convert safetensor adapters into GGUF ()

This commit is contained in:
Patrick Devine 2024-08-23 11:29:56 -07:00 committed by GitHub
parent 7a1e1c1caf
commit 0c819e167b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
16 changed files with 697 additions and 101 deletions

View file

@ -204,6 +204,12 @@ func tempZipFiles(path string) (string, error) {
// safetensors files might be unresolved git lfs references; skip if they are // safetensors files might be unresolved git lfs references; skip if they are
// covers model-x-of-y.safetensors, model.fp32-x-of-y.safetensors, model.safetensors // covers model-x-of-y.safetensors, model.fp32-x-of-y.safetensors, model.safetensors
files = append(files, st...) files = append(files, st...)
} else if st, _ := glob(filepath.Join(path, "adapters.safetensors"), "application/octet-stream"); len(st) > 0 {
// covers adapters.safetensors
files = append(files, st...)
} else if st, _ := glob(filepath.Join(path, "adapter_model.safetensors"), "application/octet-stream"); len(st) > 0 {
// covers adapter_model.safetensors
files = append(files, st...)
} else if pt, _ := glob(filepath.Join(path, "pytorch_model*.bin"), "application/zip"); len(pt) > 0 { } else if pt, _ := glob(filepath.Join(path, "pytorch_model*.bin"), "application/zip"); len(pt) > 0 {
// pytorch files might also be unresolved git lfs references; skip if they are // pytorch files might also be unresolved git lfs references; skip if they are
// covers pytorch_model-x-of-y.bin, pytorch_model.fp32-x-of-y.bin, pytorch_model.bin // covers pytorch_model-x-of-y.bin, pytorch_model.fp32-x-of-y.bin, pytorch_model.bin

View file

@ -12,12 +12,22 @@ import (
"github.com/ollama/ollama/llm" "github.com/ollama/ollama/llm"
) )
type Parameters struct { type ModelParameters struct {
Architectures []string `json:"architectures"` Architectures []string `json:"architectures"`
VocabSize uint32 `json:"vocab_size"` VocabSize uint32 `json:"vocab_size"`
} }
func (Parameters) KV(t *Tokenizer) llm.KV { type AdapterParameters struct {
Alpha uint32 `json:"lora_alpha"`
LoraLayers uint32 `json:"lora_layers"`
LoraParameters struct {
Rank uint32 `json:"rank"`
Alpha float32 `json:"alpha"`
Scale float32 `json:"scale"`
} `json:"lora_parameters"`
}
func (ModelParameters) KV(t *Tokenizer) llm.KV {
kv := llm.KV{ kv := llm.KV{
"general.file_type": uint32(1), "general.file_type": uint32(1),
"general.quantization_version": uint32(2), "general.quantization_version": uint32(2),
@ -44,17 +54,40 @@ func (Parameters) KV(t *Tokenizer) llm.KV {
return kv return kv
} }
func (Parameters) specialTokenTypes() []string { func (p AdapterParameters) KV() llm.KV {
var alpha float32
if p.LoraParameters.Alpha == 0 {
alpha = float32(p.Alpha)
} else {
alpha = p.LoraParameters.Alpha
}
kv := llm.KV{
"adapter.lora.alpha": alpha,
"adapter.type": "lora",
"general.file_type": uint32(1),
"general.type": "adapter",
"general.version": "v0.2",
}
return kv
}
func (ModelParameters) specialTokenTypes() []string {
return []string{ return []string{
"bos", "eos", "unk", "sep", "pad", "cls", "mask", "bos", "eos", "unk", "sep", "pad", "cls", "mask",
} }
} }
func (Parameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error { func (ModelParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
return llm.WriteGGUF(ws, kv, ts) return llm.WriteGGUF(ws, kv, ts)
} }
type Converter interface { func (AdapterParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
return llm.WriteGGUF(ws, kv, ts)
}
type ModelConverter interface {
// KV maps parameters to LLM key-values // KV maps parameters to LLM key-values
KV(*Tokenizer) llm.KV KV(*Tokenizer) llm.KV
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here. // Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
@ -73,17 +106,67 @@ type moreParser interface {
parseMore(fs.FS) error parseMore(fs.FS) error
} }
type AdapterConverter interface {
// KV maps parameters to LLM key-values
KV(llm.KV) llm.KV
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
Tensors([]Tensor) []llm.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
Replacements() []string
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
}
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV llm.KV) error {
bts, err := fs.ReadFile(fsys, "adapter_config.json")
if err != nil {
return err
}
var p AdapterParameters
if err := json.Unmarshal(bts, &p); err != nil {
return err
}
arch, ok := baseKV["general.architecture"]
if !ok {
return errors.New("architecture not set for the base model")
}
var conv AdapterConverter
switch arch {
case "llama":
conv = &llamaAdapter{}
case "gemma2":
conv = &gemma2Adapter{}
default:
return errors.New("unsupported architecture")
}
ts, err := parseTensors(fsys, strings.NewReplacer(conv.Replacements()...))
if err != nil {
return err
}
if err := json.Unmarshal(bts, conv); err != nil {
return err
}
return conv.writeFile(ws, conv.KV(baseKV), conv.Tensors(ts))
}
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations // Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations
// and files it finds in the input path. // and files it finds in the input path.
// Supported input model formats include safetensors. // Supported input model formats include safetensors.
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model. // Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
func Convert(fsys fs.FS, ws io.WriteSeeker) error { func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
bts, err := fs.ReadFile(fsys, "config.json") bts, err := fs.ReadFile(fsys, "config.json")
if err != nil { if err != nil {
return err return err
} }
var p Parameters var p ModelParameters
if err := json.Unmarshal(bts, &p); err != nil { if err := json.Unmarshal(bts, &p); err != nil {
return err return err
} }
@ -92,20 +175,20 @@ func Convert(fsys fs.FS, ws io.WriteSeeker) error {
return errors.New("unknown architecture") return errors.New("unknown architecture")
} }
var conv Converter var conv ModelConverter
switch p.Architectures[0] { switch p.Architectures[0] {
case "LlamaForCausalLM", "MistralForCausalLM": case "LlamaForCausalLM", "MistralForCausalLM":
conv = &llama{} conv = &llamaModel{}
case "MixtralForCausalLM": case "MixtralForCausalLM":
conv = &mixtral{} conv = &mixtralModel{}
case "GemmaForCausalLM": case "GemmaForCausalLM":
conv = &gemma{} conv = &gemmaModel{}
case "Gemma2ForCausalLM": case "Gemma2ForCausalLM":
conv = &gemma2{} conv = &gemma2Model{}
case "Phi3ForCausalLM": case "Phi3ForCausalLM":
conv = &phi3{} conv = &phi3Model{}
case "BertModel": case "BertModel":
conv = &bert{} conv = &bertModel{}
default: default:
return errors.New("unsupported architecture") return errors.New("unsupported architecture")
} }

