ollama/llama/llama-vocab.cpp

1892 lines
72 KiB
C++
Raw Normal View History

Re-introduce the `llama` package (#5034) * Re-introduce the llama package This PR brings back the llama package, making it possible to call llama.cpp and ggml APIs from Go directly via CGo. This has a few advantages: - C APIs can be called directly from Go without needing to use the previous "server" REST API - On macOS and for CPU builds on Linux and Windows, Ollama can be built without a go generate ./... step, making it easy to get up and running to hack on parts of Ollama that don't require fast inference - Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners takes <5 min on a fast CPU) - No git submodule making it easier to clone and build from source This is a big PR, but much of it is vendor code except for: - llama.go CGo bindings - example/: a simple example of running inference - runner/: a subprocess server designed to replace the llm/ext_server package - Makefile an as minimal as possible Makefile to build the runner package for different targets (cpu, avx, avx2, cuda, rocm) Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com> * cache: Clear old KV cache entries when evicting a slot When forking a cache entry, if no empty slots are available we evict the least recently used one and copy over the KV entries from the closest match. However, this copy does not overwrite existing values but only adds new ones. Therefore, we need to clear the old slot first. This change fixes two issues: - The KV cache fills up and runs out of space even though we think we are managing it correctly - Performance gets worse over time as we use new cache entries that are not hot in the processor caches * doc: explain golang objc linker warning (#6830) * llama: gather transitive dependencies for rocm for dist packaging (#6848) * Refine go server makefiles to be more DRY (#6924) This breaks up the monolithic Makefile for the Go based runners into a set of utility files as well as recursive Makefiles for the runners. Files starting with the name "Makefile" are buildable, while files that end with ".make" are utilities to include in other Makefiles. This reduces the amount of nearly identical targets and helps set a pattern for future community contributions for new GPU runner architectures. When we are ready to switch over to the Go runners, these files should move to the top of the repo, and we should add targets for the main CLI, as well as a helper "install" (put all the built binaries on the local system in a runnable state) and "dist" target (generate the various tar/zip files for distribution) for local developer use. * llama: don't create extraneous directories (#6988) * llama: Exercise the new build in CI (#6989) Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet. * llama: Refine developer docs for Go server (#6842) This enhances the documentation for development focusing on the new Go server. After we complete the transition further doc refinements can remove the "transition" discussion. * runner.go: Allocate batches for all sequences during init We should tell the model that we could have full batches for all sequences. We already do this when we allocate the batches but it was missed during initialization. * llama.go: Don't return nil from Tokenize on zero length input Potentially receiving nil in a non-error condition is surprising to most callers - it's better to return an empty slice. * runner.go: Remove stop tokens from cache If the last token is EOG then we don't return this and it isn't present in the cache (because it was never submitted to Decode). This works well for extending the cache entry with a new sequence. However, for multi-token stop sequences, we won't return any of the tokens but all but the last one will be in the cache. This means when the conversation continues the cache will contain tokens that don't overlap with the new prompt. This works (we will pick up the portion where there is overlap) but it causes unnecessary cache thrashing because we will fork the original cache entry as it is not a perfect match. By trimming the cache to the tokens that we actually return this issue can be avoided. * runner.go: Simplify flushing of pending tokens * runner.go: Update TODOs * runner.go: Don't panic when processing sequences If there is an error processing a sequence, we should return a clean HTTP error back to Ollama rather than panicing. This will make us more resilient to transient failures. Panics can still occur during startup as there is no way to serve requests if that fails. Co-authored-by: jmorganca <jmorganca@gmail.com> * runner.go: More accurately capture timings Currently prompt processing time doesn't capture the that it takes to tokenize the input, only decoding time. We should capture the full process to more accurately reflect reality. This is