514 lines
23 KiB
C++
514 lines
23 KiB
C++
|
/**
|
||
|
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
|
||
|
*
|
||
|
* MIT License
|
||
|
*
|
||
|
* Copyright (c) 2023-2024 The ggml authors
|
||
|
*
|
||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
* of this software and associated documentation files (the "Software"), to deal
|
||
|
* in the Software without restriction, including without limitation the rights
|
||
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
* copies of the Software, and to permit persons to whom the Software is
|
||
|
* furnished to do so, subject to the following conditions:
|
||
|
*
|
||
|
* The above copyright notice and this permission notice shall be included in all
|
||
|
* copies or substantial portions of the Software.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
* SOFTWARE.
|
||
|
*/
|
||
|
|
||
|
#include "clip.h"
|
||
|
#include "common.h"
|
||
|
#include "llama.h"
|
||
|
#include "llava.h"
|
||
|
#include "base64.hpp"
|
||
|
|
||
|
#include <cstdio>
|
||
|
#include <cstdlib>
|
||
|
#include <vector>
|
||
|
#include <numeric>
|
||
|
|
||
|
// RGB uint8 image
|
||
|
struct clip_image_u8 {
|
||
|
int nx;
|
||
|
int ny;
|
||
|
|
||
|
std::vector<uint8_t> buf;
|
||
|
};
|
||
|
|
||
|
// RGB float32 image (NHWC)
|
||
|
// Memory layout: RGBRGBRGB...
|
||
|
struct clip_image_f32 {
|
||
|
int nx;
|
||
|
int ny;
|
||
|
|
||
|
std::vector<float> buf;
|
||
|
};
|
||
|
|
||
|
struct clip_image_grid_shape {
|
||
|
int first;
|
||
|
int second;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Selects the best resolution from a list of possible resolutions based on the original size.
|
||
|
*
|
||
|
* @param original_size The original size of the image in the format (width, height).
|
||
|
* @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
|
||
|
* @return The best fit resolution in the format (width, height).
|
||
|
*/
|
||
|
static std::pair<int, int> select_best_resolution(const std::pair<int, int>& original_size, const std::vector<std::pair<int, int>>& possible_resolutions) {
|
||
|
int original_width = original_size.first;
|
||
|
int original_height = original_size.second;
|
||
|
|
||
|
std::pair<int, int> best_fit;
|
||
|
int max_effective_resolution = 0;
|
||
|
int min_wasted_resolution = std::numeric_limits<int>::max();
|
||
|
|
||
|
for (const auto& resolution : possible_resolutions) {
|
||
|
int width = resolution.first;
|
||
|
int height = resolution.second;
|
||
|
float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
|
||
|
int downscaled_width = static_cast<int>(original_width * scale);
|
||
|
int downscaled_height = static_cast<int>(original_height * scale);
|
||
|
int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
|
||
|
int wasted_resolution = (width * height) - effective_resolution;
|
||
|
// LOG_TEE("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
|
||
|
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
|
||
|
max_effective_resolution = effective_resolution;
|
||
|
min_wasted_resolution = wasted_resolution;
|
||
|
best_fit = resolution;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return best_fit;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Get the anyres image grid shape object
|
||
|
*
|
||
|
* @param image_size
|
||
|
* @param grid_pinpoints
|
||
|
* @param image_patch_size
|
||
|
* @return <int, int>
|
||
|
*/
|
||
|
static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<int, int> & image_size, const std::vector<std::pair<int, int>> & grid_pinpoints, int image_patch_size) {
|
||
|
/**
|
||
|
Conversion from gguf flat array to vector:
|
||
|
std::vector<std::pair<int, int>> possible_resolutions;
|
||
|
for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
|
||
|
possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
|
||
|
}
|
||
|
*/
|
||
|
auto best_resolution = select_best_resolution(image_size, grid_pinpoints);
|
||
|
