & m) ? 0 : m4));
|
const uint16_t qs = q[l/2+8];
|
||||||
|
s1 += yl[l+8] * ((int32_t)(qs & qm1) - ((h[l/2+8] & m1) ? 0 : v1));
|
||||||
|
s2 += yl[l+9] * ((int32_t)(qs & qm2) - ((h[l/2+8] & m2) ? 0 : v2));
|
||||||
}
|
}
|
||||||
d = d_all * s;
|
d = d_all * (s1 + 1.f/256.f * s2);
|
||||||
sumf1 += d * scales[1];
|
sumf1[row] += d * scales[1];
|
||||||
sumf2 += d;
|
sumf2[row] += d;
|
||||||
//sumf += d_all * s * (scales[1] - 32);
|
|
||||||
|
q += step;
|
||||||
|
h += step;
|
||||||
|
a += step;
|
||||||
|
dh += step;
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
//sum[ith] = sumf;
|
y1 += 2 * QK_K;
|
||||||
sum[ith] = sumf1 - 32.f*sumf2;
|
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int row = 0; row < 2; ++row) {
|
||||||
|
const float sumf = (sumf1[row] - 32.f*sumf2[row]) / (1 << shift);
|
||||||
|
const float tot = simd_sum(sumf);
|
||||||
|
if (tiisg == 0) {
|
||||||
|
dst[r1*ne0 + first_row + row] = tot;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
#else
|
#else
|
||||||
const int il = 4 * tpitg.x; // 0, 4, 8, 12
|
kernel void kernel_mul_mat_q3_K_f32(
|
||||||
|
device const void * src0,
|
||||||
|
device const float * src1,
|
||||||
|
device float * dst,
|
||||||
|
constant int64_t & ne00,
|
||||||
|
constant int64_t & ne10,
|
||||||
|
constant int64_t & ne0,
|
||||||
|
constant int64_t & ne1,
|
||||||
|
uint2 tgpig[[threadgroup_position_in_grid]],
|
||||||
|
uint tiisg[[thread_index_in_simdgroup]],
|
||||||
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||||
|
|
||||||
|
const int nb = ne00/QK_K;
|
||||||
|
|
||||||
|
const int64_t r0 = tgpig.x;
|
||||||
|
const int64_t r1 = tgpig.y;
|
||||||
|
|
||||||
|
const int row = 2 * r0 + sgitg;
|
||||||
|
|
||||||
|
device const block_q3_K * x = (device const block_q3_K *) src0 + row*nb;
|
||||||
|
device const float * yy = (device const float *) src1 + r1*ne10;
|
||||||
|
const int ix = tiisg/4;
|
||||||
|
const int il = 4 * (tiisg%4);// 0, 4, 8, 12
|
||||||
const int im = il/8; // 0, 0, 1, 1
|
const int im = il/8; // 0, 0, 1, 1
|
||||||
const int in = il%8; // 0, 4, 0, 4
|
const int in = il%8; // 0, 4, 0, 4
|
||||||
|
|
||||||
float sumf = 0;
|
float2 sum = {0.f, 0.f};
|
||||||
|
|
||||||
for (int i = tpitg.y; i < nb; i += tptg.y) {
|
for (int i = ix; i < nb; i += 8) {
|
||||||
|
|
||||||
const float d_all = (float)(x[i].d);
|
const float d_all = (float)(x[i].d);
|
||||||
|
|
||||||
device const uint8_t * q = x[i].qs + il;
|
device const uint16_t * q = (device const uint16_t *)(x[i].qs + il);
|
||||||
device const uint8_t * h = x[i].hmask + in;
|
device const uint16_t * h = (device const uint16_t *)(x[i].hmask + in);
|
||||||
|
device const uint16_t * s = (device const uint16_t *)(x[i].scales);
|
||||||
device const float * y = yy + i * QK_K + il;
|
device const float * y = yy + i * QK_K + il;
|
||||||
|
|
||||||
const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
|
const float d1 = d_all * ((int32_t)(s[0] & 0x000F) - 8);
|
||||||
const float d2 = d_all * ((x[i].scales[0] >> 4) - 8);
|
const float d2 = d_all * ((int32_t)(s[0] & 0x00F0) - 128) * 1.f/64.f;
|
||||||
const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
|
const float d3 = d_all * ((int32_t)(s[0] & 0x0F00) - 2048) * 1.f/4096.f;
|
||||||
const float d4 = d_all * ((x[i].scales[1] >> 4) - 8);
|
const float d4 = d_all * ((int32_t)(s[0] & 0xF000) - 32768) * 1.f/262144.f;
|
||||||
|
|
||||||
for (int l = 0; l < 4; ++l) {
|
for (int l = 0; l < 4; l += 2) {
|
||||||
const uint8_t hm = h[l] >> im;
|
const uint16_t hm = h[l/2] >> im;
|
||||||
sumf += y[l+ 0] * d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((hm & 0x01) ? 0 : 4))
|
sum[0] += y[l+ 0] * d1 * ((int32_t)(q[l/2] & 0x0003) - ((hm & 0x0001) ? 0 : 4))
|
||||||
+ y[l+16] * d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((hm & 0x04) ? 0 : 4))
|
+ y[l+16] * d2 * ((int32_t)(q[l/2] & 0x000c) - ((hm & 0x0004) ? 0 : 16))
|
||||||
+ y[l+32] * d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((hm & 0x10) ? 0 : 4))
|
+ y[l+32] * d3 * ((int32_t)(q[l/2] & 0x0030) - ((hm & 0x0010) ? 0 : 64))
|
||||||
+ y[l+48] * d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((hm & 0x40) ? 0 : 4));
|
+ y[l+48] * d4 * ((int32_t)(q[l/2] & 0x00c0) - ((hm & 0x0040) ? 0 : 256));
|
||||||
|
sum[1] += y[l+ 1] * d1 * ((int32_t)(q[l/2] & 0x0300) - ((hm & 0x0100) ? 0 : 1024))
|
||||||
|
+ y[l+17] * d2 * ((int32_t)(q[l/2] & 0x0c00) - ((hm & 0x0400) ? 0 : 4096))
|
||||||
|
+ y[l+33] * d3 * ((int32_t)(q[l/2] & 0x3000) - ((hm & 0x1000) ? 0 : 16384))
|
||||||
|
+ y[l+49] * d4 * ((int32_t)(q[l/2] & 0xc000) - ((hm & 0x4000) ? 0 : 65536));
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
const float sumf = sum[0] + sum[1] * 1.f/256.f;
|
||||||
|
|
||||||
sum[ith] = sumf;
|
const float tot = simd_sum(sumf);
|
||||||
|
if (tiisg == 0) {
|
||||||
#endif
|
dst[r1*ne0 + row] = tot;
|
||||||
|
|
||||||
//
|
|
||||||
// Accumulate the sum from all threads in the threadgroup
|
|
||||||
//
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
if (ith%4 == 0) {
|
|
||||||
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
|
|
||||||
}
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
if (ith%16 == 0) {
|
|
||||||
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
|
|
||||||
}
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
if (ith == 0) {
|
|
||||||
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
|
|
||||||
dst[r1*ne0 + r0] = sum[0];
|
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
#if QK_K == 256
|
#if QK_K == 256
|
||||||
kernel void kernel_mul_mat_q4_K_f32(
|
kernel void kernel_mul_mat_q4_K_f32(
|
||||||
|
@ -1776,7 +1856,6 @@ kernel void kernel_mul_mat_q5_K_f32(
|
||||||
|
|
||||||
for (int i = ix; i < nb; i += 8) {
|
for (int i = ix; i < nb; i += 8) {
|
||||||
|
|
||||||
float4 sumy = {0.f, 0.f, 0.f, 0.f};
|
|
||||||
for (int l = 0; l < 4; ++l) {
|
for (int l = 0; l < 4; ++l) {
|
||||||
yl[l+0] = y[l+ 0];
|
yl[l+0] = y[l+ 0];
|
||||||
yl[l+4] = y[l+16];
|
yl[l+4] = y[l+16];
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
//go:build mpi
|
//go:build mpi
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
|
* llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
|
||||||
*
|
*
|
||||||
* MIT License
|
* MIT License
|
||||||
*
|
*
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
//go:build mpi
|
//go:build mpi
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
|
* llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
|
||||||
*
|
*
|
||||||
* MIT License
|
* MIT License
|
||||||
*
|
*
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
//go:build opencl
|
//go:build opencl
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
|
* llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
|
||||||
*
|
*
|
||||||
* MIT License
|
* MIT License
|
||||||
*
|
*
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
//go:build opencl
|
//go:build opencl
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
|
* llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
|
||||||
*
|
*
|
||||||
* MIT License
|
* MIT License
|
||||||
*
|
*
|
||||||
|
|
1631
llama/ggml.c
1631
llama/ggml.c
File diff suppressed because it is too large
Load diff
108
llama/ggml.h
108
llama/ggml.h
|
@ -1,5 +1,5 @@
|
||||||
/**
|
/**
|
||||||
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
|
* llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
|
||||||
*
|
*
|
||||||
* MIT License
|
* MIT License
|
||||||
*
|
*
|
||||||
|
@ -225,6 +225,7 @@
|
||||||
#define GGML_MAX_CONTEXTS 64
|
#define GGML_MAX_CONTEXTS 64
|
||||||
#define GGML_MAX_SRC 6
|
#define GGML_MAX_SRC 6
|
||||||
#define GGML_MAX_NAME 48
|
#define GGML_MAX_NAME 48
|
||||||
|
#define GGML_MAX_OP_PARAMS 32
|
||||||
#define GGML_DEFAULT_N_THREADS 4
|
#define GGML_DEFAULT_N_THREADS 4
|
||||||
|
|
||||||
|
|
||||||
|
@ -233,6 +234,7 @@
|
||||||
|
|
||||||
#define GGML_UNUSED(x) (void)(x)
|
#define GGML_UNUSED(x) (void)(x)
|
||||||
|
|
||||||
|
#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
|
||||||
|
|
||||||
#define GGML_ASSERT(x) \
|
#define GGML_ASSERT(x) \
|
||||||
do { \
|
do { \
|
||||||
|
@ -355,16 +357,6 @@ extern "C" {
|
||||||
GGML_OP_ARGMAX,
|
GGML_OP_ARGMAX,
|
||||||
GGML_OP_REPEAT,
|
GGML_OP_REPEAT,
|
||||||
GGML_OP_REPEAT_BACK,
|
GGML_OP_REPEAT_BACK,
|
||||||
GGML_OP_ABS,
|
|
||||||
GGML_OP_SGN,
|
|
||||||
GGML_OP_NEG,
|
|
||||||
GGML_OP_STEP,
|
|
||||||
GGML_OP_TANH,
|
|
||||||
GGML_OP_ELU,
|
|
||||||
GGML_OP_RELU,
|
|
||||||
GGML_OP_GELU,
|
|
||||||
GGML_OP_GELU_QUICK,
|
|
||||||
GGML_OP_SILU,
|
|
||||||
GGML_OP_SILU_BACK,
|
GGML_OP_SILU_BACK,
|
||||||
GGML_OP_NORM, // normalize
|
GGML_OP_NORM, // normalize
|
||||||
GGML_OP_RMS_NORM,
|
GGML_OP_RMS_NORM,
|
||||||
|
@ -403,6 +395,8 @@ extern "C" {
|
||||||
GGML_OP_WIN_PART,
|
GGML_OP_WIN_PART,
|
||||||
GGML_OP_WIN_UNPART,
|
GGML_OP_WIN_UNPART,
|
||||||
|
|
||||||
|
GGML_OP_UNARY,
|
||||||
|
|
||||||
GGML_OP_MAP_UNARY,
|
GGML_OP_MAP_UNARY,
|
||||||
GGML_OP_MAP_BINARY,
|
GGML_OP_MAP_BINARY,
|
||||||
|
|
||||||
|
@ -416,6 +410,24 @@ extern "C" {
|
||||||
GGML_OP_COUNT,
|
GGML_OP_COUNT,
|
||||||
};
|
};
|
||||||
|
|
||||||
|
enum ggml_unary_op {
|
||||||
|
GGML_UNARY_OP_ABS,
|
||||||
|
GGML_UNARY_OP_SGN,
|
||||||
|
GGML_UNARY_OP_NEG,
|
||||||
|
GGML_UNARY_OP_STEP,
|
||||||
|
GGML_UNARY_OP_TANH,
|
||||||
|
GGML_UNARY_OP_ELU,
|
||||||
|
GGML_UNARY_OP_RELU,
|
||||||
|
GGML_UNARY_OP_GELU,
|
||||||
|
GGML_UNARY_OP_GELU_QUICK,
|
||||||
|
GGML_UNARY_OP_SILU,
|
||||||
|
};
|
||||||
|
|
||||||
|
enum ggml_object_type {
|
||||||
|
GGML_OBJECT_TENSOR,
|
||||||
|
GGML_OBJECT_GRAPH,
|
||||||
|
GGML_OBJECT_WORK_BUFFER
|
||||||
|
};
|
||||||
|
|
||||||
// ggml object
|
// ggml object
|
||||||
struct ggml_object {
|
struct ggml_object {
|
||||||
|
@ -424,7 +436,9 @@ extern "C" {
|
||||||
|
|
||||||
struct ggml_object * next;
|
struct ggml_object * next;
|
||||||
|
|
||||||
char padding[8];
|
enum ggml_object_type type;
|
||||||
|
|
||||||
|
char padding[4];
|
||||||
};
|
};
|
||||||
|
|
||||||
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
|
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
|
||||||
|
@ -444,6 +458,9 @@ extern "C" {
|
||||||
// compute data
|
// compute data
|
||||||
enum ggml_op op;
|
enum ggml_op op;
|
||||||
|
|
||||||
|
// op params - allocated as int32_t for alignment
|
||||||
|
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
|
||||||
|
|
||||||
bool is_param;
|
bool is_param;
|
||||||
|
|
||||||
struct ggml_tensor * grad;
|
struct ggml_tensor * grad;
|
||||||
|
@ -460,7 +477,7 @@ extern "C" {
|
||||||
|
|
||||||
void * extra; // extra things e.g. for ggml-cuda.cu
|
void * extra; // extra things e.g. for ggml-cuda.cu
|
||||||
|
|
||||||
char padding[8];
|
char padding[4];
|
||||||
};
|
};
|
||||||
|
|
||||||
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
|
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
|
||||||
|
@ -481,6 +498,11 @@ extern "C" {
|
||||||
void * abort_callback_data;
|
void * abort_callback_data;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
// next prime after GGML_MAX_NODES
|
||||||
|
// #define GGML_GRAPH_HASHTABLE_SIZE 4099
|
||||||
|
// next prime after GGML_MAX_NODES * 2 (nodes + leafs)
|
||||||
|
#define GGML_GRAPH_HASHTABLE_SIZE 8273
|
||||||
|
|
||||||
// computation graph
|
// computation graph
|
||||||
struct ggml_cgraph {
|
struct ggml_cgraph {
|
||||||
int n_nodes;
|
int n_nodes;
|
||||||
|
@ -490,12 +512,16 @@ extern "C" {
|
||||||
struct ggml_tensor * grads[GGML_MAX_NODES];
|
struct ggml_tensor * grads[GGML_MAX_NODES];
|
||||||
struct ggml_tensor * leafs[GGML_MAX_NODES];
|
struct ggml_tensor * leafs[GGML_MAX_NODES];
|
||||||
|
|
||||||
|
void * visited_hash_table[GGML_GRAPH_HASHTABLE_SIZE];
|
||||||
|
|
||||||
// performance
|
// performance
|
||||||
int perf_runs;
|
int perf_runs;
|
||||||
int64_t perf_cycles;
|
int64_t perf_cycles;
|
||||||
int64_t perf_time_us;
|
int64_t perf_time_us;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
static const size_t GGML_GRAPH_SIZE = sizeof(struct ggml_cgraph);
|
||||||
|
|
||||||
// scratch buffer
|
// scratch buffer
|
||||||
struct ggml_scratch {
|
struct ggml_scratch {
|
||||||
size_t offs;
|
size_t offs;
|
||||||
|
@ -557,6 +583,7 @@ extern "C" {
|
||||||
|
|
||||||
GGML_API const char * ggml_type_name(enum ggml_type type);