View file

@ -11,8 +11,8 @@ import (
"github.com/ollama/ollama/llm" "github.com/ollama/ollama/llm"
) )
type bert struct { type bertModel struct {
Parameters ModelParameters
NLayers uint32 `json:"n_layers"` NLayers uint32 `json:"n_layers"`
NumHiddenLayers uint32 `json:"num_hidden_layers"` NumHiddenLayers uint32 `json:"num_hidden_layers"`
NLayer uint32 `json:"n_layer"` NLayer uint32 `json:"n_layer"`
@ -33,11 +33,11 @@ type bert struct {
} }
var ( var (
_ Converter = (*bert)(nil) _ ModelConverter = (*bertModel)(nil)
_ moreParser = (*bert)(nil) _ moreParser = (*bertModel)(nil)
) )
func (p *bert) parseMore(fsys fs.FS) error { func (p *bertModel) parseMore(fsys fs.FS) error {
bts, err := fs.ReadFile(fsys, "modules.json") bts, err := fs.ReadFile(fsys, "modules.json")
if err != nil { if err != nil {
return err return err
@ -85,8 +85,8 @@ func (p *bert) parseMore(fsys fs.FS) error {
return nil return nil
} }
func (p *bert) KV(t *Tokenizer) llm.KV { func (p *bertModel) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t) kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "bert" kv["general.architecture"] = "bert"
kv["bert.attention.causal"] = false kv["bert.attention.causal"] = false
kv["bert.pooling_type"] = p.PoolingType kv["bert.pooling_type"] = p.PoolingType
@ -132,7 +132,7 @@ func (p *bert) KV(t *Tokenizer) llm.KV {
return kv return kv
} }
func (p *bert) Tensors(ts []Tensor) []llm.Tensor { func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor var out []llm.Tensor
for _, t := range ts { for _, t := range ts {
if slices.Contains([]string{ if slices.Contains([]string{
@ -154,7 +154,7 @@ func (p *bert) Tensors(ts []Tensor) []llm.Tensor {
return out return out
} }
func (bert) Replacements() []string { func (bertModel) Replacements() []string {
return []string{ return []string{
"encoder.layer", "blk", "encoder.layer", "blk",
"encoder.layers", "blk", "encoder.layers", "blk",