return {best_resolution.first / image_patch_size, best_resolution.second / image_patch_size};
|
||
|
}
|
||
|
|
||
|
// Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
|
||
|
static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) {
|
||
|
struct {
|
||
|
struct ggml_context * ctx;
|
||
|
} model;
|
||
|
|
||
|
const int32_t image_size = clip_image_size(ctx_clip);
|
||
|
const int32_t patch_size = clip_patch_size(ctx_clip);
|
||
|
|
||
|
int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches)
|
||
|
|
||
|
int num_patches_width = grid_shape.first; // grid 1-4
|
||
|
int num_patches_height = grid_shape.second; // grid 1-4
|
||
|
|
||
|
const size_t num_images = num_patches_width * num_patches_height + 1;
|
||
|
|
||
|
// TODO: size calculation is not calculated - it's only tens of MB
|
||
|
size_t ctx_size = 0;
|
||
|
|
||
|
{
|
||
|
ctx_size += clip_embd_nbytes(ctx_clip) * num_images * 8; // image_features
|
||
|
ctx_size += 1024*1024 * ggml_type_size(GGML_TYPE_F32);
|
||
|
}
|
||
|
|
||
|
struct ggml_init_params params {
|
||
|
/*.mem_size =*/ ctx_size,
|
||
|
/*.mem_buffer =*/ NULL,
|
||
|
/*.no_alloc =*/ false, // NOTE: this should be false when using the legacy API
|
||
|
};
|
||
|
|
||
|
// Python reference code for full unpad:
|
||
|
/*
|
||
|
base_image_feature = image_feature[0]
|
||
|
image_feature = image_feature[1:]
|
||
|
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
|
||
|
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
|
||
|
image_feature = unpad_image(image_feature, image_sizes[image_idx])
|
||
|
image_feature = torch.cat((
|
||
|
image_feature,
|
||
|
self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1)
|
||
|
), dim=-1)
|
||
|
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
|
||
|
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
|
||
|
*/
|
||
|
// We now have two options: unpad or no unpad. Unpad removes tokens for faster llm eval.
|
||
|
// In terms of result quality it appears to make no difference, so we'll start with the easier approach given 5D tensors are not supported in ggml yet.
|
||
|
// Without unpad we have to split the sub-image embeddings into patches of 24 features each and permute them.
|
||
|
// Once all images are processed to prepended the base_image_features without any changes.
|
||
|
|
||
|
// Pytorch reference simplified, modified for ggml compatibility - confirmed identical output in python (for a 2x2 grid image (676x676 scaling))
|
||
|
/*
|
||
|
image_feature = image_feature.view(2, 2, 24, 24, 4096)
|
||
|
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
|
||
|
image_feature = image_feature.view(2, 24, 2, 24, 4096)
|
||
|
image_feature = image_feature.flatten(0, 3)
|
||
|
|
||
|
// Reshape to 4D tensor by merging the last two dimensions
|
||
|
image_feature = image_feature.view(2, 2, 24, 24*4096)
|
||
|
image_feature = image_feature.permute(0, 2, 1, 3).contiguous()
|
||
|
image_feature = image_feature.view(-1, 4096)
|
||
|
*/
|
||
|
|
||
|
model.ctx = ggml_init(params);
|
||
|
|
||
|
struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4
|
||
|
// ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
|
||
|
// fill it with the image embeddings, ignoring the base
|
||
|
for (size_t i = 1; i < num_images; i++) {
|
||
|
size_t offset = (i-1) * clip_embd_nbytes(ctx_clip);
|
||
|
memcpy((uint8_t *)(image_features->data) + offset, image_embd_v[i], clip_embd_nbytes(ctx_clip));
|
||
|
}
|
||
|
|
||
|
struct ggml_cgraph * gf = ggml_new_graph(model.ctx);
|
||
|
size_t size_ele = ggml_type_size(GGML_TYPE_F32);
|
||
|
|
||
|
struct ggml_tensor *image_features_patchview = ggml_view_4d(model.ctx, image_features,
|
||
|
num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
|
||
|
num_patches_per_side,
|
||
|
num_patches_width,
|
||
|
num_patches_height,
|
||
|
size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
|
||
|
size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side,
|
||
|