|
GGML_API const char * ggml_type_name(enum ggml_type type);
|
||||||
GGML_API const char * ggml_op_name (enum ggml_op op);
|
GGML_API const char * ggml_op_name (enum ggml_op op);
|
||||||
|
GGML_API const char * ggml_op_symbol(enum ggml_op op);
|
||||||
|
|
||||||
GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
|
GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
|
||||||
|
|
||||||
|
@ -580,6 +607,7 @@ extern "C" {
|
||||||
GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
|
GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
|
||||||
|
|
||||||
GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
|
GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
|
||||||
|
GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
|
||||||
GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
|
GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
|
||||||
|
|
||||||
GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
|
GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
|
||||||
|
@ -639,9 +667,11 @@ extern "C" {
|
||||||
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
|
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
|
||||||
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
|
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
|
||||||
|
|
||||||
GGML_API const char * ggml_get_name(const struct ggml_tensor * tensor);
|
GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
|
||||||
GGML_API struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name);
|
|
||||||
GGML_API struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...);
|
GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
|
||||||
|
GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
|
||||||
|
GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
|
||||||
|
|
||||||
//
|
//
|
||||||
// operations on tensors with backpropagation
|
// operations on tensors with backpropagation
|
||||||
|
@ -651,6 +681,11 @@ extern "C" {
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a);
|
struct ggml_tensor * a);
|
||||||
|
|
||||||
|
// in-place, returns view(a)
|
||||||
|
GGML_API struct ggml_tensor * ggml_dup_inplace(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a);
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_add(
|
GGML_API struct ggml_tensor * ggml_add(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
|
@ -875,14 +910,17 @@ extern "C" {
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_rms_norm(
|
GGML_API struct ggml_tensor * ggml_rms_norm(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a);
|
struct ggml_tensor * a,
|
||||||
|
float eps);
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
|
GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a);
|
struct ggml_tensor * a,
|
||||||
|
float eps);
|
||||||
|
|
||||||
// a - x
|
// a - x
|
||||||
// b - dy
|
// b - dy
|
||||||
|
// TODO: update with configurable eps
|
||||||
GGML_API struct ggml_tensor * ggml_rms_norm_back(
|
GGML_API struct ggml_tensor * ggml_rms_norm_back(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
|
@ -974,11 +1012,22 @@ extern "C" {
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
struct ggml_tensor * b);
|
struct ggml_tensor * b);
|
||||||
|
|
||||||
|
// a -> b, in-place, return view(b)
|
||||||
|
GGML_API struct ggml_tensor * ggml_cpy_inplace(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b);
|
||||||
|
|
||||||
// make contiguous
|
// make contiguous
|
||||||
GGML_API struct ggml_tensor * ggml_cont(
|
GGML_API struct ggml_tensor * ggml_cont(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a);
|
struct ggml_tensor * a);
|
||||||
|
|
||||||
|
// make contiguous, in-place
|
||||||
|
GGML_API struct ggml_tensor * ggml_cont_inplace(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a);
|
||||||
|
|
||||||
// return view(a), b specifies the new shape
|
// return view(a), b specifies the new shape
|
||||||
// TODO: when we start computing gradient, make a copy instead of view
|
// TODO: when we start computing gradient, make a copy instead of view
|
||||||
GGML_API struct ggml_tensor * ggml_reshape(
|
GGML_API struct ggml_tensor * ggml_reshape(
|
||||||
|
@ -1154,9 +1203,9 @@ extern "C" {
|
||||||
int n_past,
|
int n_past,
|
||||||
int n_dims,
|
int n_dims,
|
||||||
int mode,
|
int mode,
|
||||||
|
int n_ctx,
|
||||||
float freq_base,
|
float freq_base,
|
||||||
float freq_scale,
|
float freq_scale);
|
||||||
int n_ctx);
|
|
||||||
|
|
||||||
// rotary position embedding backward, i.e compute dx from dy
|
// rotary position embedding backward, i.e compute dx from dy
|
||||||
// a - dy
|
// a - dy
|
||||||
|
@ -1165,7 +1214,8 @@ extern "C" {
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
int n_past,
|
int n_past,
|
||||||
int n_dims,
|
int n_dims,
|
||||||
int mode);
|
int mode,
|
||||||
|
int n_ctx);
|
||||||
|
|
||||||
// alibi position embedding
|
// alibi position embedding
|
||||||
// in-place, returns view(a)
|
// in-place, returns view(a)
|
||||||
|
@ -1289,6 +1339,16 @@ extern "C" {
|
||||||
typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
||||||
typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
||||||
|
|
||||||
|
GGML_API struct ggml_tensor * ggml_unary(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
enum ggml_unary_op op);
|
||||||
|
|
||||||
|
GGML_API struct ggml_tensor * ggml_unary_inplace(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
enum ggml_unary_op op);
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_map_unary_f32(
|
GGML_API struct ggml_tensor * ggml_map_unary_f32(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
|
@ -1368,11 +1428,17 @@ extern "C" {
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * tensor);
|
struct ggml_tensor * tensor);
|
||||||
|
|
||||||
|
|
||||||
GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
||||||
|
|
||||||
GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
|
GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
|
||||||
GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
|
GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
|
||||||
|
|
||||||
|
// graph allocation in a context
|
||||||
|
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx);
|
||||||
|
GGML_API struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor);
|
||||||
|
GGML_API size_t ggml_graph_overhead(void);
|
||||||
|
|
||||||
// ggml_graph_plan() has to be called before ggml_graph_compute()
|
// ggml_graph_plan() has to be called before ggml_graph_compute()
|
||||||
// when plan.work_size > 0, caller must allocate memory for plan.work_data
|
// when plan.work_size > 0, caller must allocate memory for plan.work_data
|
||||||
GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
|
GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
|
||||||
|
|
332
llama/k_quants.c
332
llama/k_quants.c
|
@ -1,5 +1,5 @@
|
||||||
/**
|
/**
|
||||||
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
|
* llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
|
||||||
*
|
*
|
||||||
* MIT License
|
* MIT License
|
||||||
*
|
*
|
||||||
|
@ -1692,6 +1692,62 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
|
|
||||||
*s = hsum_float_8(acc) + summs;
|
*s = hsum_float_8(acc) + summs;
|
||||||
|
|
||||||
|
#elif defined __AVX__
|
||||||
|
|
||||||
|
const __m128i m3 = _mm_set1_epi8(3);
|
||||||
|
|
||||||
|
__m256 acc = _mm256_setzero_ps();
|
||||||
|
|
||||||
|
uint32_t ud, um;
|
||||||
|
const uint8_t * restrict db = (const uint8_t *)&ud;
|
||||||
|
const uint8_t * restrict mb = (const uint8_t *)&um;
|
||||||
|
|
||||||
|
float summs = 0;
|
||||||
|
|
||||||
|
// TODO: optimize this
|
||||||
|
|
||||||
|
for (int i = 0; i < nb; ++i) {
|
||||||
|
|
||||||
|
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
|
||||||
|
const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
|
||||||
|
|
||||||
|
const uint8_t * restrict q2 = x[i].qs;
|
||||||
|
const int8_t * restrict q8 = y[i].qs;
|
||||||
|
|
||||||
|
const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
|
||||||
|
ud = (sc[0] >> 0) & 0x0f0f0f0f;
|
||||||
|
um = (sc[0] >> 4) & 0x0f0f0f0f;
|
||||||
|
|
||||||
|
int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
|
||||||
|
summs += dmin * smin;
|
||||||
|
|
||||||
|
const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
|
||||||
|
const __m128i q2_0 = _mm_and_si128(q2bits, m3);
|
||||||
|
const __m128i q2_1 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
|
||||||
|
const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
|
||||||
|
const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
|
||||||
|
|
||||||
|
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
|
||||||
|
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
|
||||||
|
|
||||||
|
const __m128i p0 = _mm_maddubs_epi16(q2_0, _mm256_extractf128_si256(q8_0, 0));
|
||||||
|
const __m128i p1 = _mm_maddubs_epi16(q2_1, _mm256_extractf128_si256(q8_0, 1));
|
||||||
|
const __m128i p2 = _mm_maddubs_epi16(q2_2, _mm256_extractf128_si256(q8_1, 0));
|
||||||
|
const __m128i p3 = _mm_maddubs_epi16(q2_3, _mm256_extractf128_si256(q8_1, 1));
|
||||||
|
|
||||||
|
const __m256i p_0 = _mm256_set_m128i(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0));
|
||||||
|
const __m256i p_1 = _mm256_set_m128i(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1));
|
||||||
|
const __m256i p_2 = _mm256_set_m128i(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2));
|
||||||
|
const __m256i p_3 = _mm256_set_m128i(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3));
|
||||||
|
|
||||||
|
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0)), acc);
|
||||||
|
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1)), acc);
|
||||||
|
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2)), acc);
|
||||||
|
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3)), acc);
|
||||||
|
}
|
||||||
|
|
||||||
|
*s = hsum_float_8(acc) + summs;
|
||||||
|
|
||||||
#else
|
#else
|
||||||
|
|
||||||
float sumf = 0;
|
float sumf = 0;
|
||||||
|
@ -2321,6 +2377,93 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
|
|
||||||
*s = hsum_float_8(acc);
|
*s = hsum_float_8(acc);
|
||||||
|
|
||||||
|
#elif defined __AVX__
|
||||||
|
|
||||||
|
const __m128i m3 = _mm_set1_epi8(3);
|
||||||
|
const __m128i m1 = _mm_set1_epi8(1);
|
||||||
|
|
||||||
|
__m256 acc = _mm256_setzero_ps();
|
||||||
|
|
||||||
|
uint64_t aux64;
|
||||||
|
|
||||||
|
uint16_t aux16[2];
|
||||||
|
const int8_t * aux8 = (const int8_t *)aux16;
|
||||||
|
|
||||||
|
for (int i = 0; i < nb; ++i) {
|
||||||
|
|
||||||
|
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
|
||||||
|
|
||||||
|
const uint8_t * restrict q3 = x[i].qs;
|
||||||
|
const int8_t * restrict q8 = y[i].qs;
|
||||||
|
|
||||||
|
const uint16_t a = *(const uint16_t *)x[i].scales;
|
||||||
|
aux16[0] = a & 0x0f0f;
|
||||||
|
aux16[1] = (a >> 4) & 0x0f0f;
|
||||||
|
|
||||||
|
const __m128i scale_0 = _mm_set1_epi16(aux8[0] - 8);
|
||||||
|
const __m128i scale_1 = _mm_set1_epi16(aux8[2] - 8);
|
||||||
|
const __m128i scale_2 = _mm_set1_epi16(aux8[1] - 8);
|
||||||
|
const __m128i scale_3 = _mm_set1_epi16(aux8[3] - 8);
|
||||||
|
|
||||||
|
memcpy(&aux64, x[i].hmask, 8);
|
||||||
|
|
||||||
|
__m128i q3h_0 = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
|
||||||
|
__m128i q3h_1 = _mm_srli_epi16(q3h_0, 2);
|
||||||
|
__m128i q3h_2 = _mm_srli_epi16(q3h_0, 4);
|
||||||
|
__m128i q3h_3 = _mm_srli_epi16(q3h_0, 6);
|
||||||
|
q3h_0 = _mm_slli_epi16(_mm_andnot_si128(q3h_0, m1), 2);
|
||||||
|
q3h_1 = _mm_slli_epi16(_mm_andnot_si128(q3h_1, m1), 2);
|
||||||
|
q3h_2 = _mm_slli_epi16(_mm_andnot_si128(q3h_2, m1), 2);
|
||||||
|
q3h_3 = _mm_slli_epi16(_mm_andnot_si128(q3h_3, m1), 2);
|
||||||
|
|
||||||
|
// load low 2 bits
|
||||||
|
const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
|
||||||
|
|
||||||
|
// prepare low and high bits
|
||||||
|
const __m128i q3l_0 = _mm_and_si128(q3bits, m3);
|
||||||
|
const __m128i q3l_1 = _mm_and_si128(_mm_srli_epi16(q3bits, 2), m3);
|
||||||
|
const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits, 4), m3);
|
||||||
|
const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits, 6), m3);
|
||||||
|
|
||||||
|
// load Q8 quants
|
||||||
|
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
|