especially true once we start processing images where the initial processing can take significant time. This is also more consistent with the existing C++ runner. * runner.go: Support for vision models In addition to bringing feature parity with the C++ runner, this also incorporates several improvements: - Cache prompting works with images, avoiding the need to re-decode embeddings for every message in a conversation - Parallelism is supported, avoiding the need to restrict to one sequence at a time. (Though for now Ollama will not schedule them while we might need to fall back to the old runner.) Co-authored-by: jmorganca <jmorganca@gmail.com> * runner.go: Move Unicode checking code and add tests * runner.go: Export external cache members Runner and cache are in the same package so the change doesn't affect anything but it is more internally consistent. * runner.go: Image embedding cache Generating embeddings from images can take significant time (on my machine between 100ms and 8s depending on the model). Although we already cache the result of decoding these images, the embeddings need to be regenerated every time. This is not necessary if we get the same image over and over again, for example, during a conversation. This currently uses a very small cache with a very simple algorithm but it is easy to improve as is warranted. * llama: catch up on patches Carry forward solar-pro and cli-unicode patches * runner.go: Don't re-allocate memory for every batch We can reuse memory allocated from batch to batch since batch size is fixed. This both saves the cost of reallocation as well keeps the cache lines hot. This results in a roughly 1% performance improvement for token generation with Nvidia GPUs on Linux. * runner.go: Default to classic input cache policy The input cache as part of the go runner implemented a cache policy that aims to maximize hit rate in both single and multi- user scenarios. When there is a cache hit, the response is very fast. However, performance is actually slower when there is an input cache miss due to worse GPU VRAM locality. This means that performance is generally better overall for multi-user scenarios (better input cache hit rate, locality was relatively poor already). But worse for single users (input cache hit rate is about the same, locality is now worse). This defaults the policy back to the old one to avoid a regression but keeps the new one available through an environment variable OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is to improve this in the future to get the best of both worlds without user configuration. For inputs that result in cache misses, on Nvidia/Linux this change improves performance by 31% for prompt processing and 13% for token generation. * runner.go: Increase size of response channel Generally the CPU can easily keep up with handling reponses that are generated but there's no reason not to let generation continue and handle things in larger batches if needed. * llama: Add CI to verify all vendored changes have patches (#7066) Make sure we don't accidentally merge changes in the vendored code that aren't also reflected in the patches. * llama: adjust clip patch for mingw utf-16 (#7065) * llama: adjust clip patch for mingw utf-16 * llama: ensure static linking of runtime libs Avoid runtime dependencies on non-standard libraries * runner.go: Enable llamafile (all platforms) and BLAS (Mac OS) These are two features that are shown on llama.cpp's system info that are currently different between the two runners. On my test systems the performance difference is very small to negligible but it is probably still good to equalize the features. * llm: Don't add BOS/EOS for tokenize requests This is consistent with what server.cpp currently does. It affects things like token processing counts for embedding requests. * runner.go: Don't cache prompts for embeddings Our integration with server.cpp implicitly disables prompt caching because it is not part of the JSON object being parsed, this makes the Go runner behavior similarly. Prompt caching has been seen to affect the results of text completions on certain hardware. The results are not wrong either way but they are non-deterministic. However, embeddings seem to be affected even on hardware that does not show this behavior for completions. For now, it is best to maintain consistency with the existing behavior. * runner.go: Adjust debug log levels Add system info printed at startup and quiet down noisier logging. * llama: fix compiler flag differences (#7082) Adjust the flags for the new Go server to more closely match the generate flow * llama: refine developer docs (#7121) * llama: doc and example clean up (#7122) * llama: doc and example clean up * llama: Move new dockerfile into llama dir Temporary home until we fully transition to the Go server * llama: runner doc cleanup * llama.go: Add description for Tokenize error case --------- Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com> Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 15:53:54 +00:00