size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side * num_patches_width, 0);
|
||
|
// ggml_tensor_printf(image_features_patchview,"image_features_patchview",__LINE__,false,false);
|
||
|
struct ggml_tensor *permuted_cont = ggml_cont(model.ctx, ggml_permute(model.ctx, image_features_patchview, 0, 2, 1, 3));
|
||
|
/**
|
||
|
At the end of each row we have to add the row_end embeddings, which are the same as the newline embeddings
|
||
|
image_feature = torch.cat((
|
||
|
image_feature,
|
||
|
self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
|
||
|
), dim=-1)
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
// ggml_tensor_printf(permuted_cont,"permuted_cont",__LINE__,false,false);
|
||
|
struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0);
|
||
|
// ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
|
||
|
ggml_build_forward_expand(gf, flatten);
|
||
|
ggml_graph_compute_with_ctx(model.ctx, gf, 1);
|
||
|
struct ggml_tensor* result = gf->nodes[gf->n_nodes - 1];
|
||
|
|
||
|
memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
|
||
|
// append without newline tokens (default behavior in llava_arch when not using unpad ):
|
||
|
memcpy(image_embd_out + clip_n_patches(ctx_clip) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
|
||
|
*n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_patches(ctx_clip));
|
||
|
|
||
|
// Debug: Test single segments
|
||
|
// Current findings: sending base image, sending a segment embedding all works similar to python
|
||
|
// However, permuted embeddings do not work yet (stride issue?)
|
||
|
// memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as context
|
||
|
// memcpy(image_embd_out, (float*)prepared_cont->data, clip_embd_nbytes(ctx_clip)); // main image as context
|
||
|
// *n_img_pos_out=576;
|
||
|
|
||
|
ggml_free(model.ctx);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static clip_image_f32 * only_v2_5_reshape_by_patch(clip_image_f32 * image, int patch_size) {
|
||
|
int width = image->nx;
|
||
|
int height = image->ny;
|
||
|
int num_patches = (height / patch_size) * (width / patch_size);
|
||
|
clip_image_f32 * patch = clip_image_f32_init();
|
||
|
patch->nx = patch_size * num_patches;
|
||
|
patch->ny = patch_size;
|
||
|
patch->buf.resize(3 * patch->nx * patch->ny);
|
||
|
|
||
|
int patch_index = 0;
|
||
|
|
||
|
for (int i = 0; i < height; i += patch_size) {
|
||
|
for (int j = 0; j < width; j += patch_size) {
|
||
|
for (int pi = 0; pi < patch_size; ++pi) {
|
||
|
for (int pj = 0; pj < patch_size; ++pj) {
|
||
|
int input_index = ((i + pi) * width + (j + pj)) * 3;
|
||
|
int output_index = (pi * patch_size * num_patches + patch_index * patch_size + pj) * 3;
|
||
|
patch->buf[output_index] = image->buf[input_index];
|
||
|
patch->buf[output_index+1] = image->buf[input_index+1];
|
||
|
patch->buf[output_index+2] = image->buf[input_index+2];
|
||
|
}
|
||
|
}
|
||
|
patch_index++;
|
||
|
}
|
||
|
}
|
||
|
return patch;
|
||
|
}
|
||
|
|
||
|
static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
|
||
|
// std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
|
||
|
clip_image_f32_batch img_res_v;
|
||
|
img_res_v.size = 0;
|
||
|
img_res_v.data = nullptr;
|
||
|
if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) {
|
||
|
LOG_TEE("%s: unable to preprocess image\n", __func__);
|
||
|
delete[] img_res_v.data;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
const int64_t t_img_enc_start_us = ggml_time_us();
|
||
|
|
||
|
const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
|
||
|
|
||
|
if (clip_is_minicpmv(ctx_clip)) {
|
||
|
std::vector<float *> image_embd_v;
|
||
|
image_embd_v.resize(img_res_v.size);
|
||
|
struct clip_image_size * load_image_size = clip_image_size_init();
|
||
|
for (size_t i = 0; i < img_res_v.size; i++) {
|
||
|
const int64_t t_img_enc_step_start_us = ggml_time_us();
|
||
|
image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip));
