add demo video

This commit is contained in:
Michael Chiang 2023-08-11 08:58:57 -07:00
parent e863066144
commit 155c1640f1
2 changed files with 10 additions and 6 deletions

View file

@ -1,6 +1,8 @@
# privateGPT with Llama 2 Uncensored
# PrivateGPT with Llama 2 uncensored
> Note: this example is a simplified version of [PrivateGPT](https://github.com/imartinez/privateGPT) that works with Llama 2 Uncensored.
https://github.com/jmorganca/ollama/assets/3325447/20cf8ec6-ff25-42c6-bdd8-9be594e3ce1b
> Note: this example is a simplified version of [PrivateGPT](https://github.com/imartinez/privateGPT) that works with Llama 2 Uncensored. All credit for PrivateGPT goes to Iván Martínez who is the creator of it.
### Setup
@ -23,7 +25,7 @@ Pull the model you'd like to use:
ollama pull llama2-uncensored
```
### Getting WeWork's latest quarterly report
### Getting WeWork's latest quarterly earnings report (10-Q)
```
mkdir source_documents

View file

@ -3,12 +3,15 @@ from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
from langchain.llms import GPT4All, Ollama
from langchain.llms import Ollama
import os
import argparse
import time
model = os.environ.get("MODEL", "llama2-uncensored")
# For embeddings model, the example uses a sentence-transformers model
# https://www.sbert.net/docs/pretrained_models.html
# "The all-mpnet-base-v2 model provides the best quality, while all-MiniLM-L6-v2 is 5 times faster and still offers good quality."
embeddings_model_name = os.environ.get("EMBEDDINGS_MODEL_NAME", "all-MiniLM-L6-v2")
persist_directory = os.environ.get("PERSIST_DIRECTORY", "db")
target_source_chunks = int(os.environ.get('TARGET_SOURCE_CHUNKS',4))
@ -44,7 +47,6 @@ def main():
# Print the result
print("\n\n> Question:")
print(query)
print(f"\n> Answer (took {round(end - start, 2)} s.):")
print(answer)
# Print the relevant sources used for the answer