Offload layers to GPU based on new model size estimates (#1850)
* select layers based on estimated model memory usage * always account for scratch vram * dont load +1 layers * better estmation for graph alloc * Update gpu/gpu_darwin.go Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com> * Update llm/llm.go Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com> * Update llm/llm.go * add overhead for cuda memory * Update llm/llm.go Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com> * fix build error on linux * address comments --------- Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
This commit is contained in:
parent
7e8f7c8358
commit
08f1e18965
10 changed files with 161 additions and 154 deletions
35
gpu/gpu.go
35
gpu/gpu.go
|
@ -16,8 +16,6 @@ import (
|
|||
"runtime"
|
||||
"sync"
|
||||
"unsafe"
|
||||
|
||||
"github.com/jmorganca/ollama/api"
|
||||
)
|
||||
|
||||
type handles struct {
|
||||
|
@ -133,31 +131,14 @@ func getCPUMem() (memInfo, error) {
|
|||
func CheckVRAM() (int64, error) {
|
||||
gpuInfo := GetGPUInfo()
|
||||
if gpuInfo.FreeMemory > 0 && (gpuInfo.Library == "cuda" || gpuInfo.Library == "rocm") {
|
||||
return int64(gpuInfo.FreeMemory), nil
|
||||
// allocate 384MiB for llama.cpp overhead (outside of model)
|
||||
overhead := uint64(384 * 1024 * 1024)
|
||||
if gpuInfo.FreeMemory <= overhead {
|
||||
return 0, nil
|
||||
}
|
||||
|
||||
return int64(gpuInfo.FreeMemory - overhead), nil
|
||||
}
|
||||
|
||||
return 0, fmt.Errorf("no GPU detected") // TODO - better handling of CPU based memory determiniation
|
||||
}
|
||||
|
||||
func NumGPU(numLayer, fileSizeBytes int64, opts api.Options) int {
|
||||
if opts.NumGPU != -1 {
|
||||
return opts.NumGPU
|
||||
}
|
||||
info := GetGPUInfo()
|
||||
if info.Library == "cpu" || info.Library == "default" {
|
||||
return 0
|
||||
}
|
||||
|
||||
/*
|
||||
Calculate bytes per layer, this will roughly be the size of the model file divided by the number of layers.
|
||||
We can store the model weights and the kv cache in vram,
|
||||
to enable kv chache vram storage add two additional layers to the number of layers retrieved from the model file.
|
||||
*/
|
||||
bytesPerLayer := uint64(fileSizeBytes / numLayer)
|
||||
|
||||
// 75% of the absolute max number of layers we can fit in available VRAM, off-loading too many layers to the GPU can cause OOM errors
|
||||
layers := int(info.FreeMemory/bytesPerLayer) * 3 / 4
|
||||
|
||||
log.Printf("%d MB VRAM available, loading up to %d %s GPU layers out of %d", info.FreeMemory/(1024*1024), layers, info.Library, numLayer)
|
||||
|
||||
return layers
|
||||
}
|
||||
|
|
|
@ -6,18 +6,31 @@ import "C"
|
|||
import (
|
||||
"runtime"
|
||||
|
||||
"github.com/jmorganca/ollama/api"
|
||||
"github.com/pbnjay/memory"
|
||||
)
|
||||
|
||||
// CheckVRAM returns the free VRAM in bytes on Linux machines with NVIDIA GPUs
|
||||
func CheckVRAM() (int64, error) {
|
||||
// TODO - assume metal, and return free memory?
|
||||
return 0, nil
|
||||
if runtime.GOARCH == "amd64" {
|
||||
// gpu not supported, this may not be metal
|
||||
return 0, nil
|
||||
}
|
||||
|
||||
// on macOS, there's already buffer for available vram (see below) so just return the total
|
||||
systemMemory := int64(memory.TotalMemory())
|
||||
|
||||
// macOS limits how much memory is available to the GPU based on the amount of system memory
|
||||
// TODO: handle case where iogpu.wired_limit_mb is set to a higher value
|
||||
if systemMemory <= 36*1024*1024*1024 {
|
||||
systemMemory = systemMemory * 2 / 3
|
||||
} else {
|
||||
systemMemory = systemMemory * 3 / 4
|
||||
}
|
||||
|
||||
return systemMemory, nil
|
||||
}
|
||||
|
||||
func GetGPUInfo() GpuInfo {
|
||||
// TODO - Metal vs. x86 macs...