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
*
* MIT License
*
* Copyright (c) 2023-2024 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "llama-vocab.h"
#include "unicode.h"
#include <algorithm>
#include <cassert>
#include <cfloat>
#include <climits>
#include <cstdarg>
#include <cstring>
#include <forward_list>
#include <queue>
#include <sstream>
//
// helpers
//
LLAMA_ATTRIBUTE_FORMAT(1, 2)
static std::string format(const char * fmt, ...) {
va_list ap;
va_list ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
GGML_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), size);
}
struct naive_trie {
naive_trie() : has_value(false), value(0) {
}
void insert(const char * key, size_t len, int32_t value = 0) {
if (len == 0) {
this->has_value = true;
this->value = value;
return;
}
char c = key[0];
auto res = children.find(c);
if (res != children.end()) {
res->second.insert(key + 1, len - 1, value);
} else {
auto res = children.insert(std::make_pair(c, naive_trie()));
res.first->second.insert(key + 1, len - 1, value);
}
}
std::pair<const char *, size_t> get_longest_prefix(const char * key, size_t len, size_t offset = 0) {
if (len == 0 || offset == len) {
return std::make_pair(key, offset);
}
char c = key[offset];
auto res = children.find(c);
if (res != children.end()) {
return res->second.get_longest_prefix(key, len, offset + 1);
}
return std::make_pair(key, offset);
}
const struct naive_trie * traverse(const char c) const {
auto res = children.find(c);
if (res != children.end()) {
return &res->second;
}
return NULL;
}
std::map<char, struct naive_trie> children;
bool has_value;
llama_token value;
};
//
// impl
//
int llama_vocab::find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
GGML_ASSERT(token_left.find(' ') == std::string::npos);
GGML_ASSERT(token_left.find('\n') == std::string::npos);
GGML_ASSERT(token_right.find(' ') == std::string::npos);
GGML_ASSERT(token_right.find('\n') == std::string::npos);
auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
if (it == bpe_ranks.end()) {
return -1;
}
return it->second;
}
static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
return vocab.type;
}
static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL;
}
static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN;
}
static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL;
}
static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE;
}
static bool llama_is_user_defined_token(const llama_vocab & vocab, llama_token id) {
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED;
}
static bool llama_is_unused_token(const llama_vocab & vocab, llama_token id) {
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNUSED;
}
static uint8_t llama_token_to_byte(const llama_vocab & vocab, llama_token id) {
GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
GGML_ASSERT(llama_is_byte_token(vocab, id));
const auto & token_data = vocab.id_to_token.at(id);
switch (llama_vocab_get_type(vocab)) {
case LLAMA_VOCAB_TYPE_SPM:
case LLAMA_VOCAB_TYPE_UGM: {
auto buf = token_data.text.substr(3, 2);
return strtol(buf.c_str(), NULL, 16);
}
case LLAMA_VOCAB_TYPE_BPE: {
GGML_ABORT("fatal error");
//return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
}
case LLAMA_VOCAB_TYPE_WPM: {
GGML_ABORT("fatal error");
}
default:
GGML_ABORT("fatal error");
}
}
static void llama_escape_whitespace(std::string & text) {
replace_all(text, " ", "\xe2\x96\x81");
}
static void llama_unescape_whitespace(std::string & word) {
replace_all(word, "\xe2\x96\x81", " ");
}
struct llm_symbol {
using index = int;
index prev;
index next;
const char * text;
size_t n;
};
static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
//
// SPM tokenizer
// original implementation:
// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
//
struct llm_bigram_spm {
struct comparator {
bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
return (l.score < r.score) || (l.score == r.score && l.left > r.left);
}
};
using queue_storage = std::vector<llm_bigram_spm>;
using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
llm_symbol::index left;
llm_symbol::index right;
float score;
size_t size;
};
struct llm_tokenizer_spm {
llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
// split string into utf8 chars
int index = 0;
size_t offs = 0;
while (offs < text.size()) {
llm_symbol sym;
size_t len = unicode_len_utf8(text[offs]);
sym.text = text.c_str() + offs;
sym.n = std::min(len, text.size() - offs);
offs += sym.n;
sym.prev = index - 1;
sym.next = offs == text.size() ? -1 : index + 1;
index++;
symbols.emplace_back(sym);
}
// seed the work queue with all possible 2-character tokens.