|
||
|
int patch_size=14;
|
||
|
load_image_size->width = img_res_v.data[i].nx;
|
||
|
load_image_size->height = img_res_v.data[i].ny;
|
||
|
clip_add_load_image_size(ctx_clip, load_image_size);
|
||
|
bool encoded = false;
|
||
|
int has_minicpmv_projector = clip_is_minicpmv(ctx_clip);
|
||
|
if (has_minicpmv_projector == 2) {
|
||
|
encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
|
||
|
}
|
||
|
else if (has_minicpmv_projector == 3) {
|
||
|
encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
|
||
|
}
|
||
|
if (!encoded) {
|
||
|
LOG_TEE("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
|
||
|
return false;
|
||
|
}
|
||
|
const int64_t t_img_enc_steop_batch_us = ggml_time_us();
|
||
|
LOG_TEE("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)img_res_v.size, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
|
||
|
}
|
||
|
const int64_t t_img_enc_batch_us = ggml_time_us();
|
||
|
LOG_TEE("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
|
||
|
|
||
|
int n_img_pos_out = 0;
|
||
|
for (size_t i = 0; i < image_embd_v.size(); i++) {
|
||
|
std::memcpy(image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip), image_embd_v[i], clip_embd_nbytes(ctx_clip));
|
||
|
n_img_pos_out += clip_n_patches(ctx_clip);
|
||
|
}
|
||
|
*n_img_pos = n_img_pos_out;
|
||
|
for (size_t i = 0; i < image_embd_v.size(); i++) {
|
||
|
free(image_embd_v[i]);
|
||
|
}
|
||
|
image_embd_v.clear();
|
||
|
load_image_size->width = img->nx;
|
||
|
load_image_size->height = img->ny;
|
||
|
clip_add_load_image_size(ctx_clip, load_image_size);
|
||
|
LOG_TEE("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
|
||
|
}
|
||
|
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
|
||
|
// flat / default llava-1.5 type embedding
|
||
|
*n_img_pos = clip_n_patches(ctx_clip);
|
||
|
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
|
||
|
delete[] img_res_v.data;
|
||
|
if (!encoded) {
|
||
|
LOG_TEE("Unable to encode image\n");
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
// spatial_unpad llava-1.6 type embedding
|
||
|
// TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
|
||
|
std::vector<float *> image_embd_v;
|
||
|
image_embd_v.resize(img_res_v.size);
|
||
|
for (size_t i = 0; i < img_res_v.size; i++) {
|
||
|
image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
|
||
|
const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
|
||
|
if (!encoded) {
|
||
|
LOG_TEE("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
const int64_t t_img_enc_batch_us = ggml_time_us();
|
||
|
LOG_TEE("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
|
||
|
|
||
|
const int32_t * image_grid = clip_image_grid(ctx_clip);
|
||
|
|
||
|
std::vector<std::pair<int, int>> grid_pinpoints;
|
||
|
for (int i = 0; i < 32 && image_grid[i] != 0; i += 2) {
|
||
|
grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
|
||
|
}
|
||
|
|
||
|
// free all img_res_v - not needed anymore
|
||
|
delete[] img_res_v.data;
|
||
|
img_res_v.size = 0;
|
||
|
img_res_v.data = nullptr;
|
||
|
|
||
|
const int32_t image_size = clip_image_size(ctx_clip);
|
||
|
|
||
|
struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);
|
||
|
|
||
|
int n_img_pos_out;
|
||
|
clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out);
|
||
|
*n_img_pos = n_img_pos_out;
|
||
|
|
||
|
for (size_t i = 0; i < image_embd_v.size(); i++) {
|
||
|
free(image_embd_v[i]);
|
||
|
}
|
||
|
image_embd_v.clear();
|
||
|
|
||
|
// debug image/segment/normalization content:
|
||
|
// clip_image_u8 * tmp = clip_image_u8_init();
|
||
|
// clip_image_convert_f32_to_u8(*image_feature, *tmp);
|
||
|
// clip_image_save_to_bmp(*tmp, "image_feature.bmp");
|
||
|
}
|
||
|
|
||
|
LOG_TEE("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
|
||
|
|
||
|
const int64_t t_img_enc_end_us = ggml_time_us();
|
||
|
float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
|
||
|
|
||
|