|
||||
mem, _ := getCPUMem()
|
||||
return GpuInfo{
|
||||
Library: "default",
|
||||
|
@ -32,19 +45,6 @@ func getCPUMem() (memInfo, error) {
|
|||
}, nil
|
||||
}
|
||||
|
||||
func NumGPU(numLayer, fileSizeBytes int64, opts api.Options) int {
|
||||
if opts.NumGPU != -1 {
|
||||
return opts.NumGPU
|
||||
}
|
||||
|
||||
// metal only supported on arm64
|
||||
if runtime.GOARCH == "arm64" {
|
||||
return 1
|
||||
}
|
||||
|
||||
return 0
|
||||
}
|
||||
|
||||
func nativeInit() error {
|
||||
return nil
|
||||
}
|
||||
|
|
|
@ -35,14 +35,12 @@ import (
|
|||
"encoding/json"
|
||||
"fmt"
|
||||
"log"
|
||||
"os"
|
||||
"strings"
|
||||
"sync"
|
||||
"time"
|
||||
"unsafe"
|
||||
|
||||
"github.com/jmorganca/ollama/api"
|
||||
"github.com/jmorganca/ollama/gpu"
|
||||
)
|
||||
|
||||
type extServer interface {
|
||||
|
@ -82,25 +80,20 @@ func extServerResponseToErr(resp C.ext_server_resp_t) error {
|
|||
return fmt.Errorf(C.GoString(resp.msg))
|
||||
}
|
||||
|
||||
func newExtServer(server extServer, model string, adapters, projectors []string, numLayers int64, opts api.Options) (extServer, error) {
|
||||
func newExtServer(server extServer, model string, adapters, projectors []string, opts api.Options) (extServer, error) {
|
||||
if !mutex.TryLock() {
|
||||
log.Printf("concurrent llm servers not yet supported, waiting for prior server to complete")
|
||||
mutex.Lock()
|
||||
}
|
||||
fileInfo, err := os.Stat(model)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var sparams C.ext_server_params_t
|
||||
sparams.model = C.CString(model)
|
||||
defer C.free(unsafe.Pointer(sparams.model))
|
||||
|
||||
numGPU := gpu.NumGPU(numLayers, fileInfo.Size(), opts)
|
||||
|
||||
sparams.embedding = true
|
||||
sparams.n_ctx = C.uint(opts.NumCtx)
|
||||
sparams.n_batch = C.uint(opts.NumBatch)
|
||||
sparams.n_gpu_layers = C.int(numGPU)
|
||||
sparams.n_gpu_layers = C.int(opts.NumGPU)
|
||||
sparams.main_gpu = C.int(opts.MainGPU)
|
||||
sparams.n_parallel = 1 // TODO - wire up concurrency
|
||||
|
||||
|
|
|
@ -54,9 +54,9 @@ func (llm *llamaExtServer) llama_server_release_json_resp(json_resp **C.char) {
|
|||
C.llama_server_release_json_resp(json_resp)
|
||||
}
|
||||
|
||||
func newDefaultExtServer(model string, adapters, projectors []string, numLayers int64, opts api.Options) (extServer, error) {
|
||||
func newDefaultExtServer(model string, adapters, projectors []string, opts api.Options) (extServer, error) {
|
||||
server := &llamaExtServer{opts}
|
||||
return newExtServer(server, model, adapters, projectors, numLayers, opts)
|
||||
return newExtServer(server, model, adapters, projectors, opts)
|
||||
}
|
||||
|
||||
func (llm *llamaExtServer) Predict(ctx context.Context, pred PredictOpts, fn func(PredictResult)) error {
|
||||
|
|
|
@ -78,7 +78,11 @@ type model interface {
|
|||
ModelFamily() string
|
||||
ModelType() string
|
||||
FileType() string
|
||||
NumLayers() int64
|
||||
NumLayers() uint32
|
||||
NumGQA() uint32
|
||||
NumEmbed() uint32
|
||||
NumHead() uint32
|
||||
NumHeadKv() uint32
|
||||
}
|
||||
|
||||
type container interface {
|
||||
|
|
41
