Add CUDA Driver API for GPU discovery

We're seeing some corner cases with cudart which might be resolved by
switching to the driver API which comes bundled with the driver package
This commit is contained in:
Daniel Hiltgen 2024-04-30 16:42:48 -07:00
parent b9f74ff3d6
commit 089daaeabc
5 changed files with 342 additions and 5 deletions

View file

@ -26,6 +26,7 @@ import (
type handles struct { type handles struct {
deviceCount int deviceCount int
cudart *C.cudart_handle_t cudart *C.cudart_handle_t
nvcuda *C.nvcuda_handle_t
} }
const ( const (
@ -62,6 +63,22 @@ var CudartWindowsGlobs = []string{
"c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll", "c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll",
} }
var NvcudaLinuxGlobs = []string{
"/usr/local/cuda*/targets/*/lib/libcuda.so*",
"/usr/lib/*-linux-gnu/nvidia/current/libcuda.so*",
"/usr/lib/*-linux-gnu/libcuda.so*",
"/usr/lib/wsl/lib/libcuda.so*",
"/usr/lib/wsl/drivers/*/libcuda.so*",
"/opt/cuda/lib*/libcuda.so*",
"/usr/local/cuda/lib*/libcuda.so*",
"/usr/lib*/libcuda.so*",
"/usr/local/lib*/libcuda.so*",
}
var NvcudaWindowsGlobs = []string{
"c:\\windows\\system*\\nvcuda.dll",
}
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed. // Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices. // Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK") var CudaTegra string = os.Getenv("JETSON_JETPACK")
@ -74,6 +91,8 @@ func initGPUHandles() *handles {
gpuHandles := &handles{} gpuHandles := &handles{}
var cudartMgmtName string var cudartMgmtName string
var cudartMgmtPatterns []string var cudartMgmtPatterns []string
var nvcudaMgmtName string
var nvcudaMgmtPatterns []string
tmpDir, _ := PayloadsDir() tmpDir, _ := PayloadsDir()
switch runtime.GOOS { switch runtime.GOOS {
@ -82,6 +101,9 @@ func initGPUHandles() *handles {
localAppData := os.Getenv("LOCALAPPDATA") localAppData := os.Getenv("LOCALAPPDATA")
cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", cudartMgmtName)} cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", cudartMgmtName)}
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartWindowsGlobs...) cudartMgmtPatterns = append(cudartMgmtPatterns, CudartWindowsGlobs...)
// Aligned with driver, we can't carry as payloads
nvcudaMgmtName = "nvcuda.dll"
nvcudaMgmtPatterns = NvcudaWindowsGlobs
case "linux": case "linux":
cudartMgmtName = "libcudart.so*" cudartMgmtName = "libcudart.so*"
if tmpDir != "" { if tmpDir != "" {
@ -89,11 +111,25 @@ func initGPUHandles() *handles {
cudartMgmtPatterns = []string{filepath.Join(tmpDir, "cuda*", cudartMgmtName)} cudartMgmtPatterns = []string{filepath.Join(tmpDir, "cuda*", cudartMgmtName)}
} }
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartLinuxGlobs...) cudartMgmtPatterns = append(cudartMgmtPatterns, CudartLinuxGlobs...)
// Aligned with driver, we can't carry as payloads
nvcudaMgmtName = "libcuda.so*"
nvcudaMgmtPatterns = NvcudaLinuxGlobs
default: default:
return gpuHandles return gpuHandles
} }
slog.Info("Detecting GPUs") slog.Info("Detecting GPUs")
nvcudaLibPaths := FindGPULibs(nvcudaMgmtName, nvcudaMgmtPatterns)
if len(nvcudaLibPaths) > 0 {
deviceCount, nvcuda, libPath := LoadNVCUDAMgmt(nvcudaLibPaths)
if nvcuda != nil {
slog.Info("detected GPUs", "count", deviceCount, "library", libPath)
gpuHandles.nvcuda = nvcuda
gpuHandles.deviceCount = deviceCount
return gpuHandles
}
}
cudartLibPaths := FindGPULibs(cudartMgmtName, cudartMgmtPatterns) cudartLibPaths := FindGPULibs(cudartMgmtName, cudartMgmtPatterns)
if len(cudartLibPaths) > 0 { if len(cudartLibPaths) > 0 {
deviceCount, cudart, libPath := LoadCUDARTMgmt(cudartLibPaths) deviceCount, cudart, libPath := LoadCUDARTMgmt(cudartLibPaths)
@ -118,6 +154,9 @@ func GetGPUInfo() GpuInfoList {
if gpuHandles.cudart != nil { if gpuHandles.cudart != nil {
C.cudart_release(*gpuHandles.cudart) C.cudart_release(*gpuHandles.cudart)
} }
if gpuHandles.nvcuda != nil {
C.nvcuda_release(*gpuHandles.nvcuda)
}
}() }()
// All our GPU builds on x86 have AVX enabled, so fallback to CPU if we don't detect at least AVX // All our GPU builds on x86 have AVX enabled, so fallback to CPU if we don't detect at least AVX
@ -138,7 +177,11 @@ func GetGPUInfo() GpuInfoList {
gpuInfo := GpuInfo{ gpuInfo := GpuInfo{
Library: "cuda", Library: "cuda",
} }
C.cudart_check_vram(*gpuHandles.cudart, C.int(i), &memInfo) if gpuHandles.cudart != nil {
C.cudart_check_vram(*gpuHandles.cudart, C.int(i), &memInfo)
} else {
C.nvcuda_check_vram(*gpuHandles.nvcuda, C.int(i), &memInfo)
}
if memInfo.err != nil { if memInfo.err != nil {
slog.Info("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err)) slog.Info("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err)) C.free(unsafe.Pointer(memInfo.err))
@ -196,9 +239,10 @@ func GetCPUMem() (memInfo, error) {
return ret, nil return ret, nil
} }
func FindGPULibs(baseLibName string, patterns []string) []string { func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them // Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
var ldPaths []string var ldPaths []string
var patterns []string
gpuLibPaths := []string{} gpuLibPaths := []string{}
slog.Debug("Searching for GPU library", "name", baseLibName) slog.Debug("Searching for GPU library", "name", baseLibName)
@ -218,6 +262,7 @@ func FindGPULibs(baseLibName string, patterns []string) []string {
} }
patterns = append(patterns, filepath.Join(d, baseLibName+"*")) patterns = append(patterns, filepath.Join(d, baseLibName+"*"))
} }
patterns = append(patterns, defaultPatterns...)
slog.Debug("gpu library search", "globs", patterns) slog.Debug("gpu library search", "globs", patterns)
for _, pattern := range patterns { for _, pattern := range patterns {
// Ignore glob discovery errors // Ignore glob discovery errors
@ -267,6 +312,23 @@ func LoadCUDARTMgmt(cudartLibPaths []string) (int, *C.cudart_handle_t, string) {
return 0, nil, "" return 0, nil, ""
} }
func LoadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string) {
var resp C.nvcuda_init_resp_t
resp.ch.verbose = getVerboseState()
for _, libPath := range nvcudaLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.nvcuda_init(lib, &resp)
if resp.err != nil {
slog.Debug("Unable to load nvcuda", "library", libPath, "error", C.GoString(resp.err))
C.free(unsafe.Pointer(resp.err))
} else {
return int(resp.num_devices), &resp.ch, libPath
}
}
return 0, nil, ""
}
func getVerboseState() C.uint16_t { func getVerboseState() C.uint16_t {
if debug := os.Getenv("OLLAMA_DEBUG"); debug != "" { if debug := os.Getenv("OLLAMA_DEBUG"); debug != "" {
return C.uint16_t(1) return C.uint16_t(1)