for (size_t i = 1; i < symbols.size(); ++i) {
try_add_bigram(i - 1, i);
}
// keep substituting the highest frequency pairs for as long as we can.
while (!work_queue.empty()) {
auto bigram = work_queue.top();
work_queue.pop();
auto & left_sym = symbols[bigram.left];
auto & right_sym = symbols[bigram.right];
// if one of the symbols already got merged, skip it.
if (left_sym.n == 0 || right_sym.n == 0 ||
left_sym.n + right_sym.n != bigram.size) {
continue;
}
// merge the right sym into the left one
left_sym.n += right_sym.n;
right_sym.n = 0;
//LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
// remove the right sym from the chain
left_sym.next = right_sym.next;
if (right_sym.next >= 0) {
symbols[right_sym.next].prev = bigram.left;
}
// find more substitutions
try_add_bigram(left_sym.prev, bigram.left);
try_add_bigram(bigram.left, left_sym.next);
}
for (int i = 0; i != -1; i = symbols[i].next) {
auto & symbol = symbols[i];
resegment(symbol, output);
}
}
private:
void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
auto text = std::string(symbol.text, symbol.n);
auto token = vocab.token_to_id.find(text);
// Do we need to support is_unused?
if (token != vocab.token_to_id.end()) {
output.push_back((*token).second);
return;
}
const auto p = rev_merge.find(text);
if (p == rev_merge.end()) {
// output any symbols that did not form tokens as bytes.
output.reserve(output.size() + symbol.n);
for (int j = 0; j < (int)symbol.n; ++j) {
llama_vocab::id token_id = llama_byte_to_token_impl(vocab, symbol.text[j]);
output.push_back(token_id);
}
return;
}
resegment(symbols[p->second.first], output);
resegment(symbols[p->second.second], output);
}
void try_add_bigram(int left, int right) {
if (left == -1 || right == -1) {
return;
}
const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
auto token = vocab.token_to_id.find(text);
if (token == vocab.token_to_id.end()) {
return;
}
if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
return;
}
const auto & tok_data = vocab.id_to_token[(*token).second];
llm_bigram_spm bigram;
bigram.left = left;
bigram.right = right;
bigram.score = tok_data.score;
bigram.size = text.size();
work_queue.push(bigram);
// Do we need to support is_unused?
rev_merge[text] = std::make_pair(left, right);
}
const llama_vocab & vocab;
std::vector<llm_symbol> symbols;
llm_bigram_spm::queue work_queue;
std::map<std::string, std::pair<int, int>> rev_merge;
};
//
// BPE tokenizer
// adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
// tried to simplify unicode stuff, so most likely does not work 100% correctly!
//
// TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
template<typename T, typename Container = std::vector<T>, typename Compare = std::less<typename Container::value_type>>
class llama_priority_queue : public std::priority_queue<T, Container, Compare> {
public:
using std::priority_queue<T, Container, Compare>::priority_queue;
T pop_move() {
T item = std::move(this->c.front());
std::pop_heap(this->c.begin(), this->c.end(), this->comp);
this->c.pop_back();
return item;
}
void pop() = delete;
};
struct llm_bigram_bpe {
struct comparator {
bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
}
};
using queue_storage = std::vector<llm_bigram_bpe>;
using queue = llama_priority_queue<llm_bigram_bpe, queue_storage, comparator>;
llm_symbol::index left;
llm_symbol::index right;
std::string text;
int rank;
size_t size;
};
struct llm_tokenizer_bpe {
llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {
GGML_ASSERT(vocab.type == LLAMA_VOCAB_TYPE_BPE);
switch (vocab.type_pre) {