llm/gguf.go
41
llm/gguf.go
|
@ -272,14 +272,49 @@ func (llm *ggufModel) Decode(rso *readSeekOffset) error {
|
|||
return nil
|
||||
}
|
||||
|
||||
func (llm *ggufModel) NumLayers() int64 {
|
||||
func (llm *ggufModel) NumLayers() uint32 {
|
||||
value, exists := llm.kv[fmt.Sprintf("%s.block_count", llm.ModelFamily())]
|
||||
if !exists {
|
||||
return 0
|
||||
}
|
||||
|
||||
v := value.(uint32)
|
||||
return int64(v)
|
||||
return value.(uint32)
|
||||
}
|
||||
|
||||
func (llm *ggufModel) NumHead() uint32 {
|
||||
value, exists := llm.kv[fmt.Sprintf("%s.attention.head_count", llm.ModelFamily())]
|
||||
if !exists {
|
||||
return 0
|
||||
}
|
||||
|
||||
return value.(uint32)
|
||||
}
|
||||
|
||||
func (llm *ggufModel) NumEmbed() uint32 {
|
||||
value, exists := llm.kv[fmt.Sprintf("%s.embedding_length", llm.ModelFamily())]
|
||||
if !exists {
|
||||
return 0
|
||||
}
|
||||
|
||||
return value.(uint32)
|
||||
}
|
||||
|
||||
func (llm *ggufModel) NumHeadKv() uint32 {
|
||||
value, exists := llm.kv[fmt.Sprintf("%s.attention.head_count_kv", llm.ModelFamily())]
|
||||
if !exists {
|
||||
return 0
|
||||
}
|
||||
|
||||
return value.(uint32)
|
||||
}
|
||||
|
||||
func (llm *ggufModel) NumGQA() uint32 {
|
||||
numHeadKv := llm.NumHeadKv()
|
||||
if numHeadKv == 0 {
|
||||
return 0
|
||||
}
|
||||
|
||||
return llm.NumHead() / numHeadKv
|
||||
}
|
||||
|
||||
func (llm ggufModel) readU8(r io.Reader) uint8 {
|
||||
|
|
61
llm/llama.go
61
llm/llama.go
|
@ -8,7 +8,6 @@ import (
|
|||
"fmt"
|
||||
"os"
|
||||
"os/exec"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"github.com/jmorganca/ollama/api"
|
||||
|
@ -43,69 +42,11 @@ number ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws
|
|||
ws ::= ([ \t\n] ws)?
|
||||
`
|
||||
|
||||
type llamaModel struct {
|
||||
hyperparameters llamaHyperparameters
|
||||
}
|
||||
|
||||
func (llm *llamaModel) ModelFamily() string {
|
||||
return "llama"
|
||||
}
|
||||
|
||||
func llamaModelType(numLayer uint32) string {
|
||||
switch numLayer {
|
||||
case 26:
|
||||
return "3B"
|
||||
case 32:
|
||||
return "7B"
|
||||
case 40:
|
||||
return "13B"
|
||||
case 48:
|
||||
return "34B"
|
||||
case 60:
|
||||
return "30B"
|
||||
case 80:
|
||||
return "65B"
|
||||
default:
|
||||
return "unknown"
|
||||
}
|
||||
}
|
||||
|
||||
func (llm *llamaModel) ModelType() string {
|
||||
return llamaModelType(llm.hyperparameters.NumLayer)
|
||||
}
|
||||
|
||||
func (llm *llamaModel) FileType() string {
|
||||
return fileType(llm.hyperparameters.FileType)
|
||||
}
|
||||
|
||||
func (llm *llamaModel) NumLayers() int64 {
|
||||
return int64(llm.hyperparameters.NumLayer)
|
||||
}
|
||||
|
||||
type llamaHyperparameters struct {
|
||||
// NumVocab is the size of the model's vocabulary.
|
||||
NumVocab uint32
|
||||
|
||||
// NumEmbd is the size of the model's embedding layer.
|
||||
NumEmbd uint32
|
||||
NumMult uint32
|
||||
NumHead uint32
|
||||
|
||||
// NumLayer is the number of layers in the model.
|
||||
NumLayer uint32
|
||||
NumRot uint32
|
||||
|
||||
// FileType describes the quantization level of the model, e.g. Q4_0, Q5_K, etc.