||||||
|
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
|
||||||
|
|
||||||
|
// Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm_maddubs_epi16,
|
||||||
|
// and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
|
||||||
|
// and 2 if the high bit was set)
|
||||||
|
const __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, _mm256_extractf128_si256(q8_0, 0));
|
||||||
|
const __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, _mm256_extractf128_si256(q8_0, 1));
|
||||||
|
const __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, _mm256_extractf128_si256(q8_1, 0));
|
||||||
|
const __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, _mm256_extractf128_si256(q8_1, 1));
|
||||||
|
|
||||||
|
__m128i p16_0 = _mm_maddubs_epi16(q3l_0, _mm256_extractf128_si256(q8_0, 0));
|
||||||
|
__m128i p16_1 = _mm_maddubs_epi16(q3l_1, _mm256_extractf128_si256(q8_0, 1));
|
||||||
|
__m128i p16_2 = _mm_maddubs_epi16(q3l_2, _mm256_extractf128_si256(q8_1, 0));
|
||||||
|
__m128i p16_3 = _mm_maddubs_epi16(q3l_3, _mm256_extractf128_si256(q8_1, 1));
|
||||||
|
|
||||||
|
p16_0 = _mm_sub_epi16(p16_0, q8s_0);
|
||||||
|
p16_1 = _mm_sub_epi16(p16_1, q8s_1);
|
||||||
|
p16_2 = _mm_sub_epi16(p16_2, q8s_2);
|
||||||
|
p16_3 = _mm_sub_epi16(p16_3, q8s_3);
|
||||||
|
|
||||||
|
// multiply with scales
|
||||||
|
p16_0 = _mm_madd_epi16(scale_0, p16_0);
|
||||||
|
p16_1 = _mm_madd_epi16(scale_1, p16_1);
|
||||||
|
p16_2 = _mm_madd_epi16(scale_2, p16_2);
|
||||||
|
p16_3 = _mm_madd_epi16(scale_3, p16_3);
|
||||||
|
|
||||||
|
p16_0 = _mm_add_epi32(p16_0, p16_2);
|
||||||
|
p16_1 = _mm_add_epi32(p16_1, p16_3);
|
||||||
|
__m256i p16 = _mm256_set_m128i(p16_1, p16_0);
|
||||||
|
|
||||||
|
// multiply with block scale and accumulate
|
||||||
|
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16)), acc);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
*s = hsum_float_8(acc);
|
||||||
|
|
||||||
#else
|
#else
|
||||||
|
|
||||||
int8_t aux8[QK_K];
|
int8_t aux8[QK_K];
|
||||||
|
@ -2807,6 +2950,60 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
|
|
||||||
*s = hsum_float_8(acc) - summs;
|
*s = hsum_float_8(acc) - summs;
|
||||||
|
|
||||||
|
#elif defined __AVX__
|
||||||
|
|
||||||
|
const __m128i m4 = _mm_set1_epi8(0xF);
|
||||||
|
|
||||||
|
__m256 acc = _mm256_setzero_ps();
|
||||||
|
|
||||||
|
float summs = 0;
|
||||||
|
|
||||||
|
uint16_t aux16[2];
|
||||||
|
const uint8_t * scales = (const uint8_t *)aux16;
|
||||||
|
|
||||||
|
for (int i = 0; i < nb; ++i) {
|
||||||
|
|
||||||
|
const float d = ggml_fp16_to_fp32(x[i].d[0]) * y[i].d;
|
||||||
|
const float m = ggml_fp16_to_fp32(x[i].d[1]) * y[i].d;
|
||||||
|
const __m256 vd = _mm256_set1_ps(d);
|
||||||
|
|
||||||
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
||||||
|
aux16[0] = a[0] & 0x0f0f;
|
||||||
|
aux16[1] = (a[0] >> 4) & 0x0f0f;
|
||||||
|
|
||||||
|
summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
|
||||||
|
|
||||||
|
const uint8_t * restrict q4 = x[i].qs;
|
||||||
|
const int8_t * restrict q8 = y[i].qs;
|
||||||
|
|
||||||
|
const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
|
||||||
|
const __m128i q4bits_0 = _mm256_extractf128_si256(q4bits, 0);
|
||||||
|
const __m128i q4bits_1 = _mm256_extractf128_si256(q4bits, 1);
|
||||||
|
const __m128i q4_0 = _mm_and_si128(q4bits_0, m4);
|
||||||
|
const __m128i q4_1 = _mm_and_si128(q4bits_1, m4);
|
||||||
|
const __m128i q4_2 = _mm_and_si128(_mm_srli_epi16(q4bits_0, 4), m4);
|
||||||
|
const __m128i q4_3 = _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4);
|
||||||
|
|
||||||
|
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
|
||||||
|
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
|
||||||
|
|
||||||
|
const __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
|
||||||
|
const __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
|
||||||
|
const __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
|
||||||
|
const __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
|
||||||
|
|
||||||
|
const __m128i p32_0 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_0);
|
||||||
|
const __m128i p32_1 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_1);
|
||||||
|
acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(_mm256_set_m128i(p32_1, p32_0))), acc);
|
||||||
|
|
||||||
|
const __m128i p32_2 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_2);
|
||||||
|
const __m128i p32_3 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_3);
|
||||||
|
acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(_mm256_set_m128i(p32_3, p32_2))), acc);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
*s = hsum_float_8(acc) - summs;
|
||||||
|
|
||||||
#else
|
#else
|
||||||
|
|
||||||
uint8_t aux8[QK_K];
|
uint8_t aux8[QK_K];
|
||||||
|
@ -3321,10 +3518,66 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
|
|
||||||
*s = hsum_float_8(acc);
|
*s = hsum_float_8(acc);
|
||||||
|
|
||||||
|
#elif defined __AVX__
|
||||||
|
|
||||||
|
const __m128i m4 = _mm_set1_epi8(0xF);
|
||||||
|
const __m128i mone = _mm_set1_epi8(1);
|
||||||
|
|
||||||
|
__m256 acc = _mm256_setzero_ps();
|
||||||
|
|
||||||
|
for (int i = 0; i < nb; ++i) {
|
||||||
|
|
||||||
|
const uint8_t * restrict q5 = x[i].qs;
|
||||||
|
const int8_t * restrict q8 = y[i].qs;
|
||||||
|
|
||||||
|
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
|
||||||
|
|
||||||
|
const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
|
||||||
|
|
||||||
|
const __m128i scale_0 = _mm_set1_epi16(x[i].scales[0]);
|
||||||
|
const __m128i scale_1 = _mm_set1_epi16(x[i].scales[1]);
|
||||||
|
const __m128i scale_2 = _mm_set1_epi16(x[i].scales[2]);
|
||||||
|
const __m128i scale_3 = _mm_set1_epi16(x[i].scales[3]);
|
||||||
|
|
||||||
|
int64_t aux64;
|
||||||
|
memcpy(&aux64, x[i].qh, 8);
|
||||||
|
const __m128i haux128_0 = _mm_set_epi64x(aux64 >> 1, aux64);
|
||||||
|
const __m128i haux128_1 = _mm_srli_epi16(haux128_0, 2);
|
||||||
|
|
||||||
|
const __m128i q5h_0 = _mm_slli_epi16(_mm_andnot_si128(haux128_0, mone), 4);
|
||||||
|
const __m128i q5h_1 = _mm_slli_epi16(_mm_andnot_si128(haux128_1, mone), 4);
|
||||||
|
const __m128i q5h_2 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_0, 4), mone), 4);
|
||||||
|
const __m128i q5h_3 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_1, 4), mone), 4);
|
||||||
|
|
||||||
|
const __m128i q5l_0 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 0), m4);
|
||||||
|
const __m128i q5l_1 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 1), m4);
|
||||||
|
const __m128i q5l_2 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 0), 4), m4);
|
||||||
|
const __m128i q5l_3 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 1), 4), m4);
|
||||||
|
|
||||||
|
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
|
||||||
|
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
|
||||||
|
|
||||||
|
const __m128i p16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5l_0, _mm256_extractf128_si256(q8_0, 0)));
|
||||||
|
const __m128i p16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5l_1, _mm256_extractf128_si256(q8_0, 1)));
|
||||||
|
const __m128i p16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5l_2, _mm256_extractf128_si256(q8_1, 0)));
|
||||||
|
const __m128i p16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5l_3, _mm256_extractf128_si256(q8_1, 1)));
|
||||||
|
const __m128i s16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5h_0, _mm256_extractf128_si256(q8_0, 0)));
|
||||||
|
const __m128i s16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5h_1, _mm256_extractf128_si256(q8_0, 1)));
|
||||||
|
const __m128i s16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5h_2, _mm256_extractf128_si256(q8_1, 0)));
|
||||||
|
const __m128i s16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5h_3, _mm256_extractf128_si256(q8_1, 1)));
|
||||||
|
|
||||||
|
const __m128i dot_0 = _mm_sub_epi32(_mm_add_epi32(p16_0, p16_2), _mm_add_epi32(s16_0, s16_2));
|
||||||
|
const __m128i dot_1 = _mm_sub_epi32(_mm_add_epi32(p16_1, p16_3), _mm_add_epi32(s16_1, s16_3));
|
||||||
|
|
||||||
|
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_set_m128i(dot_1, dot_0))), acc);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
*s = hsum_float_8(acc);
|
||||||
|
|
||||||
#else
|
#else
|
||||||
|
|
||||||
|
int8_t aux8[QK_K];
|
||||||
uint8_t aux8[QK_K];
|
|
||||||
int16_t aux16[16];
|
int16_t aux16[16];
|
||||||
float sums [8];
|
float sums [8];
|
||||||
memset(sums, 0, 8*sizeof(float));
|
memset(sums, 0, 8*sizeof(float));
|
||||||
|
@ -3334,7 +3587,7 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
const uint8_t * restrict q4 = x[i].qs;
|
const uint8_t * restrict q4 = x[i].qs;
|
||||||
const uint8_t * restrict hm = x[i].qh;
|
const uint8_t * restrict hm = x[i].qh;
|
||||||
const int8_t * restrict q8 = y[i].qs;
|
const int8_t * restrict q8 = y[i].qs;
|
||||||
uint8_t * restrict a = aux8;
|
int8_t * restrict a = aux8;
|
||||||
for (int l = 0; l < 32; ++l) {
|
for (int l = 0; l < 32; ++l) {
|
||||||
a[l+ 0] = q4[l] & 0xF;
|
a[l+ 0] = q4[l] & 0xF;
|
||||||
a[l+32] = q4[l] >> 4;
|
a[l+32] = q4[l] >> 4;
|
||||||
|
@ -3884,6 +4137,77 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
|
|
||||||
*s = hsum_float_8(acc);
|
*s = hsum_float_8(acc);
|
||||||
|
|
||||||
|
#elif defined __AVX__
|
||||||
|
|
||||||
|
const __m128i m4 = _mm_set1_epi8(0xF);
|
||||||
|
const __m128i m2 = _mm_set1_epi8(3);
|
||||||
|
const __m128i m32s = _mm_set1_epi8(32);
|
||||||
|
|
||||||
|
__m256 acc = _mm256_setzero_ps();
|
||||||
|
|
||||||
|
for (int i = 0; i < nb; ++i) {
|
||||||
|
|
||||||
|
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
|
||||||
|
|
||||||
|
const uint8_t * restrict q4 = x[i].ql;
|
||||||
|
const uint8_t * restrict qh = x[i].qh;
|
||||||
|
const int8_t * restrict q8 = y[i].qs;
|
||||||
|
|
||||||
|
const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
|
||||||
|
const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
|
||||||
|
const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
|
||||||
|
const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
|
||||||
|
|
||||||
|
__m128i sumi_0 = _mm_setzero_si128();
|
||||||
|
__m128i sumi_1 = _mm_setzero_si128();
|
||||||
|
|
||||||
|
const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
|
||||||
|
const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
|
||||||
|
|
||||||
|
const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
|
||||||
|
const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
|
||||||
|
|
||||||
|
const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH, m2), 4);
|
||||||
|
const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 2), m2), 4);
|
||||||
|
const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 4), m2), 4);
|
||||||
|
const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 6), m2), 4);
|
||||||
|
|
||||||
|
const __m128i q4_0 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 0), m4), q4h_0);
|
||||||
|
const __m128i q4_1 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 1), m4), q4h_1);
|
||||||
|
const __m128i q4_2 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 0), 4), m4), q4h_2);
|
||||||
|
const __m128i q4_3 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 1), 4), m4), q4h_3);
|
||||||
|
|
||||||
|
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
|
||||||
|
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
|
||||||
|
|
||||||
|
__m128i q8s_0 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 0));
|
||||||
|
__m128i q8s_1 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 1));
|
||||||
|
__m128i q8s_2 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 0));
|
||||||
|
__m128i q8s_3 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 1));
|
||||||
|
|
||||||
|
__m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
|
||||||
|
__m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
|
||||||
|
__m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
|
||||||
|
__m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
|
||||||
|
|
||||||
|
p16_0 = _mm_sub_epi16(p16_0, q8s_0);
|
||||||
|
p16_1 = _mm_sub_epi16(p16_1, q8s_1);
|
||||||
|
p16_2 = _mm_sub_epi16(p16_2, q8s_2);
|
||||||
|
p16_3 = _mm_sub_epi16(p16_3, q8s_3);