case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
regex_exprs = {
// original regex from tokenizer.json
//"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
// adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
};
break;
case LLAMA_VOCAB_PRE_TYPE_DBRX:
case LLAMA_VOCAB_PRE_TYPE_SMAUG:
regex_exprs = {
// same as llama3
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
};
break;
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
regex_exprs = {
"[\r\n]",
"\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ--ℝℤΩℨK--ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA--z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
"\\s?[!-/:-~---‟ -。]+",
"\\s+$",
"[一-龥ࠀ-一가-퟿]+",
"\\p{N}+",
};
break;
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
regex_exprs = {
"[\r\n]",
"\\s?\\p{L}+",
"\\s?\\p{P}+",
"[一-龥ࠀ-一가-퟿]+",
"\\p{N}",
};
break;
case LLAMA_VOCAB_PRE_TYPE_FALCON:
regex_exprs = {
"[\\p{P}\\$\\+<=>\\^~\\|`]+",
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
"[0-9][0-9][0-9]",
};
break;
case LLAMA_VOCAB_PRE_TYPE_STARCODER:
case LLAMA_VOCAB_PRE_TYPE_REFACT:
case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
case LLAMA_VOCAB_PRE_TYPE_SMOLLM:
case LLAMA_VOCAB_PRE_TYPE_CODESHELL:
case LLAMA_VOCAB_PRE_TYPE_EXAONE:
regex_exprs = {
"\\p{N}",
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
};
break;
case LLAMA_VOCAB_PRE_TYPE_GPT2:
case LLAMA_VOCAB_PRE_TYPE_MPT:
case LLAMA_VOCAB_PRE_TYPE_OLMO:
case LLAMA_VOCAB_PRE_TYPE_JAIS:
regex_exprs = {
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
};
break;
case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
case LLAMA_VOCAB_PRE_TYPE_QWEN2:
regex_exprs = {
// original regex from tokenizer.json
// "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
};
break;
case LLAMA_VOCAB_PRE_TYPE_PORO:
case LLAMA_VOCAB_PRE_TYPE_BLOOM:
case LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH:
regex_exprs = {
" ?[^(\\s|.,!?…。,、।۔،)]+",
};
break;
case LLAMA_VOCAB_PRE_TYPE_CHATGLM4:
regex_exprs = {
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
};
break;
case LLAMA_VOCAB_PRE_TYPE_VIKING:
regex_exprs = {
" ?[^(\\s|.,!?…。,、।۔،)]+",
"\\p{N}",
};
break;
case LLAMA_VOCAB_PRE_TYPE_TEKKEN:
// original regex from tokenizer.json
// "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
regex_exprs = {
"[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
};
break;
default:
// default regex for BPE tokenization pre-processing
regex_exprs = {
"[\\p{P}\\$\\+<=>\\^~\\|]+",
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
"\\p{N}+",
"[0-9][0-9][0-9]",
};
break;
}
}
void append(const llama_vocab::id token_id, std::vector<llama_vocab::id> & output) const {
output.push_back(token_id);
}
bool append_bos(std::vector<llama_vocab::id> & output) const {
if (vocab.tokenizer_add_bos) {
GGML_ASSERT(vocab.special_bos_id != -1);
output.push_back(vocab.special_bos_id);
return true;
}
return false;
}
bool append_eos(std::vector<llama_vocab::id> & output) const {
if (vocab.tokenizer_add_eos) {
GGML_ASSERT(vocab.special_eos_id != -1);
output.push_back(vocab.special_eos_id);
return true;
}
return false;
}
void check_double_bos_eos(const std::vector<llama_vocab::id> & output) const {
if (vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
LLAMA_LOG_WARN(
"%s: Added a BOS token to the prompt as specified by the model but the prompt "
"also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
"Are you sure this is what you want?\n", __FUNCTION__);
}
if (vocab.tokenizer_add_eos && output.size() >= 2 && *(output.end()-2) == vocab.special_eos_id) {