|
||||
FileType uint32
|
||||
}
|
||||
|
||||
type Running struct {
|
||||
Port int
|
||||
Cmd *exec.Cmd
|
||||
Cancel context.CancelFunc
|
||||
exitOnce sync.Once
|
||||
exitCh chan error // channel to receive the exit status of the subprocess
|
||||
*StatusWriter // captures error messages from the llama runner process
|
||||
*StatusWriter // captures error messages from the llama runner process
|
||||
}
|
||||
|
||||
type ImageData struct {
|
||||
|
|
115
llm/llm.go
115
llm/llm.go
|
@ -7,10 +7,7 @@ import (
|
|||
"os"
|
||||
"runtime"
|
||||
|
||||
"github.com/pbnjay/memory"
|
||||
|
||||
"github.com/jmorganca/ollama/api"
|
||||
"github.com/jmorganca/ollama/format"
|
||||
"github.com/jmorganca/ollama/gpu"
|
||||
)
|
||||
|
||||
|
@ -40,32 +37,89 @@ func New(workDir, model string, adapters, projectors []string, opts api.Options)
|
|||
return nil, err
|
||||
}
|
||||
|
||||
if runtime.GOOS == "darwin" {
|
||||
var requiredMemory int64
|
||||
var f16Multiplier int64 = 2
|
||||
if opts.NumCtx < 4 {
|
||||
opts.NumCtx = 4
|
||||
}
|
||||
|
||||
switch ggml.ModelType() {
|
||||
case "3B", "7B":
|
||||
requiredMemory = 8 * format.GigaByte
|
||||
case "13B":
|
||||
requiredMemory = 16 * format.GigaByte
|
||||
case "30B", "34B", "40B":
|
||||
requiredMemory = 32 * format.GigaByte
|
||||
case "47B":
|
||||
requiredMemory = 48 * format.GigaByte
|
||||
case "65B", "70B":
|
||||
requiredMemory = 64 * format.GigaByte
|
||||
case "180B":
|
||||
requiredMemory = 128 * format.GigaByte
|
||||
f16Multiplier = 4
|
||||
}
|
||||
fmt.Println("size", ggml.Size)
|
||||
fmt.Println("filetype", ggml.FileType())
|
||||
fmt.Println("architecture", ggml.ModelFamily())
|
||||
fmt.Println("type", ggml.ModelType())
|
||||
fmt.Println("name", ggml.Name())
|
||||
fmt.Println("embd", ggml.NumEmbed())
|
||||
fmt.Println("head", ggml.NumHead())
|
||||
fmt.Println("head_kv", ggml.NumHeadKv())
|
||||
fmt.Println("gqa", ggml.NumGQA())
|
||||
|
||||
systemMemory := int64(memory.TotalMemory())
|
||||
available, _ := gpu.CheckVRAM()
|
||||
|
||||
if ggml.FileType() == "F16" && requiredMemory*f16Multiplier > systemMemory {
|
||||
return nil, fmt.Errorf("F16 model requires at least %s of memory", format.HumanBytes(requiredMemory))
|
||||
} else if requiredMemory > systemMemory {
|
||||
return nil, fmt.Errorf("model requires at least %s of memory", format.HumanBytes(requiredMemory))
|
||||
// For now assume filesize = model size
|
||||
// TODO: use actual model size
|
||||
requiredModel := ggml.Size
|
||||
|
||||
// fp16 k,v matrices require = n_ctx * n_layer * n_embd / n_head * n_head_kv * 2 bytes each * 2 key and value
|
||||
requiredKv := 2 * 2 * int64(opts.NumCtx) * int64(ggml.NumLayers()) * int64(ggml.NumEmbed()) * int64(ggml.NumHeadKv()) / int64(ggml.NumHead())
|
||||
|
||||
// this amount is the overhead + tensors in memory
|
||||
// TODO: get this from the llama.cpp's graph calcluations instead of
|
||||
// guessing it's ~1/7th of the kv cache times gqa
|
||||
requiredAlloc := int64(ggml.NumGQA()) * requiredKv / 7
|
||||
|
||||
requiredTotal := requiredModel + requiredKv + requiredAlloc
|
||||
|
||||
log.Println("system memory bytes:", available)
|
||||
log.Println("required model bytes:", requiredModel)
|
||||
log.Println("required kv bytes:", requiredKv)
|
||||
log.Println("required alloc bytes:", requiredAlloc)
|
||||
log.Println("required total bytes:", requiredTotal)
|
||||
|
||||
info := gpu.GetGPUInfo()
|
||||
library := info.Library
|
||||
|
||||
if opts.NumGPU == -1 {
|
||||
// default to offloading all layers
|
||||
opts.NumGPU = int(ggml.NumLayers()) + 1
|
||||
}
|
||||
|
||||
// decide how many layers to put on the GPU
|
||||
if opts.NumGPU > 0 {
|
||||
switch runtime.GOOS {
|
||||
case "darwin":
|
||||
if requiredTotal > available {
|
||||
log.Println("not enough vram available, falling back to CPU only")
|
||||
opts.NumGPU = 0
|
||||
}
|
||||
default:
|
||||
if library == "cpu" || library == "default" {
|
||||
opts.NumGPU = 0
|
||||
break
|
||||
}
|
||||
|
||||
// no offloading required
|
||||
if requiredTotal <= available {
|
||||
break
|
||||
}
|
||||
|
||||