View file

@ -9,8 +9,8 @@ import (
"github.com/ollama/ollama/llm" "github.com/ollama/ollama/llm"
) )
type gemma struct { type gemmaModel struct {
Parameters ModelParameters
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"` MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"` HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"` HiddenLayers uint32 `json:"num_hidden_layers"`
@ -21,10 +21,10 @@ type gemma struct {
HeadDim uint32 `json:"head_dim"` HeadDim uint32 `json:"head_dim"`
} }
var _ Converter = (*gemma)(nil) var _ ModelConverter = (*gemmaModel)(nil)
func (p *gemma) KV(t *Tokenizer) llm.KV { func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t) kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma" kv["general.architecture"] = "gemma"
kv["gemma.context_length"] = p.MaxPositionEmbeddings kv["gemma.context_length"] = p.MaxPositionEmbeddings
kv["gemma.embedding_length"] = p.HiddenSize kv["gemma.embedding_length"] = p.HiddenSize
@ -42,8 +42,8 @@ func (p *gemma) KV(t *Tokenizer) llm.KV {
return kv return kv
} }
func (p *gemma) Tensors(ts []Tensor) []llm.Tensor { func (p *gemmaModel) Tensors(ts []Tensor) []llm.Tensor {
out := make([]llm.Tensor, 0, len(ts)) var out []llm.Tensor
for _, t := range ts { for _, t := range ts {
if strings.HasSuffix(t.Name(), "_norm.weight") { if strings.HasSuffix(t.Name(), "_norm.weight") {
t.SetRepacker(p.addOne) t.SetRepacker(p.addOne)
@ -60,7 +60,7 @@ func (p *gemma) Tensors(ts []Tensor) []llm.Tensor {
return out return out
} }
func (p *gemma) Replacements() []string { func (p *gemmaModel) Replacements() []string {
return []string{ return []string{
"model.embed_tokens", "token_embd", "model.embed_tokens", "token_embd",
"model.norm", "output_norm", "model.norm", "output_norm",
@ -77,7 +77,7 @@ func (p *gemma) Replacements() []string {
} }
} }
func (*gemma) addOne(_ string, data []float32, shape []uint64) ([]float32, error) { func (*gemmaModel) addOne(_ string, data []float32, shape []uint64) ([]float32, error) {
n := tensor.New(tensor.WithShape(int(shape[0])), tensor.WithBacking(data)) n := tensor.New(tensor.WithShape(int(shape[0])), tensor.WithBacking(data))
ones := tensor.Ones(tensor.Float32, int(shape[0])) ones := tensor.Ones(tensor.Float32, int(shape[0]))

View file

@ -4,15 +4,15 @@ import (
"github.com/ollama/ollama/llm" "github.com/ollama/ollama/llm"
) )
type gemma2 struct { type gemma2Model struct {
gemma gemmaModel
SlidingWindow uint32 `json:"sliding_window"` SlidingWindow uint32 `json:"sliding_window"`
AttentionLogitSoftcap float32 `json:"attn_logit_softcapping"` AttentionLogitSoftcap float32 `json:"attn_logit_softcapping"`
FinalLogitSoftcap float32 `json:"final_logit_softcapping"` FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
} }
func (p *gemma2) KV(t *Tokenizer) llm.KV { func (p *gemma2Model) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t) kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma2" kv["general.architecture"] = "gemma2"
kv["gemma2.context_length"] = p.MaxPositionEmbeddings kv["gemma2.context_length"] = p.MaxPositionEmbeddings
kv["gemma2.embedding_length"] = p.HiddenSize kv["gemma2.embedding_length"] = p.HiddenSize
@ -33,9 +33,9 @@ func (p *gemma2) KV(t *Tokenizer) llm.KV {
return kv return kv
} }
func (p *gemma2) Replacements() []string { func (p *gemma2Model) Replacements() []string {
return append( return append(
p.gemma.Replacements(), p.gemmaModel.Replacements(),
"post_attention_layernorm", "post_attention_norm", "post_attention_layernorm", "post_attention_norm",
"pre_feedforward_layernorm", "ffn_norm", "pre_feedforward_layernorm", "ffn_norm",
"post_feedforward_layernorm", "post_ffw_norm", "post_feedforward_layernorm", "post_ffw_norm",

View file

@ -0,0 +1,91 @@
package convert
import (
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type gemma2Adapter struct {
AdapterParameters
}
var _ AdapterConverter = (*gemma2Adapter)(nil)
func (p *gemma2Adapter) KV(baseKV llm.KV) llm.KV {
kv := p.AdapterParameters.KV()
kv["general.architecture"] = "gemma2"
return kv
}
func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
shape := t.Shape()
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
(strings.HasSuffix(t.Name(), "weight.lora_b") && shape[0] < shape[1]) {
shape[0], shape[1] = shape[1], shape[0]
t.SetRepacker(p.repack)
}
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *gemma2Adapter) Replacements() []string {
return []string{
"base_model.model.", "",
"model.layers", "blk",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"lora_A.weight", "weight.lora_a",
"lora_B.weight", "weight.lora_b",
"lora_a", "weight.lora_a",
"lora_b", "weight.lora_b",
}
}
func (p *gemma2Adapter) repack(name string, data []float32, shape []uint64) ([]float32, error) {
dims := []int{int(shape[1]), int(shape[0])}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.T(1, 0); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View file