LLAMA_LOG_WARN(
"%s: Added a EOS token to the prompt as specified by the model but the prompt "
"also ends with a EOS token. So now the final prompt ends with 2 EOS tokens. "
"Are you sure this is what you want?\n", __FUNCTION__);
}
}
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
int final_prev_index = -1;
const auto word_collection = unicode_regex_split(text, regex_exprs);
symbols_final.clear();
for (auto & word : word_collection) {
work_queue = llm_bigram_bpe::queue();
symbols.clear();
int index = 0;
size_t offset = 0;
if (vocab.tokenizer_ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
offset = word.size();
}
while (offset < word.size()) {
llm_symbol sym;
size_t char_len = std::min(word.size() - offset, (size_t) unicode_len_utf8(word[offset]));
sym.text = word.c_str() + offset;
sym.n = char_len;
offset += sym.n;
sym.prev = index - 1;
sym.next = offset == word.size() ? -1 : index + 1;
index++;
symbols.emplace_back(sym);
}
for (size_t i = 1; i < symbols.size(); ++i) {
add_new_bigram(i - 1, i);
}
// build token(s)
while (!work_queue.empty()) {
auto bigram = work_queue.pop_move();
auto & left_symbol = symbols[bigram.left];
auto & right_symbol = symbols[bigram.right];
if (left_symbol.n == 0 || right_symbol.n == 0) {
continue;
}
std::string left_token = std::string(left_symbol.text, left_symbol.n);
std::string right_token = std::string(right_symbol.text, right_symbol.n);
if (left_token + right_token != bigram.text) {
continue; // Skip this bigram if it's outdated
}
// merge the right sym into the left one
left_symbol.n += right_symbol.n;
right_symbol.n = 0;
// remove the right sym from the chain
left_symbol.next = right_symbol.next;
if (right_symbol.next >= 0) {
symbols[right_symbol.next].prev = bigram.left;
}
add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
}
// add the finished tokens to the final list keeping correct order for next and prev
for (auto & sym : symbols) {
if (sym.n > 0) {
sym.prev = final_prev_index;
sym.next = -1;
if (final_prev_index != -1) {
symbols_final[final_prev_index].next = symbols_final.size();
}
symbols_final.emplace_back(sym);
final_prev_index = symbols_final.size() - 1;
}
}
}
symbols = symbols_final;
if (!symbols.empty()) {
for (int i = 0; i != -1; i = symbols[i].next) {
auto & symbol = symbols[i];
if (symbol.n == 0) {
continue;
}
const std::string str = std::string(symbol.text, symbol.n);
const auto token = vocab.token_to_id.find(str);
if (token == vocab.token_to_id.end()) {
for (auto j = str.begin(); j != str.end(); ++j) {
std::string byte_str(1, *j);
auto token_multibyte = vocab.token_to_id.find(byte_str);
if (token_multibyte != vocab.token_to_id.end()) {
output.push_back(token_multibyte->second);
}
}
} else {
output.push_back((*token).second);
}
}
}
}
private:
void add_new_bigram(int left, int right) {
if (left == -1 || right == -1) {
return;
}
std::string left_token = std::string(symbols[left].text, symbols[left].n);
std::string right_token = std::string(symbols[right].text, symbols[right].n);
int rank_found = -1;
rank_found = vocab.find_bpe_rank(left_token, right_token);
if (rank_found < 0) {
return;
}
llm_bigram_bpe bigram;
bigram.left = left;
bigram.right = right;
bigram.text = left_token + right_token;
bigram.size = left_token.size() + right_token.size();
bigram.rank = rank_found;
work_queue.push(bigram);
}
const llama_vocab & vocab;
std::vector<std::string> regex_exprs;
std::vector<llm_symbol> symbols;
std::vector<llm_symbol> symbols_final;
llm_bigram_bpe::queue work_queue;
};
//
// WPM tokenizer
//