LOG_TEE("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) {
|
||
|
// make sure that the correct mmproj was used, i.e., compare apples to apples
|
||
|
int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
|
||
|
auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
|
||
|
if (n_image_embd != n_llama_embd) {
|
||
|
LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
|
||
|
return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
|
||
|
int num_max_patches = 6;
|
||
|
if (clip_is_minicpmv(ctx_clip)) {
|
||
|
num_max_patches = 10;
|
||
|
}
|
||
|
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model
|
||
|
if (!image_embd) {
|
||
|
LOG_TEE("Unable to allocate memory for image embeddings\n");
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
int n_img_pos;
|
||
|
if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) {
|
||
|
LOG_TEE("%s: cannot encode image, aborting\n", __func__);
|
||
|
free(image_embd);
|
||
|
return false;
|
||
|
}
|
||
|
*image_embd_out = image_embd;
|
||
|
*n_img_pos_out = n_img_pos;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) {
|
||
|
int n_embd = llama_n_embd(llama_get_model(ctx_llama));
|
||
|
|
||
|
for (int i = 0; i < image_embed->n_image_pos; i += n_batch) {
|
||
|
int n_eval = image_embed->n_image_pos - i;
|
||
|
if (n_eval > n_batch) {
|
||
|
n_eval = n_batch;
|
||
|
}
|
||
|
llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
||
|
if (llama_decode(ctx_llama, batch)) {
|
||
|
LOG_TEE("%s : failed to eval\n", __func__);
|
||
|
return false;
|
||
|
}
|
||
|
*n_past += n_eval;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) {
|
||
|
clip_image_u8 * img = clip_image_u8_init();
|
||
|
if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
|
||
|
clip_image_u8_free(img);
|
||
|
LOG_TEE("%s: can't load image from bytes, is it a valid image?", __func__);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
float* image_embed = NULL;
|
||
|
int n_image_pos = 0;
|
||
|
bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos);
|
||
|
if (!image_embed_result) {
|
||
|
clip_image_u8_free(img);
|
||
|
LOG_TEE("%s: coulnd't embed the image\n", __func__);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
clip_image_u8_free(img);
|
||
|
auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed));
|
||
|
result->embed = image_embed;
|
||
|
result->n_image_pos = n_image_pos;
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) {
|
||
|
auto file = fopen(path, "rb");
|
||
|
if (file == NULL) {
|
||
|
LOG_TEE("%s: can't read file %s\n", __func__, path);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
fseek(file, 0, SEEK_END);
|
||
|
auto fileSize = ftell(file);
|
||
|
fseek(file, 0, SEEK_SET);
|
||
|
|
||
|
auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data
|
||
|
if (buffer == NULL) {
|
||
|
LOG_TEE("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path);
|
||
|
perror("Memory allocation error");
|
||
|
fclose(file);
|
||
|
return false;
|
||
|
}
|
||
|
errno = 0;
|
||
|
size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer
|
||
|
if (ferror(file)) {
|
||
|
die_fmt("read error: %s", strerror(errno));
|
||
|
}
|
||
|
if (ret != (size_t) fileSize) {
|
||
|
die("unexpectedly reached end of file");
|
||
|
}
|
||
|
fclose(file); // Close the file
|
||
|
|
||
|
*bytesOut = buffer;
|
||
|
*sizeOut = fileSize;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
|
||
|
unsigned char* image_bytes;
|
||
|
long image_bytes_length;
|
||
|
auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
|
||
|
if (!loaded) {
|
||
|
LOG_TEE("%s: failed to load %s\n", __func__, image_path);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
llava_image_embed *embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length);
|
||
|
free(image_bytes);
|
||
|
|
||
|
return embed;
|
||
|
}
|
||
|
|
||
|
void llava_image_embed_free(struct llava_image_embed * embed) {
|
||
|
free(embed->embed);
|
||
|
free(embed);
|
||
|
}
|