@ -12,8 +12,8 @@ import (
"github.com/ollama/ollama/llm" "github.com/ollama/ollama/llm"
) )
type llama struct { type llamaModel struct {
Parameters ModelParameters
NLayers uint32 `json:"n_layers"` NLayers uint32 `json:"n_layers"`
NumHiddenLayers uint32 `json:"num_hidden_layers"` NumHiddenLayers uint32 `json:"num_hidden_layers"`
NLayer uint32 `json:"n_layer"` NLayer uint32 `json:"n_layer"`
@ -44,10 +44,10 @@ type llama struct {
HeadDim uint32 `json:"head_dim"` HeadDim uint32 `json:"head_dim"`
} }
var _ Converter = (*llama)(nil) var _ ModelConverter = (*llamaModel)(nil)
func (p *llama) KV(t *Tokenizer) llm.KV { func (p *llamaModel) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t) kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "llama" kv["general.architecture"] = "llama"
kv["llama.vocab_size"] = p.VocabSize kv["llama.vocab_size"] = p.VocabSize
@ -120,7 +120,7 @@ func (p *llama) KV(t *Tokenizer) llm.KV {
return kv return kv
} }
func (p *llama) Tensors(ts []Tensor) []llm.Tensor { func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor var out []llm.Tensor
if p.RopeScaling.factors != nil { if p.RopeScaling.factors != nil {
@ -149,7 +149,7 @@ func (p *llama) Tensors(ts []Tensor) []llm.Tensor {
return out return out
} }
func (p *llama) Replacements() []string { func (p *llamaModel) Replacements() []string {
return []string{ return []string{
"lm_head", "output", "lm_head", "output",
"model.embed_tokens", "token_embd", "model.embed_tokens", "token_embd",
@ -167,7 +167,7 @@ func (p *llama) Replacements() []string {
} }
} }
func (p *llama) repack(name string, data []float32, shape []uint64) ([]float32, error) { func (p *llamaModel) repack(name string, data []float32, shape []uint64) ([]float32, error) {
var dims []int var dims []int
for _, dim := range shape { for _, dim := range shape {
dims = append(dims, int(dim)) dims = append(dims, int(dim))

View file

@ -0,0 +1,169 @@
package convert
import (
"cmp"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type llamaAdapter struct {
AdapterParameters
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
}
var _ AdapterConverter = (*llamaAdapter)(nil)
func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
kv := p.AdapterParameters.KV()
kv["general.architecture"] = "llama"
kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
kv["llama.attention.head_count_kv"] = baseKV["llama.attention.head_count_kv"]
p.NumAttentionHeads = baseKV["llama.attention.head_count"].(uint32)
return kv
}
func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
shape := t.Shape()
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
(strings.HasSuffix(t.Name(), "weight.lora_b") && shape[0] < shape[1]) {
shape[0], shape[1] = shape[1], shape[0]
t.SetRepacker(p.repackAndTranspose)
} else {
t.SetRepacker(p.repack)
}
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: shape,
WriterTo: t,
})
}
return out
}
func (p *llamaAdapter) Replacements() []string {
return []string{
"base_model.model.", "",
"model.layers", "blk",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"lora_A.weight", "weight.lora_a",
"lora_B.weight", "weight.lora_b",
"lora_a", "weight.lora_a",
"lora_b", "weight.lora_b",
}
}
func (p *llamaAdapter) repack(name string, data []float32, shape []uint64) ([]float32, error) {
dims := []int{int(shape[1]), int(shape[0])}
var heads uint32
if strings.HasSuffix(name, "attn_q.weight.lora_a") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, "attn_k.weight.lora_a") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
} else {
return data, nil
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}
func (p *llamaAdapter) repackAndTranspose(name string, data []float32, shape []uint64) ([]float32, error) {
dims := []int{int(shape[1]), int(shape[0])}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
var heads uint32
if strings.HasSuffix(name, "attn_q.weight.lora_a") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, "attn_k.weight.lora_a") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
}
if heads > 0 {
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
}
if err := n.T(1, 0); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View file