// This handles two cases:
|
||||
// 1. overhead + tensors are always loaded into scratch memory even with num_gpu 0
|
||||
// 2. it seems llama.cpp always tries to allocate the entire kv cache (even if later split into layers) into vram or crashes
|
||||
if requiredAlloc > available || requiredKv > available {
|
||||
log.Printf("not enough vram available, falling back to CPU only")
|
||||
library = "cpu"
|
||||
opts.NumGPU = 0
|
||||
break
|
||||
}
|
||||
|
||||
available -= requiredAlloc
|
||||
|
||||
// fill remaining vram with layers
|
||||
log.Println("splitting", available, "of available memory bytes into layers")
|
||||
bytesPerLayer := int64((requiredModel + requiredKv) / int64(ggml.NumLayers()))
|
||||
log.Println("bytes per layer:", bytesPerLayer)
|
||||
layers := available / bytesPerLayer
|
||||
if layers < int64(opts.NumGPU) {
|
||||
opts.NumGPU = int(layers)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -73,7 +127,7 @@ func New(workDir, model string, adapters, projectors []string, opts api.Options)
|
|||
opts.RopeFrequencyBase = 0.0
|
||||
opts.RopeFrequencyScale = 0.0
|
||||
gpuInfo := gpu.GetGPUInfo()
|
||||
return newLlmServer(gpuInfo.Library, model, adapters, projectors, ggml.NumLayers(), opts)
|
||||
return newLlmServer(gpuInfo.Library, model, adapters, projectors, opts)
|
||||
}
|
||||
|
||||
// Give any native cgo implementations an opportunity to initialize
|
||||
|
@ -81,9 +135,9 @@ func Init(workdir string) error {
|
|||
return nativeInit(workdir)
|
||||
}
|
||||
|
||||
func newLlmServer(library, model string, adapters, projectors []string, numLayers int64, opts api.Options) (extServer, error) {
|
||||
func newLlmServer(library, model string, adapters, projectors []string, opts api.Options) (extServer, error) {
|
||||
if _, libPresent := AvailableShims[library]; libPresent && library != "default" {
|
||||
srv, err := newDynamicShimExtServer(AvailableShims[library], model, adapters, projectors, numLayers, opts)
|
||||
srv, err := newDynamicShimExtServer(AvailableShims[library], model, adapters, projectors, opts)
|
||||
if err == nil {
|
||||
return srv, nil
|
||||
}
|
||||
|
@ -91,6 +145,5 @@ func newLlmServer(library, model string, adapters, projectors []string, numLayer
|
|||
// TODO - update some state to indicate we were unable to load the GPU library for future "info" ux
|
||||
}
|
||||
|
||||
return newDefaultExtServer(model, adapters, projectors, numLayers, opts)
|
||||
|
||||
return newDefaultExtServer(model, adapters, projectors, opts)
|
||||
}
|
||||
|
|
|
@ -16,7 +16,7 @@ import (
|
|||
//go:embed llama.cpp/ggml-metal.metal
|
||||
var libEmbed embed.FS
|
||||
|
||||
func newDynamicShimExtServer(library, model string, adapters, projectors []string, numLayers int64, opts api.Options) (extServer, error) {
|
||||
func newDynamicShimExtServer(library, model string, adapters, projectors []string, opts api.Options) (extServer, error) {
|
||||
// should never happen...
|
||||
return nil, fmt.Errorf("Dynamic library loading not supported on Mac")
|
||||
}
|
||||
|
|
|
@ -72,7 +72,7 @@ func (llm *shimExtServer) llama_server_release_json_resp(json_resp **C.char) {
|
|||
C.dynamic_shim_llama_server_release_json_resp(llm.s, json_resp)
|
||||
}
|
||||
|
||||
func newDynamicShimExtServer(library, model string, adapters, projectors []string, numLayers int64, opts api.Options) (extServer, error) {
|
||||
func newDynamicShimExtServer(library, model string, adapters, projectors []string, opts api.Options) (extServer, error) {
|
||||
shimMutex.Lock()
|
||||
defer shimMutex.Unlock()
|
||||
updatePath(filepath.Dir(library))
|
||||
|
@ -90,7 +90,7 @@ func newDynamicShimExtServer(library, model string, adapters, projectors []strin
|
|||
options: opts,
|
||||
}
|
||||
log.Printf("Loading Dynamic Shim llm server: %s", library)
|
||||
return newExtServer(llm, model, adapters, projectors, numLayers, opts)
|
||||
return newExtServer(llm, model, adapters, projectors, opts)
|
||||
}
|
||||
|
||||
func (llm *shimExtServer) Predict(ctx context.Context, pred PredictOpts, fn func(PredictResult)) error {
|
||||
|
|
Loading…
Add table
Reference in a new issue