|
||||||
|
|
||||||
|
p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
|
||||||
|
p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
|
||||||
|
p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
|
||||||
|
p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
|
||||||
|
|
||||||
|
sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
|
||||||
|
sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
|
||||||
|
|
||||||
|
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(_mm256_set_m128i(sumi_1, sumi_0))), acc);
|
||||||
|
}
|
||||||
|
|
||||||
|
*s = hsum_float_8(acc);
|
||||||
|
|
||||||
#else
|
#else
|
||||||
|
|
||||||
int8_t aux8[QK_K];
|
int8_t aux8[QK_K];
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
/**
|
/**
|
||||||
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
|
* llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
|
||||||
*
|
*
|
||||||
* MIT License
|
* MIT License
|
||||||
*
|
*
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
/**
|
/**
|
||||||
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
|
* llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
|
||||||
*
|
*
|
||||||
* MIT License
|
* MIT License
|
||||||
*
|
*
|
||||||
|
|
621
llama/llama.cpp
621
llama/llama.cpp
|
@ -1,5 +1,5 @@
|
||||||
/**
|
/**
|
||||||
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
|
* llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
|
||||||
*
|
*
|
||||||
* MIT License
|
* MIT License
|
||||||
*
|
*
|
||||||
|
@ -93,6 +93,7 @@ enum e_model {
|
||||||
MODEL_13B,
|
MODEL_13B,
|
||||||
MODEL_30B,
|
MODEL_30B,
|
||||||
MODEL_65B,
|
MODEL_65B,
|
||||||
|
MODEL_70B,
|
||||||
};
|
};
|
||||||
|
|
||||||
static const size_t kB = 1024;
|
static const size_t kB = 1024;
|
||||||
|
@ -124,18 +125,18 @@ static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph *
|
||||||
}
|
}
|
||||||
|
|
||||||
//
|
//
|
||||||
// memory sizes
|
// memory sizes (calculated for n_batch == 512)
|
||||||
//
|
//
|
||||||
|
|
||||||
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0(int n_ctx)
|
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0(int n_ctx)
|
||||||
{
|
{
|
||||||
static std::map<e_model, size_t> k_sizes = {
|
static std::map<e_model, size_t> k_sizes = {
|
||||||
/* empirical scaling, still a guess */
|
{ MODEL_3B, ((size_t) n_ctx / 16ull + 92ull) * MB },
|
||||||
{ MODEL_3B, ((size_t) n_ctx / 16ull + 128ull) * MB },
|
{ MODEL_7B, ((size_t) n_ctx / 16ull + 100ull) * MB },
|
||||||
{ MODEL_7B, ((size_t) n_ctx / 16ull + 256ull) * MB },
|
{ MODEL_13B, ((size_t) n_ctx / 12ull + 120ull) * MB },
|
||||||
{ MODEL_13B, ((size_t) n_ctx / 12ull + 256ull) * MB },
|
{ MODEL_30B, ((size_t) n_ctx / 9ull + 160ull) * MB },
|
||||||
{ MODEL_30B, ((size_t) n_ctx / 10ull + 256ull) * MB },
|
{ MODEL_65B, ((size_t) n_ctx / 6ull + 256ull) * MB }, // guess
|
||||||
{ MODEL_65B, ((size_t) n_ctx / 8ull + 512ull) * MB },
|
{ MODEL_70B, ((size_t) n_ctx / 7ull + 164ull) * MB },
|
||||||
};
|
};
|
||||||
return k_sizes;
|
return k_sizes;
|
||||||
}
|
}
|
||||||
|
@ -143,38 +144,26 @@ static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0(int n_ctx)
|
||||||
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
|
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
|
||||||
{
|
{
|
||||||
static std::map<e_model, size_t> k_sizes = {
|
static std::map<e_model, size_t> k_sizes = {
|
||||||
{ MODEL_3B, 256ull * MB },
|
{ MODEL_3B, 128ull * MB },
|
||||||
{ MODEL_7B, 512ull * MB },
|
{ MODEL_7B, 160ull * MB },
|
||||||
{ MODEL_13B, 512ull * MB },
|
{ MODEL_13B, 192ull * MB },
|
||||||
{ MODEL_30B, 512ull * MB },
|
{ MODEL_30B, 256ull * MB },
|
||||||
{ MODEL_65B, 1024ull * MB },
|
{ MODEL_65B, 384ull * MB }, // guess
|
||||||
|
{ MODEL_70B, 304ull * MB },
|
||||||
};
|
};
|
||||||
return k_sizes;
|
return k_sizes;
|
||||||
}
|
}
|
||||||
|
|
||||||
// 2*n_embd*n_ctx*n_layer*sizeof(float16)
|
// used to store the compute graph tensors + non-scratch data
|
||||||
static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
|
static const std::map<e_model, size_t> & MEM_REQ_EVAL()
|
||||||
{
|
{
|
||||||
static std::map<e_model, size_t> k_sizes = {
|
static std::map<e_model, size_t> k_sizes = {
|
||||||
{ MODEL_3B, 682ull * MB },
|
{ MODEL_3B, 8ull * MB },
|
||||||
{ MODEL_7B, 1026ull * MB },
|
{ MODEL_7B, 10ull * MB },
|
||||||
{ MODEL_13B, 1608ull * MB },
|
{ MODEL_13B, 12ull * MB },
|
||||||
{ MODEL_30B, 3124ull * MB },
|
{ MODEL_30B, 16ull * MB },
|
||||||
{ MODEL_65B, 5120ull * MB },
|
{ MODEL_65B, 24ull * MB }, // guess
|
||||||
};
|
{ MODEL_70B, 24ull * MB },
|
||||||
return k_sizes;
|
|
||||||
}
|
|
||||||
|
|
||||||
// this is mostly needed for temporary mul_mat buffers to dequantize the data
|
|
||||||
// not actually needed if BLAS is disabled
|
|
||||||
static const std::map<e_model, size_t> & MEM_REQ_EVAL(int n_ctx)
|
|
||||||
{
|
|
||||||
static std::map<e_model, size_t> k_sizes = {
|
|
||||||
{ MODEL_3B, ((size_t) n_ctx / 256ull + 512ull) * MB },
|
|
||||||
{ MODEL_7B, ((size_t) n_ctx / 256ull + 768ull) * MB },
|
|
||||||
{ MODEL_13B, ((size_t) n_ctx / 256ull + 1024ull) * MB },
|
|
||||||
{ MODEL_30B, ((size_t) n_ctx / 256ull + 1280ull) * MB },
|
|
||||||
{ MODEL_65B, ((size_t) n_ctx / 256ull + 1536ull) * MB },
|
|
||||||
};
|
};
|
||||||
return k_sizes;
|
return k_sizes;
|
||||||
}
|
}
|
||||||
|
@ -189,6 +178,7 @@ static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_BASE()
|
||||||
{ MODEL_13B, 640ull * kB },
|
{ MODEL_13B, 640ull * kB },
|
||||||
{ MODEL_30B, 768ull * kB },
|
{ MODEL_30B, 768ull * kB },
|
||||||
{ MODEL_65B, 1536ull * kB },
|
{ MODEL_65B, 1536ull * kB },
|
||||||
|
{ MODEL_70B, 1536ull * kB }, // TODO (likely can be reduced)
|
||||||
};
|
};
|
||||||
return k_sizes;
|
return k_sizes;
|
||||||
}
|
}
|
||||||
|
@ -203,6 +193,7 @@ static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_PER_CONTEXT()
|
||||||
{ MODEL_13B, 160ull },
|
{ MODEL_13B, 160ull },
|
||||||
{ MODEL_30B, 208ull },
|
{ MODEL_30B, 208ull },
|
||||||
{ MODEL_65B, 416ull },
|
{ MODEL_65B, 416ull },
|
||||||
|
{ MODEL_70B, 416ull }, // TODO (likely can be reduced)
|
||||||
};
|
};
|
||||||
return k_sizes;
|
return k_sizes;
|
||||||
}
|
}
|
||||||
|
@ -214,16 +205,43 @@ struct llama_hparams {
|
||||||
uint32_t n_embd = 4096;
|
uint32_t n_embd = 4096;
|
||||||
uint32_t n_mult = 256;
|
uint32_t n_mult = 256;
|
||||||
uint32_t n_head = 32;
|
uint32_t n_head = 32;
|
||||||
|
uint32_t n_head_kv = 32;
|
||||||
uint32_t n_layer = 32;
|
uint32_t n_layer = 32;
|
||||||
uint32_t n_rot = 64;
|
uint32_t n_rot = 64;
|
||||||
|
|
||||||
|
// LLaMAv2
|
||||||
|
// TODO: load from model data hparams
|
||||||
|
float f_ffn_mult = 1.0f;
|
||||||
|
float f_rms_norm_eps = LLAMA_DEFAULT_RMS_EPS;
|
||||||
|
|
||||||
float rope_freq_base = 10000.0f;
|
float rope_freq_base = 10000.0f;
|
||||||
float rope_freq_scale = 1.0f;
|
float rope_freq_scale = 1.0f;
|
||||||
|
|
||||||
enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
|
enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
|
||||||
|
|
||||||
bool operator!=(const llama_hparams & other) const {
|
bool operator!=(const llama_hparams & other) const {
|
||||||
return static_cast<bool>(memcmp(this, &other, sizeof(llama_hparams)));
|
return static_cast<bool>(memcmp(this, &other, sizeof(llama_hparams))); // NOLINT
|
||||||
|
}
|
||||||
|
|
||||||
|
uint32_t n_gqa() const {
|
||||||
|
return n_head/n_head_kv;
|
||||||
|
}
|
||||||
|
|
||||||
|
uint32_t n_embd_head() const {
|
||||||
|
return n_embd/n_head;
|
||||||
|
}
|
||||||
|
|
||||||
|
uint32_t n_embd_gqa() const {
|
||||||
|
return n_embd/n_gqa();
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t kv_size() const {
|
||||||
|
size_t result = 2ull;
|
||||||
|
result *= (size_t) n_embd_gqa();
|
||||||
|
result *= (size_t) n_ctx;
|
||||||
|
result *= (size_t) n_layer;
|
||||||
|
result *= sizeof(ggml_fp16_t);
|
||||||
|
return result;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -531,6 +549,10 @@ struct llama_file_loader {
|
||||||
hparams.n_layer = file.read_u32();
|
hparams.n_layer = file.read_u32();
|
||||||
hparams.n_rot = file.read_u32();
|
hparams.n_rot = file.read_u32();
|
||||||
hparams.ftype = (enum llama_ftype) file.read_u32();
|
hparams.ftype = (enum llama_ftype) file.read_u32();
|
||||||
|
|
||||||
|
// LLaMAv2
|
||||||
|
// TODO: read from header
|
||||||
|
hparams.n_head_kv = hparams.n_head;
|
||||||
}
|
}
|
||||||
void read_vocab() {
|
void read_vocab() {
|
||||||
vocab.id_to_token.resize(hparams.n_vocab);
|
vocab.id_to_token.resize(hparams.n_vocab);
|
||||||
|
@ -829,7 +851,7 @@ static bool kv_cache_init(
|
||||||
ggml_type wtype,
|
ggml_type wtype,
|
||||||
int n_ctx,
|
int n_ctx,
|
||||||
int n_gpu_layers) {
|
int n_gpu_layers) {
|
||||||
const int n_embd = hparams.n_embd;
|
const int n_embd = hparams.n_embd_gqa();
|
||||||
const int n_layer = hparams.n_layer;
|
const int n_layer = hparams.n_layer;
|
||||||
|
|
||||||
const int64_t n_mem = n_layer*n_ctx;
|
const int64_t n_mem = n_layer*n_ctx;
|
||||||
|
@ -873,9 +895,11 @@ struct llama_context_params llama_context_default_params() {
|
||||||
/*.seed =*/ LLAMA_DEFAULT_SEED,
|
/*.seed =*/ LLAMA_DEFAULT_SEED,
|
||||||
/*.n_ctx =*/ 512,
|
/*.n_ctx =*/ 512,
|
||||||
/*.n_batch =*/ 512,
|
/*.n_batch =*/ 512,
|
||||||
|
/*.n_gqa =*/ 1,
|
||||||
|
/*.rms_norm_eps =*/ LLAMA_DEFAULT_RMS_EPS,
|
||||||
/*.gpu_layers =*/ 0,
|
/*.gpu_layers =*/ 0,
|
||||||
/*.main_gpu =*/ 0,
|
/*.main_gpu =*/ 0,
|
||||||
/*.tensor_split =*/ {0},
|
/*.tensor_split =*/ nullptr,
|
||||||
/*.rope_freq_base =*/ 10000.0f,
|
/*.rope_freq_base =*/ 10000.0f,
|
||||||
/*.rope_freq_scale =*/ 1.0f,
|
/*.rope_freq_scale =*/ 1.0f,
|
||||||
/*.progress_callback =*/ nullptr,
|
/*.progress_callback =*/ nullptr,
|
||||||
|
@ -992,6 +1016,7 @@ static const char *llama_model_type_name(e_model type) {
|
||||||
case MODEL_13B: return "13B";
|
case MODEL_13B: return "13B";
|
||||||
case MODEL_30B: return "30B";
|
case MODEL_30B: return "30B";
|
||||||
case MODEL_65B: return "65B";
|
case MODEL_65B: return "65B";
|
||||||
|
case MODEL_70B: return "70B";
|
||||||
default: LLAMA_ASSERT(false);
|
default: LLAMA_ASSERT(false);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -1002,6 +1027,8 @@ static void llama_model_load_internal(
|
||||||
llama_vocab & vocab,
|
llama_vocab & vocab,
|
||||||
int n_ctx,
|
int n_ctx,
|
||||||
int n_batch,
|
int n_batch,
|
||||||
|
int n_gqa,
|
||||||
|
float rms_norm_eps,
|
||||||
int n_gpu_layers,
|
int n_gpu_layers,
|
||||||
int main_gpu,
|
int main_gpu,
|
||||||
const float * tensor_split,
|
const float * tensor_split,
|
||||||
|
@ -1023,8 +1050,12 @@ static void llama_model_load_internal(
|
||||||
model.hparams = ml->file_loader->hparams;
|
model.hparams = ml->file_loader->hparams;
|
||||||
model.n_gpu_layers = n_gpu_layers;
|
model.n_gpu_layers = n_gpu_layers;
|
||||||
llama_file_version file_version = ml->file_loader->file_version;
|
llama_file_version file_version = ml->file_loader->file_version;
|
||||||
|
|
||||||
auto & hparams = model.hparams;
|
auto & hparams = model.hparams;
|
||||||
|
|
||||||
|
// TODO: read from file
|
||||||
|
hparams.f_rms_norm_eps = rms_norm_eps;
|
||||||
|
|
||||||
{
|
{
|
||||||
switch (hparams.n_layer) {
|
switch (hparams.n_layer) {
|
||||||
case 26: model.type = e_model::MODEL_3B; break;
|
case 26: model.type = e_model::MODEL_3B; break;
|
||||||
|
@ -1042,11 +1073,25 @@ static void llama_model_load_internal(
|
||||||
|
|
||||||
hparams.n_ctx = n_ctx;
|
hparams.n_ctx = n_ctx;
|
||||||
|
|
||||||
|
// LLaMAv2
|
||||||
|
// TODO: temporary until GGUF
|
||||||
|
LLAMA_ASSERT(hparams.n_head % n_gqa == 0);
|
||||||
|
hparams.n_head_kv = hparams.n_head / n_gqa;
|
||||||
|
if (model.type == e_model::MODEL_65B && n_gqa == 8) {
|
||||||
|
fprintf(stderr, "%s: warning: assuming 70B model based on GQA == %d\n", __func__, n_gqa);
|
||||||
|
model.type = e_model::MODEL_70B;
|
||||||
|
hparams.f_ffn_mult = 1.3f; // from the params.json of the 70B model
|
||||||
|
}
|
||||||
|
|
||||||
hparams.rope_freq_base = rope_freq_base;
|
hparams.rope_freq_base = rope_freq_base;
|
||||||
hparams.rope_freq_scale = rope_freq_scale;
|
hparams.rope_freq_scale = rope_freq_scale;
|
||||||
}
|
}
|
||||||
|
|
||||||
const uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