@ -9,14 +9,14 @@ import (
"github.com/ollama/ollama/llm" "github.com/ollama/ollama/llm"
) )
type mixtral struct { type mixtralModel struct {
llama llamaModel
NumLocalExperts uint32 `json:"num_local_experts"` NumLocalExperts uint32 `json:"num_local_experts"`
NumExpertsPerToken uint32 `json:"num_experts_per_tok"` NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
} }
func (p *mixtral) KV(t *Tokenizer) llm.KV { func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
kv := p.llama.KV(t) kv := p.llamaModel.KV(t)
if p.NumLocalExperts > 0 { if p.NumLocalExperts > 0 {
kv["llama.expert_count"] = p.NumLocalExperts kv["llama.expert_count"] = p.NumLocalExperts
@ -29,7 +29,7 @@ func (p *mixtral) KV(t *Tokenizer) llm.KV {
return kv return kv
} }
func (p *mixtral) Tensors(ts []Tensor) []llm.Tensor { func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
oldnew := []string{ oldnew := []string{
"model.layers", "blk", "model.layers", "blk",
"w1", "ffn_gate_exps", "w1", "ffn_gate_exps",
@ -67,12 +67,12 @@ func (p *mixtral) Tensors(ts []Tensor) []llm.Tensor {
}) })
} }
return append(out, p.llama.Tensors(ts)...) return append(out, p.llamaModel.Tensors(ts)...)
} }
func (p *mixtral) Replacements() []string { func (p *mixtralModel) Replacements() []string {
return append( return append(
p.llama.Replacements(), p.llamaModel.Replacements(),
"block_sparse_moe.gate", "ffn_gate_inp", "block_sparse_moe.gate", "ffn_gate_inp",
) )
} }

View file

@ -11,8 +11,8 @@ import (
"github.com/ollama/ollama/llm" "github.com/ollama/ollama/llm"
) )
type phi3 struct { type phi3Model struct {
Parameters ModelParameters
NumHiddenLayers uint32 `json:"num_hidden_layers"` NumHiddenLayers uint32 `json:"num_hidden_layers"`
NLayers uint32 `json:"n_layers"` NLayers uint32 `json:"n_layers"`
HiddenSize uint32 `json:"hidden_size"` HiddenSize uint32 `json:"hidden_size"`
@ -35,10 +35,10 @@ type phi3 struct {
SlidingWindow uint32 `json:"sliding_window"` SlidingWindow uint32 `json:"sliding_window"`
} }
var _ Converter = (*phi3)(nil) var _ ModelConverter = (*phi3Model)(nil)
func (p *phi3) KV(t *Tokenizer) llm.KV { func (p *phi3Model) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t) kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "phi3" kv["general.architecture"] = "phi3"
kv["phi3.context_length"] = p.MaxPositionEmbeddings kv["phi3.context_length"] = p.MaxPositionEmbeddings
kv["phi3.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd) kv["phi3.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
@ -68,7 +68,7 @@ func (p *phi3) KV(t *Tokenizer) llm.KV {
return kv return kv
} }
func (p *phi3) Tensors(ts []Tensor) []llm.Tensor { func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
var addRopeFactors sync.Once var addRopeFactors sync.Once
out := make([]llm.Tensor, 0, len(ts)+2) out := make([]llm.Tensor, 0, len(ts)+2)
@ -100,7 +100,7 @@ func (p *phi3) Tensors(ts []Tensor) []llm.Tensor {
return out return out
} }
func (p *phi3) Replacements() []string { func (p *phi3Model) Replacements() []string {
return []string{ return []string{
"lm_head", "output", "lm_head", "output",
"model.embed_tokens", "token_embd", "model.embed_tokens", "token_embd",