View file

@ -58,6 +58,7 @@ void cpu_check_ram(mem_info_t *resp);
#endif #endif
#include "gpu_info_cudart.h" #include "gpu_info_cudart.h"
#include "gpu_info_nvcuda.h"
#endif // __GPU_INFO_H__ #endif // __GPU_INFO_H__
#endif // __APPLE__ #endif // __APPLE__

View file

@ -6,9 +6,9 @@
// Just enough typedef's to dlopen/dlsym for memory information // Just enough typedef's to dlopen/dlsym for memory information
typedef enum cudartReturn_enum { typedef enum cudartReturn_enum {
CUDART_SUCCESS = 0, CUDART_SUCCESS = 0,
CUDA_ERROR_INVALID_VALUE = 1, CUDART_ERROR_INVALID_VALUE = 1,
CUDA_ERROR_MEMORY_ALLOCATION = 2, CUDART_ERROR_MEMORY_ALLOCATION = 2,
CUDA_ERROR_INSUFFICIENT_DRIVER = 35, CUDART_ERROR_INSUFFICIENT_DRIVER = 35,
// Other values omitted for now... // Other values omitted for now...
} cudartReturn_t; } cudartReturn_t;

203
gpu/gpu_info_nvcuda.c Normal file
View file

@ -0,0 +1,203 @@
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
#include <string.h>
#include "gpu_info_nvcuda.h"
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
CUresult ret;
resp->err = NULL;
resp->num_devices = 0;
const int buflen = 256;
char buf[buflen + 1];
int i;
struct lookup {
char *s;
void **p;
} l[] = {
{"cuInit", (void *)&resp->ch.cuInit},
{"cuDriverGetVersion", (void *)&resp->ch.cuDriverGetVersion},
{"cuDeviceGetCount", (void *)&resp->ch.cuDeviceGetCount},
{"cuDeviceGet", (void *)&resp->ch.cuDeviceGet},
{"cuDeviceGetAttribute", (void *)&resp->ch.cuDeviceGetAttribute},
{"cuDeviceGetUuid", (void *)&resp->ch.cuDeviceGetUuid},
{"cuCtxCreate_v3", (void *)&resp->ch.cuCtxCreate_v3},
{"cuMemGetInfo_v2", (void *)&resp->ch.cuMemGetInfo_v2},
{"cuCtxDestroy", (void *)&resp->ch.cuCtxDestroy},
{NULL, NULL},
};
resp->ch.handle = LOAD_LIBRARY(nvcuda_lib_path, RTLD_LAZY);
if (!resp->ch.handle) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "library %s load err: %s\n", nvcuda_lib_path, msg);
snprintf(buf, buflen,
"Unable to load %s library to query for Nvidia GPUs: %s",
nvcuda_lib_path, msg);
free(msg);
resp->err = strdup(buf);
return;
}
for (i = 0; l[i].s != NULL; i++) {
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
if (!*l[i].p) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "dlerr: %s\n", msg);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "symbol lookup for %s failed: %s", l[i].s,
msg);
free(msg);
resp->err = strdup(buf);
return;
}
}
ret = (*resp->ch.cuInit)(0);
if (ret != CUDA_SUCCESS) {
LOG(resp->ch.verbose, "cuInit err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
if (ret == CUDA_ERROR_INSUFFICIENT_DRIVER) {
resp->err = strdup("your nvidia driver is too old or missing. If you have a CUDA GPU please upgrade to run ollama");
return;
}
snprintf(buf, buflen, "nvcuda init failure: %d", ret);
resp->err = strdup(buf);
return;
}
int version = 0;
nvcudaDriverVersion_t driverVersion;
driverVersion.major = 0;
driverVersion.minor = 0;
// Report driver version if we're in verbose mode, ignore errors
ret = (*resp->ch.cuDriverGetVersion)(&version);
if (ret != CUDA_SUCCESS) {
LOG(resp->ch.verbose, "cuDriverGetVersion failed: %d\n", ret);
} else {
driverVersion.major = version / 1000;