|
// ref: https://github.com/facebookresearch/llama/blob/6c7fe276574e78057f917549435a2554000a876d/llama/model.py#L194-L199
|
||||||
|
const uint32_t n_ff_raw = 2*(4*hparams.n_embd)/3;
|
||||||
|
const uint32_t n_ff_mult = hparams.f_ffn_mult*n_ff_raw;
|
||||||
|
const uint32_t n_ff = ((n_ff_mult + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
|
||||||
|
//const uint32_t n_ff = 28672;
|
||||||
|
|
||||||
{
|
{
|
||||||
fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version));
|
fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version));
|
||||||
|
@ -1055,12 +1100,15 @@ static void llama_model_load_internal(
|
||||||
fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd);
|
fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd);
|
||||||
fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult);
|
fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult);
|
||||||
fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
|
fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
|
||||||
|
fprintf(stderr, "%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
|
||||||
fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
|
fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
|
||||||
fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
|
fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim
|
||||||
|
fprintf(stderr, "%s: n_gqa = %u\n", __func__, hparams.n_gqa());
|
||||||
|
fprintf(stderr, "%s: rnorm_eps = %.1e\n", __func__, hparams.f_rms_norm_eps);
|
||||||
|
fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
|
||||||
fprintf(stderr, "%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base);
|
fprintf(stderr, "%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base);
|
||||||
fprintf(stderr, "%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale);
|
fprintf(stderr, "%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale);
|
||||||
fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
|
fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
|
||||||
fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
|
|
||||||
fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
|
fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1095,7 +1143,7 @@ static void llama_model_load_internal(
|
||||||
{
|
{
|
||||||
model.buf.resize(ctx_size);
|
model.buf.resize(ctx_size);
|
||||||
if (use_mlock) {
|
if (use_mlock) {
|
||||||
model.mlock_buf.init(model.buf.addr);
|
model.mlock_buf.init (model.buf.addr);
|
||||||
model.mlock_buf.grow_to(model.buf.size);
|
model.mlock_buf.grow_to(model.buf.size);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1131,6 +1179,7 @@ static void llama_model_load_internal(
|
||||||
size_t vram_scratch = 0;
|
size_t vram_scratch = 0;
|
||||||
{
|
{
|
||||||
const uint32_t n_embd = hparams.n_embd;
|
const uint32_t n_embd = hparams.n_embd;
|
||||||
|
const uint32_t n_embd_gqa = hparams.n_embd_gqa();
|
||||||
const uint32_t n_layer = hparams.n_layer;
|
const uint32_t n_layer = hparams.n_layer;
|
||||||
const uint32_t n_vocab = hparams.n_vocab;
|
const uint32_t n_vocab = hparams.n_vocab;
|
||||||
|
|
||||||
|
@ -1181,8 +1230,8 @@ static void llama_model_load_internal(
|
||||||
layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}, backend);
|
layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}, backend);
|
||||||
|
|
||||||
layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}, backend_split);
|
layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}, backend_split);
|
||||||
layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd}, backend_split);
|
layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd_gqa}, backend_split);
|
||||||
layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd}, backend_split);
|
layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd_gqa}, backend_split);
|
||||||
layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}, backend_split);
|
layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}, backend_split);
|
||||||
|
|
||||||
layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend);
|
layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend);
|
||||||
|
@ -1212,11 +1261,11 @@ static void llama_model_load_internal(
|
||||||
mmapped_size - vram_weights + // weights in VRAM not in memory
|
mmapped_size - vram_weights + // weights in VRAM not in memory
|
||||||
MEM_REQ_SCRATCH0(hparams.n_ctx).at(model.type) +
|
MEM_REQ_SCRATCH0(hparams.n_ctx).at(model.type) +
|
||||||
MEM_REQ_SCRATCH1().at(model.type) +
|
MEM_REQ_SCRATCH1().at(model.type) +
|
||||||
MEM_REQ_EVAL(hparams.n_ctx).at(model.type);
|
MEM_REQ_EVAL().at(model.type);
|
||||||
|
|
||||||
// this is the memory required by one llama_state
|
// this is the memory required by one llama_state
|
||||||
const size_t mem_required_state =
|
const size_t mem_required_state =
|
||||||
scale*MEM_REQ_KV_SELF().at(model.type);
|
scale*hparams.kv_size();
|
||||||
|
|
||||||
fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
|
fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
|
||||||
mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
|
mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
|
||||||
|
@ -1257,7 +1306,7 @@ static void llama_model_load_internal(
|
||||||
fprintf(stderr, "%s: cannot offload v cache to GPU due to low VRAM option\n", __func__);
|
fprintf(stderr, "%s: cannot offload v cache to GPU due to low VRAM option\n", __func__);
|
||||||
} else {
|
} else {
|
||||||
fprintf(stderr, "%s: offloading v cache to GPU\n", __func__);
|
fprintf(stderr, "%s: offloading v cache to GPU\n", __func__);
|
||||||
vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2;
|
vram_kv_cache += hparams.kv_size() / 2;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (n_gpu_layers > (int) hparams.n_layer + 2) {
|
if (n_gpu_layers > (int) hparams.n_layer + 2) {
|
||||||
|
@ -1265,7 +1314,7 @@ static void llama_model_load_internal(
|
||||||
fprintf(stderr, "%s: cannot offload k cache to GPU due to low VRAM option\n", __func__);
|
fprintf(stderr, "%s: cannot offload k cache to GPU due to low VRAM option\n", __func__);
|
||||||
} else {
|
} else {
|
||||||
fprintf(stderr, "%s: offloading k cache to GPU\n", __func__);
|
fprintf(stderr, "%s: offloading k cache to GPU\n", __func__);
|
||||||
vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2;
|
vram_kv_cache += hparams.kv_size() / 2;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#elif defined(GGML_USE_CLBLAST)
|
#elif defined(GGML_USE_CLBLAST)
|
||||||
|
@ -1313,9 +1362,11 @@ static bool llama_model_load(
|
||||||
llama_vocab & vocab,
|
llama_vocab & vocab,
|
||||||
int n_ctx,
|
int n_ctx,
|
||||||
int n_batch,
|
int n_batch,
|
||||||
|
int n_gqa,
|
||||||
|
float rms_norm_eps,
|
||||||
int n_gpu_layers,
|
int n_gpu_layers,
|
||||||
int main_gpu,
|
int main_gpu,
|
||||||
float * tensor_split,
|
const float * tensor_split,
|
||||||
float rope_freq_base,
|
float rope_freq_base,
|
||||||
float rope_freq_scale,
|
float rope_freq_scale,
|
||||||
bool low_vram,
|
bool low_vram,
|
||||||
|
@ -1326,7 +1377,7 @@ static bool llama_model_load(
|
||||||
llama_progress_callback progress_callback,
|
llama_progress_callback progress_callback,
|
||||||
void *progress_callback_user_data) {
|
void *progress_callback_user_data) {
|
||||||
try {
|
try {
|
||||||
llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, rope_freq_base, rope_freq_scale, low_vram, memory_type,
|
llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gqa, rms_norm_eps, n_gpu_layers, main_gpu, tensor_split, rope_freq_base, rope_freq_scale, low_vram, memory_type,
|
||||||
use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
|
use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
|
||||||
return true;
|
return true;
|
||||||
} catch (const std::exception & err) {
|
} catch (const std::exception & err) {
|
||||||
|
@ -1370,16 +1421,23 @@ static bool llama_eval_internal(
|
||||||
|
|
||||||
LLAMA_ASSERT(!!kv_self.ctx);
|
LLAMA_ASSERT(!!kv_self.ctx);
|
||||||
|
|
||||||
const int n_embd = hparams.n_embd;
|
const int64_t n_embd = hparams.n_embd;
|
||||||
const int n_layer = hparams.n_layer;
|
const int64_t n_layer = hparams.n_layer;
|
||||||
const int n_ctx = hparams.n_ctx;
|
const int64_t n_ctx = hparams.n_ctx;
|
||||||
const int n_head = hparams.n_head;
|
const int64_t n_head = hparams.n_head;
|
||||||
const int n_vocab = hparams.n_vocab;
|
const int64_t n_head_kv = hparams.n_head_kv;
|
||||||
const int n_rot = hparams.n_embd/hparams.n_head;
|
const int64_t n_embd_head = hparams.n_embd_head();
|
||||||
const int n_gpu_layers = model.n_gpu_layers;
|
const int64_t n_vocab = hparams.n_vocab;
|
||||||
|
const int64_t n_embd_gqa = hparams.n_embd_gqa();
|
||||||
|
|
||||||
|
|
||||||
|
LLAMA_ASSERT(n_embd_head == hparams.n_rot);
|
||||||
|
|
||||||
const float freq_base = hparams.rope_freq_base;
|
const float freq_base = hparams.rope_freq_base;
|
||||||
const float freq_scale = hparams.rope_freq_scale;
|
const float freq_scale = hparams.rope_freq_scale;
|
||||||
|
const float rms_norm_eps = hparams.f_rms_norm_eps;
|
||||||
|
|
||||||
|
const int n_gpu_layers = model.n_gpu_layers;
|
||||||
|
|
||||||
auto & mem_per_token = lctx.mem_per_token;
|
auto & mem_per_token = lctx.mem_per_token;
|
||||||
auto & buf_compute = lctx.buf_compute;
|
auto & buf_compute = lctx.buf_compute;
|
||||||
|
@ -1392,7 +1450,7 @@ static bool llama_eval_internal(
|
||||||
|
|
||||||
struct ggml_context * ctx0 = ggml_init(params);
|
struct ggml_context * ctx0 = ggml_init(params);
|
||||||
|
|
||||||
ggml_cgraph gf = {};
|
ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||||
|
|
||||||
// for big prompts, if BLAS is enabled, it is better to use only one thread
|
// for big prompts, if BLAS is enabled, it is better to use only one thread
|
||||||
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
|
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
|
||||||
|
@ -1457,7 +1515,7 @@ static bool llama_eval_internal(
|
||||||
|
|
||||||
// norm
|
// norm
|
||||||
{
|
{
|
||||||
cur = ggml_rms_norm(ctx0, inpL);
|
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||||
offload_func(cur);
|
offload_func(cur);
|
||||||
ggml_set_name(cur, "rms_norm_0");
|
ggml_set_name(cur, "rms_norm_0");
|
||||||
|
|
||||||
|
@ -1478,11 +1536,11 @@ static bool llama_eval_internal(
|
||||||
offload_func_kq(tmpq);
|
offload_func_kq(tmpq);
|
||||||
ggml_set_name(tmpq, "tmpq");
|
ggml_set_name(tmpq, "tmpq");
|
||||||
|
|
||||||
struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0, freq_base, freq_scale, 0);
|
struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale);
|
||||||
offload_func_kq(Kcur);
|
offload_func_kq(Kcur);
|
||||||
ggml_set_name(Kcur, "Kcur");
|
ggml_set_name(Kcur, "Kcur");
|
||||||
|
|
||||||
struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0, freq_base, freq_scale, 0);
|
struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale);
|
||||||
offload_func_kq(Qcur);
|
offload_func_kq(Qcur);
|
||||||
ggml_set_name(Qcur, "Qcur");
|
ggml_set_name(Qcur, "Qcur");
|
||||||
|
|
||||||
|
@ -1494,23 +1552,23 @@ static bool llama_eval_internal(
|
||||||
offload_func_v(tmpv);
|
offload_func_v(tmpv);
|
||||||
ggml_set_name(tmpv, "tmpv");
|
ggml_set_name(tmpv, "tmpv");
|
||||||
|
|
||||||
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd, N));
|
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, N));
|
||||||
offload_func_v(Vcur);
|
offload_func_v(Vcur);
|
||||||
ggml_set_name(Vcur, "Vcur");
|
ggml_set_name(Vcur, "Vcur");
|
||||||
|
|
||||||
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
|
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past));
|
||||||
offload_func_kq(k);
|
offload_func_kq(k);
|
||||||
ggml_set_name(k, "k");
|
ggml_set_name(k, "k");
|
||||||
|
|
||||||
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
|
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa,
|
||||||
( n_ctx)*ggml_element_size(kv_self.v),
|
( n_ctx)*ggml_element_size(kv_self.v),
|
||||||
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
|
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v));
|
||||||
offload_func_v(v);
|
offload_func_v(v);
|
||||||
ggml_set_name(v, "v");
|
ggml_set_name(v, "v");
|
||||||
|
|
||||||
// important: storing RoPE-ed version of K in the KV cache!