View file

@ -1,7 +1,9 @@
package convert package convert
import ( import (
"bytes"
"crypto/sha256" "crypto/sha256"
"encoding/binary"
"encoding/hex" "encoding/hex"
"encoding/json" "encoding/json"
"flag" "flag"
@ -29,7 +31,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
} }
defer f.Close() defer f.Close()
if err := Convert(fsys, f); err != nil { if err := ConvertModel(fsys, f); err != nil {
t.Fatal(err) t.Fatal(err)
} }
@ -51,6 +53,34 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
return r, m.KV(), m.Tensors() return r, m.KV(), m.Tensors()
} }
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors llm.Tensors) map[string]string {
actual := make(map[string]string)
for k, v := range kv {
if s, ok := v.(json.Marshaler); !ok {
actual[k] = fmt.Sprintf("%v", v)
} else {
bts, err := json.Marshal(s)
if err != nil {
t.Fatal(err)
}
actual[k] = fmt.Sprintf("%x", sha256.Sum256(bts))
}
}
for _, tensor := range tensors.Items {
sha256sum := sha256.New()
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
if _, err := io.Copy(sha256sum, sr); err != nil {
t.Fatal(err)
}
actual[tensor.Name] = hex.EncodeToString(sha256sum.Sum(nil))
}
return actual
}
func TestMain(m *testing.M) { func TestMain(m *testing.M) {
var level slog.Level var level slog.Level
flag.TextVar(&level, "level", slog.LevelInfo, "log level") flag.TextVar(&level, "level", slog.LevelInfo, "log level")
@ -85,29 +115,7 @@ func TestConvertFull(t *testing.T) {
} }
f, kv, tensors := convertFull(t, os.DirFS(p)) f, kv, tensors := convertFull(t, os.DirFS(p))
actual := make(map[string]string) actual := generateResultsJSON(t, f, kv, tensors)
for k, v := range kv {
if s, ok := v.(json.Marshaler); !ok {
actual[k] = fmt.Sprintf("%v", v)
} else {
bts, err := json.Marshal(s)
if err != nil {
t.Fatal(err)
}
actual[k] = fmt.Sprintf("%x", sha256.Sum256(bts))
}
}
for _, tensor := range tensors.Items {
sha256sum := sha256.New()
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
if _, err := io.Copy(sha256sum, sr); err != nil {
t.Fatal(err)
}
actual[tensor.Name] = hex.EncodeToString(sha256sum.Sum(nil))
}
expectFile, err := os.Open(filepath.Join("testdata", fmt.Sprintf("%s.json", tt))) expectFile, err := os.Open(filepath.Join("testdata", fmt.Sprintf("%s.json", tt)))
if err != nil { if err != nil {
@ -131,3 +139,209 @@ func TestConvertFull(t *testing.T) {
}) })
} }
} }
func TestConvertAdapter(t *testing.T) {
type AdapterCase struct {
Name string
BaseKV map[string]any
Expected map[string]string
}
cases := []AdapterCase{
{
Name: "discollama",
BaseKV: map[string]any{
"general.architecture": "llama",
"llama.attention.head_count": uint32(32),
"llama.attention.head_count_kv": uint32(8),
},
Expected: map[string]string{
"general.architecture": "llama",
"general.file_type": "1",
"general.parameter_count": "106496",
"general.type": "adapter",
"general.version": "v0.2",
"adapter.lora.alpha": "16",
"adapter.type": "lora",
"llama.attention.head_count": "32",
"llama.attention.head_count_kv": "8",
"blk.31.attn_q.weight.lora_a": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
"blk.31.attn_q.weight.lora_b": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
"blk.31.attn_v.weight.lora_a": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
"blk.31.attn_v.weight.lora_b": "071dcafe89df065d6e1c935ecb8fdf6479b3c202eb912e7da938597673ff5857",
},
},
}
for _, c := range cases {
t.Run(c.Name, func(t *testing.T) {
t.Parallel()
f, err := os.CreateTemp(t.TempDir(), "f16")
if err != nil {
t.Fatal(err)
}
defer f.Close()
tempDir := t.TempDir()
generateLoraTestData(t, tempDir)
if err = ConvertAdapter(os.DirFS(tempDir), f, c.BaseKV); err != nil {
t.Fatal(err)
}
r, err := os.Open(f.Name())
if err != nil {
t.Fatal(err)
}
defer r.Close()
m, _, err := llm.DecodeGGML(r, math.MaxInt)
if err != nil {
t.Fatal(err)
}
if _, err := r.Seek(0, io.SeekStart); err != nil {
t.Fatal(err)
}
actual := generateResultsJSON(t, r, m.KV(), m.Tensors())
keys := maps.Keys(c.Expected)
slices.Sort(keys)
for _, k := range keys {
if v, ok := actual[k]; !ok {
t.Errorf("missing %s", k)
} else if v != c.Expected[k] {
t.Errorf("unexpected %s: want %s, got %s", k, c.Expected[k], v)
}
}
})
}
}
func generateLoraTestData(t *testing.T, tempDir string) {
type tensorData struct {
Offsets []int `json:"data_offsets"`
Type string `json:"dtype"`
Shape []int `json:"shape"`
}
offset := 4096 * 8 * 4
td := map[string]*tensorData{"__metadata__": nil}
td["model.layers.31.self_attn.q_proj.lora_a"] = &tensorData{
Offsets: []int{0, offset},
Type: "F32",
Shape: []int{4096, 8},
}
td["model.layers.31.self_attn.q_proj.lora_b"] = &tensorData{
Offsets: []int{offset, offset * 2},
Type: "F32",
Shape: []int{8, 4096},
}
td["model.layers.31.self_attn.v_proj.lora_a"] = &tensorData{
Offsets: []int{offset * 2, offset * 3},
Type: "F32",
Shape: []int{4096, 8},
}
td["model.layers.31.self_attn.v_proj.lora_b"] = &tensorData{
Offsets: []int{offset * 3, offset*3 + 8*1024*4},
Type: "F32",
Shape: []int{8, 1024},
}
data, err := json.Marshal(td)
if err != nil {
t.Fatal(err)
}
var buf bytes.Buffer
l := int64(len(data))
err = binary.Write(&buf, binary.LittleEndian, l)
if err != nil {
t.Fatal(err)
}
_, err = buf.Write(data)
if err != nil {
t.Fatal(err)
}
// write some data for the tensors
ones := make([]float32, 4096*8)
for i := range ones {
ones[i] = float32(1)
}
for range 3 {
err = binary.Write(&buf, binary.LittleEndian, ones)
if err != nil {
t.Fatal(err)
}
}
ones = make([]float32, 1024*8)
for i := range ones {
ones[i] = float32(1)
}
err = binary.Write(&buf, binary.LittleEndian, ones)
if err != nil {
t.Fatal(err)
}
fdata, err := os.Create(filepath.Join(tempDir, "adapters.safetensors"))
if err != nil {
t.Fatal(err)
}
defer fdata.Close()
_, err = fdata.Write(buf.Bytes())
if err != nil {
t.Fatal(err)
}
configData := `
{
"adapter_path": "adapters-test",
"batch_size": 8,
"config": "config-tiny.json",
"data": "../discollama-completion",
"grad_checkpoint": null,
"iters": 1000,
"learning_rate": 1e-05,
"lora_layers": 1,
"lora_parameters": {
"rank": 8,
"alpha": 16,
"dropout": 0.0,
"scale": 2.0
},
"lr_schedule": null,
"max_seq_length": 2048,
"model": "/Users/pdevine/git/Meta-Llama-3-8B-Instruct",
"resume_adapter_file": null,
"save_every": 100,
"seed": 0,
"steps_per_eval": 200,
"steps_per_report": 10,
"test": false,
"test_batches": 500,
"train": true,
"use_dora": false,
"val_batches": 25
}
`
f, err := os.Create(filepath.Join(tempDir, "adapter_config.json"))
if err != nil {
t.Fatal(err)
}
defer f.Close()
_, err = f.WriteString(configData)
if err != nil {
t.Fatal(err)
}
}