struct llm_tokenizer_wpm {
llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) const {
const auto & token_map = vocab.token_to_id;
// normalize and split by whitespace
std::vector<std::string> words = preprocess(text);
// bos token prepended already
// find the longest tokens that form the words
for (const std::string & word : words) {
// skip empty words
if (word.size() == 0) {
continue;
}
// prepend phantom space
const std::string word1 = "\xe2\x96\x81" + word;
const int n = word1.size();
const size_t current_tokens = output.size();
// we're at the start of a new word
// move through character position in word
for (int i = 0; i < n; ++i) {
// loop through possible match length
bool match = false;
for (int j = std::min(n, i + vocab.max_token_len + 1); j > i; j--) {
auto it = token_map.find(word1.substr(i, j - i));
if (it != token_map.end()) {
output.push_back(it->second);
match = true;
i = j - 1;
break;
}
}
if (!match) { // discard all
output.resize(current_tokens);
break; // and discard next tokens
}
}
// we didn't find any matches for this word
if (current_tokens == output.size()) {
output.push_back(vocab.special_unk_id);
}
}
}
// TODO: reduce string copies by using cpts_offs array
std::vector<std::string> preprocess(const std::string & text) const {
const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
std::vector<std::string> words(1, "");
for (const uint32_t cpt : cpts_nfd) {
const auto flags = unicode_cpt_flags(cpt);
if (flags.is_whitespace) {
if (words.back().size()) { // finish previous word if any
words.emplace_back();
}
continue;
}
assert (!flags.is_separator);
if (cpt == 0 || cpt == 0xFFFD || flags.is_control) {
continue;
}
const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt));
if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) {
if (words.back().size()) { // finish previous word if any
words.emplace_back();
}
words.back() = s; // single char word
words.emplace_back(); // start a new word
} else {
words.back() += s; // append char to word
}
}
if (!words.back().size()) {
words.pop_back();
}
return words;
}
static bool is_chinese_char(uint32_t cpt) {
return
(cpt >= 0x04E00 && cpt <= 0x09FFF) ||
(cpt >= 0x03400 && cpt <= 0x04DBF) ||
(cpt >= 0x20000 && cpt <= 0x2A6DF) ||
(cpt >= 0x2A700 && cpt <= 0x2B73F) ||
(cpt >= 0x2B740 && cpt <= 0x2B81F) ||
(cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
(cpt >= 0x0F900 && cpt <= 0x0FAFF) ||
(cpt >= 0x2F800 && cpt <= 0x2FA1F);
//(cpt >= 0x3000 && cpt <= 0x303F) ||
//(cpt >= 0xFF00 && cpt <= 0xFFEF);
}
const llama_vocab & vocab;
};
//
// UGM tokenizer
//
struct llm_tokenizer_ugm {
llm_tokenizer_ugm(const llama_vocab & vocab) : vocab(vocab) {
if (vocab.precompiled_charsmap.size() > 0) {
size_t charsmap_offset = 0;
// First four bytes of precompiled_charsmap contains length of binary
// blob containing XOR-compressed compact double array (XCDA) entries
uint32_t xcda_blob_size = *(const uint32_t *) &vocab.precompiled_charsmap[0];
charsmap_offset += sizeof(xcda_blob_size);
if (xcda_blob_size + charsmap_offset >= vocab.precompiled_charsmap.size()) {
throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
}
// Next xcda_blob_size bytes contain entries of XOR-compressed compact
// double array (XCDA). Each entry is bit-packed into a 32-bit integer.
xcda_array = (const uint32_t *) &vocab.precompiled_charsmap[charsmap_offset];
xcda_array_size = xcda_blob_size / sizeof(uint32_t);
charsmap_offset += xcda_blob_size;
// Remaining bytes of precompiled charsmap contain null-terminated
// replacement strings for prefixes matched by the XCDA.