driverVersion.minor = (version - (driverVersion.major * 1000)) / 10;
LOG(resp->ch.verbose, "CUDA driver version: %d-%d\n", driverVersion.major, driverVersion.minor);
}
ret = (*resp->ch.cuDeviceGetCount)(&resp->num_devices);
if (ret != CUDA_SUCCESS) {
LOG(resp->ch.verbose, "cuDeviceGetCount err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "unable to get device count: %d", ret);
resp->err = strdup(buf);
return;
}
}
const int buflen = 256;
void nvcuda_check_vram(nvcuda_handle_t h, int i, mem_info_t *resp) {
resp->err = NULL;
nvcudaMemory_t memInfo = {0,0};
CUresult ret;
CUdevice device = -1;
CUcontext ctx = NULL;
char buf[buflen + 1];
CUuuid uuid = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
if (h.handle == NULL) {
resp->err = strdup("nvcuda handle isn't initialized");
return;
}
ret = (*h.cuDeviceGet)(&device, i);
if (ret != CUDA_SUCCESS) {
snprintf(buf, buflen, "nvcuda device failed to initialize");
resp->err = strdup(buf);
return;
}
resp->major = 0;
resp->minor = 0;
int major = 0;
int minor = 0;
ret = (*h.cuDeviceGetAttribute)(&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, device);
if (ret != CUDA_SUCCESS) {
LOG(h.verbose, "[%d] device major lookup failure: %d\n", i, ret);
} else {
ret = (*h.cuDeviceGetAttribute)(&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, device);
if (ret != CUDA_SUCCESS) {
LOG(h.verbose, "[%d] device minor lookup failure: %d\n", i, ret);
} else {
resp->minor = minor;
resp->major = major;
}
}
ret = (*h.cuDeviceGetUuid)(&uuid, device);
if (ret != CUDA_SUCCESS) {
LOG(h.verbose, "[%d] device uuid lookup failure: %d\n", i, ret);
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", i);
} else {
// GPU-d110a105-ac29-1d54-7b49-9c90440f215b
snprintf(&resp->gpu_id[0], GPU_ID_LEN,
"GPU-%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x",
uuid.bytes[0],
uuid.bytes[1],
uuid.bytes[2],
uuid.bytes[3],
uuid.bytes[4],
uuid.bytes[5],
uuid.bytes[6],
uuid.bytes[7],
uuid.bytes[8],
uuid.bytes[9],
uuid.bytes[10],
uuid.bytes[11],
uuid.bytes[12],
uuid.bytes[13],
uuid.bytes[14],
uuid.bytes[15]
);
}
// To get memory we have to set (and release) a context
ret = (*h.cuCtxCreate_v3)(&ctx, NULL, 0, 0, device);
if (ret != CUDA_SUCCESS) {
snprintf(buf, buflen, "nvcuda failed to get primary device context %d", ret);
resp->err = strdup(buf);
return;
}
ret = (*h.cuMemGetInfo_v2)(&memInfo.free, &memInfo.total);
if (ret != CUDA_SUCCESS) {
snprintf(buf, buflen, "nvcuda device memory info lookup failure %d", ret);
resp->err = strdup(buf);
// Best effort on failure...
(*h.cuCtxDestroy)(ctx);
return;
}
resp->total = memInfo.total;
resp->free = memInfo.free;
LOG(h.verbose, "[%s] CUDA totalMem %lu mb\n", resp->gpu_id, resp->total / 1024 / 1024);
LOG(h.verbose, "[%s] CUDA freeMem %lu mb\n", resp->gpu_id, resp->free / 1024 / 1024);
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
ret = (*h.cuCtxDestroy)(ctx);
if (ret != CUDA_SUCCESS) {
LOG(1, "nvcuda failed to release primary device context %d", ret);
}
}
void nvcuda_release(nvcuda_handle_t h) {
LOG(h.verbose, "releasing nvcuda library\n");
UNLOAD_LIBRARY(h.handle);
// TODO and other context release logic?
h.handle = NULL;
}
#endif // __APPLE__