|
// important: storing RoPE-ed version of K in the KV cache!
|
||||||
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
|
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
|
||||||
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
|
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_tensor * Q =
|
struct ggml_tensor * Q =
|
||||||
|
@ -1523,8 +1581,8 @@ static bool llama_eval_internal(
|
||||||
struct ggml_tensor * K =
|
struct ggml_tensor * K =
|
||||||
ggml_permute(ctx0,
|
ggml_permute(ctx0,
|
||||||
ggml_reshape_3d(ctx0,
|
ggml_reshape_3d(ctx0,
|
||||||
ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
|
ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd_gqa, il*n_ctx*ggml_element_size(kv_self.k)*n_embd_gqa),
|
||||||
n_embd/n_head, n_head, n_past + N),
|
n_embd_head, n_head_kv, n_past + N),
|
||||||
0, 2, 1, 3);
|
0, 2, 1, 3);
|
||||||
offload_func_kq(K);
|
offload_func_kq(K);
|
||||||
ggml_set_name(K, "K");
|
ggml_set_name(K, "K");
|
||||||
|
@ -1534,9 +1592,9 @@ static bool llama_eval_internal(
|
||||||
offload_func_kq(KQ);
|
offload_func_kq(KQ);
|
||||||
ggml_set_name(KQ, "KQ");
|
ggml_set_name(KQ, "KQ");
|
||||||
|
|
||||||
// KQ_scaled = KQ / sqrt(n_embd/n_head)
|
// KQ_scaled = KQ / sqrt(n_embd_head)
|
||||||
struct ggml_tensor * KQ_scale = ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head));
|
struct ggml_tensor * KQ_scale = ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head));
|
||||||
ggml_set_name(KQ_scale, "1/sqrt(n_embd/n_head)");
|
ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
|
||||||
|
|
||||||
// KQ_scaled shape [n_past + N, N, n_head, 1]
|
// KQ_scaled shape [n_past + N, N, n_head, 1]
|
||||||
struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
|
struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
|
||||||
|
@ -1556,10 +1614,10 @@ static bool llama_eval_internal(
|
||||||
// split cached V into n_head heads
|
// split cached V into n_head heads
|
||||||
struct ggml_tensor * V =
|
struct ggml_tensor * V =
|
||||||
ggml_view_3d(ctx0, kv_self.v,
|
ggml_view_3d(ctx0, kv_self.v,
|
||||||
n_past + N, n_embd/n_head, n_head,
|
n_past + N, n_embd_head, n_head_kv,
|
||||||
n_ctx*ggml_element_size(kv_self.v),
|
n_ctx*ggml_element_size(kv_self.v),
|
||||||
n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head,
|
n_ctx*ggml_element_size(kv_self.v)*n_embd_head,
|
||||||
il*n_ctx*ggml_element_size(kv_self.v)*n_embd);
|
n_ctx*ggml_element_size(kv_self.v)*n_embd_gqa*il);
|
||||||
offload_func_v(V);
|
offload_func_v(V);
|
||||||
ggml_set_name(V, "V");
|
ggml_set_name(V, "V");
|
||||||
|
|
||||||
|
@ -1571,7 +1629,7 @@ static bool llama_eval_internal(
|
||||||
// make V contiguous in memory to speed up the matmul, however we waste time on the copy
|
// make V contiguous in memory to speed up the matmul, however we waste time on the copy
|
||||||
// on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
|
// on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
|
||||||
// is there a better way?
|
// is there a better way?
|
||||||
struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
|
struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd_head, n_head));
|
||||||
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
|
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
@ -1605,7 +1663,7 @@ static bool llama_eval_internal(
|
||||||
{
|
{
|
||||||
// norm
|
// norm
|
||||||
{
|
{
|
||||||
cur = ggml_rms_norm(ctx0, inpFF);
|
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
|
||||||
offload_func(cur);
|
offload_func(cur);
|
||||||
ggml_set_name(cur, "rms_norm_1");
|
ggml_set_name(cur, "rms_norm_1");
|
||||||
|
|
||||||
|
@ -1658,7 +1716,7 @@ static bool llama_eval_internal(
|
||||||
|
|
||||||
// norm
|
// norm
|
||||||
{
|
{
|
||||||
cur = ggml_rms_norm(ctx0, inpL);
|
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||||
offload_func_nr(cur);
|
offload_func_nr(cur);
|
||||||
ggml_set_name(cur, "rms_norm_2");
|
ggml_set_name(cur, "rms_norm_2");
|
||||||
|
|
||||||
|
@ -1680,16 +1738,22 @@ static bool llama_eval_internal(
|
||||||
//cur = ggml_soft_max_inplace(ctx0, cur);
|
//cur = ggml_soft_max_inplace(ctx0, cur);
|
||||||
|
|
||||||
// run the computation
|
// run the computation
|
||||||
ggml_build_forward_expand(&gf, cur);
|
ggml_build_forward_expand(gf, cur);
|
||||||
|
|
||||||
|
// fprintf(stderr, "graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf.n_nodes, gf.n_leafs);
|
||||||
|
|
||||||
#if GGML_USE_MPI
|
#if GGML_USE_MPI
|
||||||
ggml_mpi_graph_compute_pre(lctx.ctx_mpi, &gf, n_layer);
|
ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifdef GGML_USE_METAL
|
#ifdef GGML_USE_METAL
|
||||||
if (lctx.ctx_metal && N == 1) {
|
if (lctx.ctx_metal && N == 1) {
|
||||||
|
// TODO: disabled until #2413 is resolved
|
||||||
|
//if (!ggml_metal_if_optimized(lctx.ctx_metal)) {
|
||||||
|
// ggml_metal_graph_find_concurrency(lctx.ctx_metal, gf);
|
||||||
|
//}
|
||||||
ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
|
ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
|
||||||
ggml_metal_graph_compute(lctx.ctx_metal, &gf);
|
ggml_metal_graph_compute(lctx.ctx_metal, gf);
|
||||||
ggml_metal_get_tensor (lctx.ctx_metal, cur);
|
ggml_metal_get_tensor (lctx.ctx_metal, cur);
|
||||||
} else {
|
} else {
|
||||||
// IMPORTANT:
|
// IMPORTANT:
|
||||||
|
@ -1708,34 +1772,34 @@ static bool llama_eval_internal(
|
||||||
ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v);
|
ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v);
|
||||||
}
|
}
|
||||||
|
|
||||||
ggml_graph_compute_helper(lctx.work_buffer, &gf, n_threads);
|
ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
ggml_graph_compute_helper(lctx.work_buffer, &gf, n_threads);
|
ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if GGML_USE_MPI
|
#if GGML_USE_MPI
|
||||||
ggml_mpi_graph_compute_post(lctx.ctx_mpi, &gf, n_layer);
|
ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// update kv token count
|
// update kv token count
|
||||||
lctx.kv_self.n = n_past + N;
|
lctx.kv_self.n = n_past + N;
|
||||||
|
|
||||||
struct ggml_tensor * res = gf.nodes[gf.n_nodes - 1];
|
struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
|
||||||
|
|
||||||
if (cgraph_fname) {
|
if (cgraph_fname) {
|
||||||
ggml_graph_export(&gf, cgraph_fname);
|
ggml_graph_export(gf, cgraph_fname);
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifdef GGML_PERF
|
#ifdef GGML_PERF
|
||||||
// print timing information per ggml operation (for debugging purposes)
|
// print timing information per ggml operation (for debugging purposes)
|
||||||
// requires GGML_PERF to be defined
|
// requires GGML_PERF to be defined
|
||||||
ggml_graph_print(&gf);
|
ggml_graph_print(gf);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// plot the computation graph in dot format (for debugging purposes)
|
// plot the computation graph in dot format (for debugging purposes)
|
||||||
//if (n_past%100 == 0) {
|
//if (n_past%100 == 0) {
|
||||||
// ggml_graph_dump_dot(&gf, NULL, "llama.dot");
|
// ggml_graph_dump_dot(gf, NULL, "llama.dot");
|
||||||
//}
|
//}
|
||||||
|
|
||||||
// extract logits
|
// extract logits
|
||||||
|
@ -1765,10 +1829,12 @@ static bool llama_eval_internal(
|
||||||
}
|
}
|
||||||
|
|
||||||
#if 0
|
#if 0
|
||||||
printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__,
|
printf("\n%s: used_mem: eval ctx %.3f MB, scratch %.3f MB %.3f MB, work buf %.3f MB, n_past = %d, N = %d\n", __func__,
|
||||||
ggml_used_mem(ctx0)/1024.0/1024.0,
|
ggml_used_mem(ctx0)/1024.0/1024.0,
|
||||||
lctx.get_buf_max_mem(0)/1024.0/1024.0,
|
lctx.get_buf_max_mem(0)/1024.0/1024.0,
|
||||||
lctx.get_buf_max_mem(1)/1024.0/1024.0);
|
lctx.get_buf_max_mem(1)/1024.0/1024.0,
|
||||||
|
lctx.work_buffer.size()/1024.0/1024.0,
|
||||||
|
n_past, N);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
ggml_free(ctx0);
|
ggml_free(ctx0);
|
||||||
|
@ -1941,6 +2007,279 @@ static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, co
|
||||||
return output;
|
return output;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
// grammar - internal
|
||||||
|
//
|
||||||
|
|
||||||
|
struct llama_grammar {
|
||||||
|
const std::vector<std::vector<llama_grammar_element>> rules;
|
||||||
|
std::vector<std::vector<const llama_grammar_element *>> stacks;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct llama_grammar_candidate {
|
||||||
|
size_t index;
|
||||||
|
const uint32_t * code_points;
|
||||||
|
};
|
||||||
|
|
||||||
|
// NOTE: assumes valid utf8 (but checks for overrun)
|
||||||
|
// adds a terminating 0 for use as pointer
|
||||||
|
std::vector<uint32_t> decode_utf8(const char * src) {
|
||||||
|
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
|
||||||
|
const char * pos = src;
|
||||||
|
std::vector<uint32_t> code_points;
|
||||||
|
while (*pos != 0) {
|
||||||
|
uint8_t first_byte = static_cast<uint8_t>(*pos);
|
||||||
|
uint8_t highbits = first_byte >> 4;
|
||||||
|
int len = lookup[highbits];
|
||||||
|
uint8_t mask = (1 << (8 - len)) - 1;
|
||||||
|
uint32_t value = first_byte & mask;
|
||||||
|
const char * end = pos + len; // may overrun!