View file

@ -64,6 +64,8 @@ func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
}{ }{
{"model-*-of-*.safetensors", parseSafetensors}, {"model-*-of-*.safetensors", parseSafetensors},
{"model.safetensors", parseSafetensors}, {"model.safetensors", parseSafetensors},
{"adapters.safetensors", parseSafetensors},
{"adapter_model.safetensors", parseSafetensors},
{"pytorch_model-*-of-*.bin", parseTorch}, {"pytorch_model-*-of-*.bin", parseTorch},
{"pytorch_model.bin", parseTorch}, {"pytorch_model.bin", parseTorch},
{"consolidated.*.pth", parseTorch}, {"consolidated.*.pth", parseTorch},

View file

@ -43,6 +43,14 @@ func (kv KV) Architecture() string {
return "unknown" return "unknown"
} }
func (kv KV) Kind() string {
if s, ok := kv["general.type"].(string); ok {
return s
}
return "unknown"
}
func (kv KV) ParameterCount() uint64 { func (kv KV) ParameterCount() uint64 {
return kv.u64("general.parameter_count") return kv.u64("general.parameter_count")
} }

View file

@ -369,13 +369,14 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
parameters := make(map[string]any) parameters := make(map[string]any)
var layers []Layer var layers []Layer
var baseLayers []*layerGGML
for _, c := range modelfile.Commands { for _, c := range modelfile.Commands {
mediatype := fmt.Sprintf("application/vnd.ollama.image.%s", c.Name) mediatype := fmt.Sprintf("application/vnd.ollama.image.%s", c.Name)
command := c.Name
switch c.Name { switch command {
case "model", "adapter": case "model", "adapter":
var baseLayers []*layerGGML if name := model.ParseName(c.Args); name.IsValid() && command == "model" {
if name := model.ParseName(c.Args); name.IsValid() {
baseLayers, err = parseFromModel(ctx, name, fn) baseLayers, err = parseFromModel(ctx, name, fn)
if err != nil { if err != nil {
return err return err
@ -409,14 +410,14 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
} }
defer blob.Close() defer blob.Close()
baseLayers, err = parseFromFile(ctx, blob, digest, fn) baseLayers, err = parseFromFile(ctx, command, baseLayers, blob, digest, fn)
if err != nil { if err != nil {
return err return err
} }
} else if file, err := os.Open(realpath(modelFileDir, c.Args)); err == nil { } else if file, err := os.Open(realpath(modelFileDir, c.Args)); err == nil {
defer file.Close() defer file.Close()
baseLayers, err = parseFromFile(ctx, file, "", fn) baseLayers, err = parseFromFile(ctx, command, baseLayers, file, "", fn)
if err != nil { if err != nil {
return err return err
} }