71
gpu/gpu_info_nvcuda.h Normal file
View file

@ -0,0 +1,71 @@
#ifndef __APPLE__
#ifndef __GPU_INFO_NVCUDA_H__
#define __GPU_INFO_NVCUDA_H__
#include "gpu_info.h"
// Just enough typedef's to dlopen/dlsym for memory information
typedef enum cudaError_enum {
CUDA_SUCCESS = 0,
CUDA_ERROR_INVALID_VALUE = 1,
CUDA_ERROR_MEMORY_ALLOCATION = 2,
CUDA_ERROR_NOT_INITIALIZED = 3,
CUDA_ERROR_INSUFFICIENT_DRIVER = 35,
// Other values omitted for now...
} CUresult;
typedef enum CUdevice_attribute_enum {
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR = 75,
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR = 76,
// TODO - not yet wired up but may be useful for Jetson or other
// integrated GPU scenarios with shared memory
CU_DEVICE_ATTRIBUTE_INTEGRATED = 18
} CUdevice_attribute;
typedef void *nvcudaDevice_t; // Opaque is sufficient
typedef struct nvcudaMemory_st {
uint64_t total;
uint64_t free;
} nvcudaMemory_t;
typedef struct nvcudaDriverVersion {
int major;
int minor;
} nvcudaDriverVersion_t;
typedef struct CUuuid_st {
unsigned char bytes[16];
} CUuuid;
typedef int CUdevice;
typedef void* CUcontext;
typedef struct nvcuda_handle {
void *handle;
uint16_t verbose;
CUresult (*cuInit)(unsigned int Flags);
CUresult (*cuDriverGetVersion)(int *driverVersion);
CUresult (*cuDeviceGetCount)(int *);
CUresult (*cuDeviceGet)(CUdevice* device, int ordinal);
CUresult (*cuDeviceGetAttribute)(int* pi, CUdevice_attribute attrib, CUdevice dev);
CUresult (*cuDeviceGetUuid)(CUuuid* uuid, CUdevice dev); // signature compatible with cuDeviceGetUuid_v2
// Context specific aspects
CUresult (*cuCtxCreate_v3)(CUcontext* pctx, void *params, int len, unsigned int flags, CUdevice dev);
CUresult (*cuMemGetInfo_v2)(uint64_t* free, uint64_t* total);
CUresult (*cuCtxDestroy)(CUcontext ctx);
} nvcuda_handle_t;
typedef struct nvcuda_init_resp {
char *err; // If err is non-null handle is invalid
nvcuda_handle_t ch;
int num_devices;
} nvcuda_init_resp_t;
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp);
void nvcuda_check_vram(nvcuda_handle_t ch, int device_id, mem_info_t *resp);
void nvcuda_release(nvcuda_handle_t ch);
#endif // __GPU_INFO_NVCUDA_H__
#endif // __APPLE__