|
||||||
|
++pos;
|
||||||
|
for ( ; pos < end && *pos != 0; ++pos) {
|
||||||
|
value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
|
||||||
|
}
|
||||||
|
code_points.push_back(value);
|
||||||
|
}
|
||||||
|
code_points.push_back(0);
|
||||||
|
return code_points;
|
||||||
|
}
|
||||||
|
|
||||||
|
// returns true iff pos points to the end of one of the definitions of a rule
|
||||||
|
static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
|
||||||
|
switch (pos->type) {
|
||||||
|
case LLAMA_GRETYPE_END: return true;
|
||||||
|
case LLAMA_GRETYPE_ALT: return true;
|
||||||
|
default: return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// returns true iff chr satisfies the char range at pos (regular or inverse range)
|
||||||
|
// asserts that pos is pointing to a char range element
|
||||||
|
static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
|
||||||
|
const llama_grammar_element * pos,
|
||||||
|
const uint32_t chr) {
|
||||||
|
|
||||||
|
bool found = false;
|
||||||
|
bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
|
||||||
|
LLAMA_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
|
||||||
|
|
||||||
|
do {
|
||||||
|
if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
|
||||||
|
// inclusive range, e.g. [a-z]
|
||||||
|
found = found || (pos->value <= chr && chr <= pos[1].value);
|
||||||
|
pos += 2;
|
||||||
|
} else {
|
||||||
|
// exact char match, e.g. [a] or "a"
|
||||||
|
found = found || pos->value == chr;
|
||||||
|
pos += 1;
|
||||||
|
}
|
||||||
|
} while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
|
||||||
|
|
||||||
|
return std::make_pair(found == is_positive_char, pos);
|
||||||
|
}
|
||||||
|
|
||||||
|
// transforms a grammar pushdown stack into N possible stacks, all ending
|
||||||
|
// at a character range (terminal element)
|
||||||
|
static void llama_grammar_advance_stack(
|
||||||
|
const std::vector<std::vector<llama_grammar_element>> & rules,
|
||||||
|
const std::vector<const llama_grammar_element *> & stack,
|
||||||
|
std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
|
||||||
|
|
||||||
|
if (stack.empty()) {
|
||||||
|
new_stacks.push_back(stack);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const llama_grammar_element * pos = stack.back();
|
||||||
|
|
||||||
|
switch (pos->type) {
|
||||||
|
case LLAMA_GRETYPE_RULE_REF: {
|
||||||
|
const size_t rule_id = static_cast<size_t>(pos->value);
|
||||||
|
const llama_grammar_element * subpos = rules[rule_id].data();
|
||||||
|
do {
|
||||||
|
// init new stack without the top (pos)
|
||||||
|
std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
|
||||||
|
if (!llama_grammar_is_end_of_sequence(pos + 1)) {
|
||||||
|
// if this rule ref is followed by another element, add that to stack
|
||||||
|
new_stack.push_back(pos + 1);
|
||||||
|
}
|
||||||
|
if (!llama_grammar_is_end_of_sequence(subpos)) {
|
||||||
|
// if alternate is nonempty, add to stack
|
||||||
|
new_stack.push_back(subpos);
|
||||||
|
}
|
||||||
|
llama_grammar_advance_stack(rules, new_stack, new_stacks);
|
||||||
|
while (!llama_grammar_is_end_of_sequence(subpos)) {
|
||||||
|
// scan to end of alternate def
|
||||||
|
subpos++;
|
||||||
|
}
|
||||||
|
if (subpos->type == LLAMA_GRETYPE_ALT) {
|
||||||
|
// there's another alternate def of this rule to process
|
||||||
|
subpos++;
|
||||||
|
} else {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
} while (true);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
case LLAMA_GRETYPE_CHAR:
|
||||||
|
case LLAMA_GRETYPE_CHAR_NOT:
|
||||||
|
new_stacks.push_back(stack);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
// end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
|
||||||
|
// (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
|
||||||
|
// those
|
||||||
|
LLAMA_ASSERT(false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// takes a set of possible pushdown stacks on a grammar, which are required to
|
||||||
|
// be positioned at a character range (see `llama_grammar_advance_stack`), and
|
||||||
|
// produces the N possible stacks if the given char is accepted at those
|
||||||
|
// positions
|
||||||
|
static std::vector<std::vector<const llama_grammar_element *>> llama_grammar_accept(
|
||||||
|
const std::vector<std::vector<llama_grammar_element>> & rules,
|
||||||
|
const std::vector<std::vector<const llama_grammar_element *>> & stacks,
|
||||||
|
const uint32_t chr) {
|
||||||
|
|
||||||
|
std::vector<std::vector<const llama_grammar_element *>> new_stacks;
|
||||||
|
|
||||||
|
for (const auto & stack : stacks) {
|
||||||
|
if (stack.empty()) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto match = llama_grammar_match_char(stack.back(), chr);
|
||||||
|
if (match.first) {
|
||||||
|
const llama_grammar_element * pos = match.second;
|
||||||
|
|
||||||
|
// update top of stack to next element, if any
|
||||||
|
std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
|
||||||
|
if (!llama_grammar_is_end_of_sequence(pos)) {
|
||||||
|
new_stack.push_back(pos);
|
||||||
|
}
|
||||||
|
llama_grammar_advance_stack(rules, new_stack, new_stacks);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return new_stacks;
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
|
||||||
|
const std::vector<std::vector<llama_grammar_element>> & rules,
|
||||||
|
const std::vector<std::vector<const llama_grammar_element *>> & stacks,
|
||||||
|
const std::vector<llama_grammar_candidate> & candidates);
|
||||||
|
|
||||||
|
static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
|
||||||
|
const std::vector<std::vector<llama_grammar_element>> & rules,
|
||||||
|
const std::vector<const llama_grammar_element *> & stack,
|
||||||
|
const std::vector<llama_grammar_candidate> & candidates) {
|
||||||
|
|
||||||
|
std::vector<llama_grammar_candidate> rejects;
|
||||||
|
|
||||||
|
if (stack.empty()) {
|
||||||
|
// accept nothing; EOS is handled elsewhere
|
||||||
|
rejects.insert(rejects.end(), candidates.begin(), candidates.end());
|
||||||
|
return rejects;
|
||||||
|
}
|
||||||
|
|
||||||
|
const llama_grammar_element * stack_pos = stack.back();
|
||||||
|
|
||||||
|
std::vector<llama_grammar_candidate> next_candidates;
|
||||||
|
for (auto tok : candidates) {
|
||||||
|
if (llama_grammar_match_char(stack_pos, tok.code_points[0]).first) {
|
||||||
|
if (tok.code_points[1] != 0) {
|
||||||
|
next_candidates.push_back({ tok.index, tok.code_points + 1 });
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
rejects.push_back(tok);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
auto stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
|
||||||
|
|
||||||
|
// update top of stack to next element, if any
|
||||||
|
std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
|
||||||
|
if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
|
||||||
|
stack_after.push_back(stack_pos_after);
|
||||||
|
}
|
||||||
|
std::vector<std::vector<const llama_grammar_element *>> next_stacks;
|
||||||
|
llama_grammar_advance_stack(rules, stack_after, next_stacks);
|
||||||
|
|
||||||
|
auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
|
||||||
|
for (auto tok : next_rejects) {
|
||||||
|
rejects.push_back({ tok.index, tok.code_points - 1 });
|
||||||
|
}
|
||||||
|
|
||||||
|
return rejects;
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
|
||||||
|
const std::vector<std::vector<llama_grammar_element>> & rules,
|
||||||
|
const std::vector<std::vector<const llama_grammar_element *>> & stacks,
|
||||||
|
const std::vector<llama_grammar_candidate> & candidates) {
|
||||||
|
LLAMA_ASSERT(!stacks.empty()); // REVIEW
|
||||||
|
|
||||||
|
if (candidates.empty()) {
|
||||||
|
return std::vector<llama_grammar_candidate>();
|
||||||
|
}
|
||||||
|
|
||||||
|
auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
|
||||||
|
|
||||||
|
for (size_t i = 1, size = stacks.size(); i < size; ++i) {
|
||||||
|
rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
|
||||||
|
}
|
||||||
|
return rejects;
|
||||||
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
// grammar - external
|
||||||
|
//
|
||||||
|
|
||||||
|
struct llama_grammar * llama_grammar_init(
|
||||||
|
const llama_grammar_element ** rules,
|
||||||
|
size_t n_rules,
|
||||||
|
size_t start_rule_index) {
|
||||||
|
const llama_grammar_element * pos;
|
||||||
|
|
||||||
|
// copy rule definitions into vectors
|
||||||
|
std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
|
||||||
|
for (size_t i = 0; i < n_rules; i++) {
|
||||||
|
for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
|
||||||
|
vec_rules[i].push_back(*pos);
|
||||||
|
}
|
||||||
|
vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
|
||||||
|
}
|
||||||
|
|
||||||
|
// loop over alternates of start rule to build initial stacks
|
||||||
|
std::vector<std::vector<const llama_grammar_element *>> stacks;
|
||||||
|
pos = rules[start_rule_index];
|
||||||
|
do {
|
||||||
|
std::vector<const llama_grammar_element *> stack;
|
||||||
|
if (!llama_grammar_is_end_of_sequence(pos)) {
|
||||||
|
// if alternate is nonempty, add to stack
|
||||||
|
stack.push_back(pos);
|
||||||
|
}
|
||||||
|
llama_grammar_advance_stack(vec_rules, stack, stacks);
|
||||||
|
while (!llama_grammar_is_end_of_sequence(pos)) {
|
||||||
|
// scan to end of alternate def
|
||||||
|
pos++;
|
||||||
|
}
|
||||||
|
if (pos->type == LLAMA_GRETYPE_ALT) {
|
||||||
|
// there's another alternate def of this rule to process
|
||||||
|
pos++;
|
||||||
|
} else {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
} while (true);
|
||||||
|
|
||||||
|
return new llama_grammar{ std::move(vec_rules), std::move(stacks) };
|
||||||
|
}
|
||||||
|
|
||||||
|
void llama_grammar_free(struct llama_grammar * grammar) {
|
||||||
|
delete grammar;
|
||||||
|
}
|
||||||
|
|
||||||
//
|
//
|
||||||
// sampling
|
// sampling
|
||||||
//
|
//
|
||||||
|
@ -2226,6 +2565,47 @@ void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, l
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
|
||||||
|
assert(ctx);
|
||||||
|
const int64_t t_start_sample_us = ggml_time_us();
|
||||||
|
|
||||||
|
bool allow_eos = false;
|
||||||
|
for (const auto & stack : grammar->stacks) {
|
||||||
|
if (stack.empty()) {
|
||||||
|
allow_eos = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const llama_token eos = llama_token_eos();
|
||||||
|
|
||||||
|
std::vector<std::vector<uint32_t>> candidates_decoded;
|
||||||
|
std::vector<llama_grammar_candidate> candidates_grammar;
|
||||||
|
|
||||||
|
for (size_t i = 0; i < candidates->size; ++i) {
|
||||||
|
const llama_token id = candidates->data[i].id;
|
||||||
|
const char * str = llama_token_to_str(ctx, id);
|
||||||
|
if (id == eos) {
|
||||||
|
if (!allow_eos) {
|
||||||
|
candidates->data[i].logit = -INFINITY;
|
||||||
|
}
|
||||||
|
} else if (*str == 0) {
|
||||||
|
candidates->data[i].logit = -INFINITY;
|
||||||
|
} else {
|
||||||
|
candidates_decoded.push_back(decode_utf8(str));
|
||||||
|
candidates_grammar.push_back({ i, candidates_decoded.back().data() });
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const auto rejects =
|
||||||
|
llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
|
||||||
|
for (auto & reject : rejects) {
|
||||||
|
candidates->data[reject.index].logit = -INFINITY;
|
||||||
|
}
|
||||||
|
|
||||||
|
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
|
||||||
|
}
|
||||||
|
|
||||||
static void llama_log_softmax(float * array, size_t size) {
|
static void llama_log_softmax(float * array, size_t size) {
|
||||||
float max_l = *std::max_element(array, array + size);
|
float max_l = *std::max_element(array, array + size);
|
||||||
float sum = 0.f;
|
float sum = 0.f;
|
||||||
|
@ -2244,8 +2624,7 @@ void llama_sample_classifier_free_guidance(
|
||||||
struct llama_context * ctx,
|
struct llama_context * ctx,
|
||||||
llama_token_data_array * candidates,
|
llama_token_data_array * candidates,
|
||||||
struct llama_context * guidance_ctx,
|
struct llama_context * guidance_ctx,
|
||||||
float scale,
|
float scale) {
|
||||||
float smooth_factor) {
|
|
||||||
int64_t t_start_sample_us = ggml_time_us();
|
int64_t t_start_sample_us = ggml_time_us();
|
||||||
|
|
||||||
assert(ctx);
|
assert(ctx);
|
||||||
|
@ -2266,16 +2645,7 @@ void llama_sample_classifier_free_guidance(
|
||||||
for (int i = 0; i < n_vocab; ++i) {
|
for (int i = 0; i < n_vocab; ++i) {
|
||||||
float logit_guidance = logits_guidance[i];
|
float logit_guidance = logits_guidance[i];
|
||||||
float logit_base = logits_base[i];
|
float logit_base = logits_base[i];
|
||||||
logits_guidance[i] = scale * (logit_base - logit_guidance) + logit_guidance;