View file

@ -81,7 +81,7 @@ func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressRe
return layers, nil return layers, nil
} }
func parseFromZipFile(_ context.Context, f *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) { func parseFromZipFile(_ context.Context, command string, baseLayers []*layerGGML, f *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
fi, err := f.Stat() fi, err := f.Stat()
if err != nil { if err != nil {
return nil, err return nil, err
@ -108,16 +108,38 @@ func parseFromZipFile(_ context.Context, f *os.File, digest string, fn func(api.
defer t.Close() defer t.Close()
defer os.Remove(t.Name()) defer os.Remove(t.Name())
fn(api.ProgressResponse{Status: "converting model"}) var layerType string
if err := convert.Convert(convert.NewZipReader(r, p, 32<<20), t); err != nil {
return nil, err switch command {
case "adapter":
var baseModel *llm.GGML
for _, l := range baseLayers {
if l.GGML != nil {
baseModel = l.GGML
break
}
}
if baseModel == nil {
return nil, fmt.Errorf("no base model specified for the adapter")
}
if err := convert.ConvertAdapter(convert.NewZipReader(r, p, 32<<20), t, baseModel.KV()); err != nil {
return nil, err
}
layerType = "application/vnd.ollama.image.adapter"
case "model":
if err := convert.ConvertModel(convert.NewZipReader(r, p, 32<<20), t); err != nil {
return nil, err
}
layerType = "application/vnd.ollama.image.model"
} }
if _, err := t.Seek(0, io.SeekStart); err != nil { if _, err := t.Seek(0, io.SeekStart); err != nil {
return nil, err return nil, err
} }
layer, err := NewLayer(t, "application/vnd.ollama.image.model") layer, err := NewLayer(t, layerType)
if err != nil { if err != nil {
return nil, err return nil, err
} }
@ -139,7 +161,7 @@ func parseFromZipFile(_ context.Context, f *os.File, digest string, fn func(api.
return detectChatTemplate(layers) return detectChatTemplate(layers)
} }
func parseFromFile(ctx context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) { func parseFromFile(ctx context.Context, command string, baseLayers []*layerGGML, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
sr := io.NewSectionReader(file, 0, 512) sr := io.NewSectionReader(file, 0, 512)
contentType, err := detectContentType(sr) contentType, err := detectContentType(sr)
if err != nil { if err != nil {
@ -150,7 +172,7 @@ func parseFromFile(ctx context.Context, file *os.File, digest string, fn func(ap
case "gguf", "ggla": case "gguf", "ggla":
// noop // noop
case "application/zip": case "application/zip":
return parseFromZipFile(ctx, file, digest, fn) return parseFromZipFile(ctx, command, baseLayers, file, digest, fn)
default: default:
return nil, fmt.Errorf("unsupported content type: %s", contentType) return nil, fmt.Errorf("unsupported content type: %s", contentType)
} }
@ -170,7 +192,7 @@ func parseFromFile(ctx context.Context, file *os.File, digest string, fn func(ap
} }
mediatype := "application/vnd.ollama.image.model" mediatype := "application/vnd.ollama.image.model"
if ggml.Name() == "ggla" { if ggml.Name() == "ggla" || ggml.KV().Kind() == "adapter" {
mediatype = "application/vnd.ollama.image.adapter" mediatype = "application/vnd.ollama.image.adapter"
} else if ggml.KV().Architecture() == "clip" { } else if ggml.KV().Architecture() == "clip" {
mediatype = "application/vnd.ollama.image.projector" mediatype = "application/vnd.ollama.image.projector"

View file

@ -153,7 +153,7 @@ func TestParseFromFileFromLayer(t *testing.T) {
t.Fatalf("failed to seek to start: %v", err) t.Fatalf("failed to seek to start: %v", err)
} }
layers, err := parseFromFile(context.Background(), file, "", func(api.ProgressResponse) {}) layers, err := parseFromFile(context.Background(), "model", []*layerGGML{}, file, "", func(api.ProgressResponse) {})
if err != nil { if err != nil {
t.Fatalf("failed to parse from file: %v", err) t.Fatalf("failed to parse from file: %v", err)
} }
@ -166,7 +166,7 @@ func TestParseFromFileFromLayer(t *testing.T) {
t.Fatalf("failed to seek to start: %v", err) t.Fatalf("failed to seek to start: %v", err)
} }
layers2, err := parseFromFile(context.Background(), file, layers[0].Digest, func(api.ProgressResponse) {}) layers2, err := parseFromFile(context.Background(), "model", []*layerGGML{}, file, layers[0].Digest, func(api.ProgressResponse) {})
if err != nil { if err != nil {
t.Fatalf("failed to parse from file: %v", err) t.Fatalf("failed to parse from file: %v", err)
} }
@ -206,7 +206,7 @@ func TestParseLayerFromCopy(t *testing.T) {
t.Fatalf("failed to seek to start: %v", err) t.Fatalf("failed to seek to start: %v", err)
} }
layers, err := parseFromFile(context.Background(), file2, "", func(api.ProgressResponse) {}) layers, err := parseFromFile(context.Background(), "model", []*layerGGML{}, file2, "", func(api.ProgressResponse) {})
if err != nil { if err != nil {
t.Fatalf("failed to parse from file: %v", err) t.Fatalf("failed to parse from file: %v", err)
} }