|
candidates->data[i].logit = scale * (logit_base - logit_guidance) + logit_guidance;
|
||||||
}
|
|
||||||
|
|
||||||
llama_log_softmax(logits_guidance, n_vocab);
|
|
||||||
|
|
||||||
for (int i = 0; i < n_vocab; ++i) {
|
|
||||||
float logit_base = logits_base[i];
|
|
||||||
float logit_guidance = logits_guidance[i];
|
|
||||||
|
|
||||||
candidates->data[i].logit = smooth_factor * logit_guidance + (1.f - smooth_factor) * logit_base;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if (ctx) {
|
if (ctx) {
|
||||||
|
@ -2411,6 +2781,29 @@ llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_arra
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
|
||||||
|
const int64_t t_start_sample_us = ggml_time_us();
|
||||||
|
|
||||||
|
if (token == llama_token_eos()) {
|
||||||
|
for (const auto & stack : grammar->stacks) {
|
||||||
|
if (stack.empty()) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
LLAMA_ASSERT(false);
|
||||||
|
}
|
||||||
|
|
||||||
|
const char * str = llama_token_to_str(ctx, token);
|
||||||
|
// Note terminating 0 in decoded string
|
||||||
|
auto code_points = decode_utf8(str);
|
||||||
|
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
|
||||||
|
grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it);
|
||||||
|
}
|
||||||
|
LLAMA_ASSERT(!grammar->stacks.empty());
|
||||||
|
|
||||||
|
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
|
||||||
|
}
|
||||||
|
|
||||||
//
|
//
|
||||||
// quantization
|
// quantization
|
||||||
//
|
//
|
||||||
|
@ -2569,16 +2962,6 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
} else {
|
} else {
|
||||||
new_type = quantized_type;
|
new_type = quantized_type;
|
||||||
#ifdef GGML_USE_K_QUANTS
|
#ifdef GGML_USE_K_QUANTS
|
||||||
bool convert_incompatible_tensor = false;
|
|
||||||
if (quantized_type == GGML_TYPE_Q2_K || quantized_type == GGML_TYPE_Q3_K || quantized_type == GGML_TYPE_Q4_K ||
|
|
||||||
quantized_type == GGML_TYPE_Q5_K || quantized_type == GGML_TYPE_Q6_K) {
|
|
||||||
int nx = tensor.ne.at(0);
|
|
||||||
int ny = tensor.ne.at(1);
|
|
||||||
if (nx % QK_K != 0 || ny % QK_K != 0) {
|
|
||||||
fprintf(stderr, "\n\nTensor sizes %d x %d are not divisible by %d, required for k-quants.\n",nx,ny,QK_K);
|
|
||||||
convert_incompatible_tensor = true;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (tensor.name == "output.weight") {
|
if (tensor.name == "output.weight") {
|
||||||
int nx = tensor.ne.at(0);
|
int nx = tensor.ne.at(0);
|
||||||
int ny = tensor.ne.at(1);
|
int ny = tensor.ne.at(1);
|
||||||
|
@ -2604,6 +2987,16 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
|
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
|
||||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||||
}
|
}
|
||||||
|
bool convert_incompatible_tensor = false;
|
||||||
|
if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
|
||||||
|
new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) {
|
||||||
|
int nx = tensor.ne.at(0);
|
||||||
|
int ny = tensor.ne.at(1);
|
||||||
|
if (nx % QK_K != 0 || ny % QK_K != 0) {
|
||||||
|
fprintf(stderr, "\n\nTensor sizes %d x %d are not divisible by %d, required for k-quants.\n",nx,ny,QK_K);
|
||||||
|
convert_incompatible_tensor = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
if (convert_incompatible_tensor) {
|
if (convert_incompatible_tensor) {
|
||||||
if (tensor.name == "output.weight") {
|
if (tensor.name == "output.weight") {
|
||||||
new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
|
new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
|
||||||
|
@ -2630,7 +3023,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
f32_data = (float *) f32_conv_buf.addr;
|
f32_data = (float *) f32_conv_buf.addr;
|
||||||
}
|
}
|
||||||
|
|
||||||
printf("quantizing .. ");
|
printf("quantizing to %s .. ", ggml_type_name(new_type));
|
||||||
fflush(stdout);
|
fflush(stdout);
|
||||||
|
|
||||||
work.resize(nelements * 4); // upper bound on size
|
work.resize(nelements * 4); // upper bound on size
|
||||||
|
@ -2733,7 +3126,7 @@ struct llama_model * llama_load_model_from_file(
|
||||||
|
|
||||||
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
||||||
|
|
||||||
if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gpu_layers,
|
if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gqa, params.rms_norm_eps, params.n_gpu_layers,
|
||||||
params.main_gpu, params.tensor_split, params.rope_freq_base, params.rope_freq_scale,params.low_vram,
|
params.main_gpu, params.tensor_split, params.rope_freq_base, params.rope_freq_scale,params.low_vram,
|
||||||
memory_type, params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback,
|
memory_type, params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback,
|
||||||
params.progress_callback_user_data)) {
|
params.progress_callback_user_data)) {
|
||||||
|
@ -2811,7 +3204,7 @@ struct llama_context * llama_new_context_with_model(
|
||||||
ctx->embedding.resize(hparams.n_embd);
|
ctx->embedding.resize(hparams.n_embd);
|
||||||
}
|
}
|
||||||
|
|
||||||
ctx->buf_compute.resize(MEM_REQ_EVAL(hparams.n_ctx).at(ctx->model.type));
|
ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type) + ggml_graph_overhead());
|
||||||
|
|
||||||
ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type));
|
ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type));
|
||||||
ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
|
ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
|
||||||
|
@ -2835,7 +3228,7 @@ struct llama_context * llama_new_context_with_model(
|
||||||
|
|
||||||
const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
|
const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
|
||||||
|
|
||||||
printf("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
|
fprintf(stderr, "%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
|
||||||
|
|
||||||
#define LLAMA_METAL_CHECK_BUF(result) \
|
#define LLAMA_METAL_CHECK_BUF(result) \
|
||||||
if (!(result)) { \
|
if (!(result)) { \
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
/**
|
/**
|
||||||
* llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
|
* llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
|
||||||
*
|
*
|
||||||
* MIT License
|
* MIT License
|
||||||
*
|
*
|
||||||
|
@ -79,6 +79,10 @@
|
||||||
#define LLAMA_SUPPORTS_GPU_OFFLOAD
|
#define LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
#ifndef LLAMA_DEFAULT_RMS_EPS
|
||||||
|
#define LLAMA_DEFAULT_RMS_EPS 5e-6f
|
||||||
|
#endif
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
extern "C" {
|
extern "C" {
|
||||||
#endif
|
#endif
|
||||||
|
@ -112,9 +116,12 @@ extern "C" {
|
||||||
uint32_t seed; // RNG seed, -1 for random
|
uint32_t seed; // RNG seed, -1 for random
|
||||||
int32_t n_ctx; // text context
|
int32_t n_ctx; // text context
|
||||||
int32_t n_batch; // prompt processing batch size
|
int32_t n_batch; // prompt processing batch size
|
||||||
|
int32_t n_gqa; // grouped-query attention (TEMP - will be moved to model hparams)
|
||||||
|
float rms_norm_eps; // rms norm epsilon (TEMP - will be moved to model hparams)
|
||||||
int32_t n_gpu_layers; // number of layers to store in VRAM
|
int32_t n_gpu_layers; // number of layers to store in VRAM
|
||||||
int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
||||||
float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs
|
|
||||||
|
const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
|
||||||
|
|
||||||
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
||||||
float rope_freq_base; // RoPE base frequency
|
float rope_freq_base; // RoPE base frequency
|
||||||
|
@ -165,6 +172,40 @@ extern "C" {
|
||||||
bool quantize_output_tensor; // quantize output.weight
|
bool quantize_output_tensor; // quantize output.weight
|
||||||
} llama_model_quantize_params;
|
} llama_model_quantize_params;
|
||||||
|
|
||||||
|
// grammar types
|
||||||
|
struct llama_grammar;
|
||||||
|
|
||||||
|
// grammar element type
|
||||||
|
enum llama_gretype {
|
||||||
|
// end of rule definition
|
||||||
|
LLAMA_GRETYPE_END = 0,
|
||||||
|
|
||||||
|
// start of alternate definition for rule
|
||||||
|
LLAMA_GRETYPE_ALT = 1,
|
||||||
|
|
||||||
|
// non-terminal element: reference to rule
|
||||||
|
LLAMA_GRETYPE_RULE_REF = 2,
|
||||||
|
|
||||||
|
// terminal element: character (code point)
|
||||||
|
LLAMA_GRETYPE_CHAR = 3,
|
||||||
|
|
||||||
|
// inverse char(s) ([^a], [^a-b] [^abc])
|
||||||
|
LLAMA_GRETYPE_CHAR_NOT = 4,
|
||||||
|
|
||||||
|
// modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
|
||||||
|
// be an inclusive range ([a-z])
|
||||||
|
LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
|
||||||
|
|
||||||
|
// modifies a preceding LLAMA_GRETYPE_CHAR or
|
||||||
|
// LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
|
||||||
|
LLAMA_GRETYPE_CHAR_ALT = 6,
|
||||||
|
};
|
||||||
|
|
||||||
|
typedef struct llama_grammar_element {
|
||||||
|
enum llama_gretype type;
|
||||||
|
uint32_t value; // Unicode code point or rule ID
|
||||||
|
} llama_grammar_element;
|
||||||
|
|
||||||
// performance timing information
|
// performance timing information
|
||||||
struct llama_timings {
|
struct llama_timings {
|
||||||
double t_start_ms;
|
double t_start_ms;
|
||||||
|
@ -357,6 +398,15 @@ extern "C" {
|
||||||
LLAMA_API llama_token llama_token_eos(); // end-of-sentence
|
LLAMA_API llama_token llama_token_eos(); // end-of-sentence
|
||||||
LLAMA_API llama_token llama_token_nl(); // next-line
|
LLAMA_API llama_token llama_token_nl(); // next-line
|
||||||
|
|
||||||
|
// Grammar
|
||||||
|
//
|
||||||
|
LLAMA_API struct llama_grammar * llama_grammar_init(
|
||||||
|
const llama_grammar_element ** rules,
|
||||||
|
size_t n_rules,
|
||||||
|
size_t start_rule_index);
|
||||||
|
|
||||||
|
LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
|
||||||
|
|
||||||
// Sampling functions
|
// Sampling functions
|
||||||
|
|
||||||
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
|
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
|
||||||
|
@ -369,13 +419,11 @@ extern "C" {
|
||||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
|
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
|
||||||
/// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
|
/// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
|
||||||
/// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
|
/// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
|
||||||
/// @params smooth_factor Smooth factor between guidance logits and original logits. 1.0f means only use guidance logits. 0.0f means only original logits.
|
|
||||||
LLAMA_API void llama_sample_classifier_free_guidance(
|
LLAMA_API void llama_sample_classifier_free_guidance(
|
||||||
struct llama_context * ctx,
|
struct llama_context * ctx,
|
||||||
llama_token_data_array * candidates,
|
llama_token_data_array * candidates,
|
||||||
struct llama_context * guidance_ctx,
|
struct llama_context * guidance_ctx,
|
||||||
float scale,
|
float scale);
|
||||||
float smooth_factor);
|
|
||||||
|
|
||||||
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
||||||
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
|
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||||
|
@ -393,6 +441,9 @@ extern "C" {
|
||||||
LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
|
LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
|
||||||
LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
|
LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
|
||||||
|
|
||||||
|
/// @details Apply constraints from grammar
|
||||||
|
LLAMA_API void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar);
|
||||||
|
|
||||||
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||||||
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
||||||
|
@ -414,6 +465,9 @@ extern "C" {
|
||||||
/// @details Randomly selects a token from the candidates based on their probabilities.
|
/// @details Randomly selects a token from the candidates based on their probabilities.
|
||||||
LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
|
LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||||
|
|
||||||
|
/// @details Accepts the sampled token into the grammar
|
||||||
|
LLAMA_API void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token);
|
||||||
|
|
||||||
// Performance information
|
// Performance information
|
||||||
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
|
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
|
||||||
LLAMA_API void llama_print_timings(struct llama_context * ctx);
|
LLAMA_API void llama_print_timings(struct llama_context * ctx);
|
||||||
|
|
Loading…
Reference in a new issue