prefix_replacements = &vocab.precompiled_charsmap[charsmap_offset];
prefix_replacements_size = vocab.precompiled_charsmap.size() - charsmap_offset;
}
for (unsigned int id = 0; id < vocab.id_to_token.size(); ++id) {
const auto &token_data = vocab.id_to_token[id];
if (llama_is_normal_token(vocab, id)) {
min_score = std::min<float>(min_score, token_data.score);
max_score = std::max<float>(max_score, token_data.score);
}
if (llama_is_normal_token(vocab, id) ||
llama_is_user_defined_token(vocab, id) ||
llama_is_unused_token(vocab, id)) {
token_matcher.insert(token_data.text.data(), token_data.text.size(), id);
}
if (llama_is_user_defined_token(vocab, id)) {
user_defined_token_matcher.insert(token_data.text.data(), token_data.text.size());
}
}
unknown_token_score = min_score - unknown_token_score_penalty;
}
/* This implementation is based on SentencePiece optimized Viterbi algorithm for
* unigram language models. The general idea is to:
* - move along the input sequence in steps of one UTF code point,
* - at each step find all possible tokenizations of the prefix by
* traversing the tokens trie,
* - for each tokenization store the best one so far (by higher score)
* - use the position in sequence after given token as an index to store
* results
* - if there was no valid tokenization of the current UTF code point
* then use unknown token with additional score penalty
* After processing the whole sequence we backtrack from the end to get
* the best tokenization.
*/
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
// get current size of output (for reversal later)
size_t output_size = output.size();
// normalize the input first
std::string normalized;
normalize(text, &normalized);
size_t input_len = normalized.size();
if (input_len == 0) {
return;
}
// initialize score_sum to -FLT_MAX so it will be always lower than sums of token scores
std::vector<struct best_tokenization> tokenization_results(input_len + 1, {vocab.special_unk_id, 0, -FLT_MAX});
// at the beginning tokenization score is zero
tokenization_results[0] = { vocab.special_unk_id, 0, 0 };
for (size_t input_offset = 0; input_offset < input_len;) {
size_t prefix_offset = input_offset;
// calculate how many code units are in the currently processed UTF code point
size_t n_utf8_code_units = std::min<size_t>(unicode_len_utf8(normalized[input_offset]), input_len - input_offset);
// traverse the token matcher trie to find a matching token
bool single_codepoint_token_found = false;
const struct best_tokenization & current_best = tokenization_results[input_offset];
const struct naive_trie * node = token_matcher.traverse(normalized[prefix_offset++]);
while (prefix_offset <= input_len && node != NULL) {
// check if we found valid token in prefix
if (node->has_value) {
// check if it corresponds to the whole UTF code point
if (prefix_offset - input_offset == n_utf8_code_units) {
single_codepoint_token_found = true;
}
llama_token token_id = node->value;
const auto & token_data = vocab.id_to_token[token_id];
// we set the user-defined token scores to 0 to make them more likely to be selected
// (normal token scores are log probabilities, so they are negative)
// score type is double here to make tokenization results exactly
// the same as in the HF tokenizer using SentencePiece
const double token_score = llama_is_user_defined_token(vocab, token_id) ? 0.0 : token_data.score;
const double challenger_score = current_best.score_sum + token_score;
struct best_tokenization & current_champ = tokenization_results[prefix_offset];
if (challenger_score > current_champ.score_sum) {
struct best_tokenization challenger = { token_id, input_offset, (float) challenger_score };
current_champ = challenger;
}
}
node = node->traverse(normalized[prefix_offset++]);
}
// if we didn't find a valid token corresponding to the whole UTF code point
// then use unknown token as the tokenization of this UTF code point
if (!single_codepoint_token_found) {
const double challenger_score = current_best.score_sum + unknown_token_score;
prefix_offset = input_offset + n_utf8_code_units;
struct best_tokenization & current_champ = tokenization_results[prefix_offset];
if (challenger_score > current_champ.score_sum) {
struct best_tokenization challenger = { vocab.special_unk_id, input_offset, (float) challenger_score };
current_champ = challenger;
}
}
// move to the next UTF code point
input_offset += n_utf8_code_units;
}
// now backtrack from the end to gather token ids of the best tokenization
// merge sequences of consecutive unknown tokens into single unknown tokens
bool is_prev_unknown = false;
for (struct best_tokenization & tokenization = tokenization_results[input_len]; ; tokenization = tokenization_results[tokenization.input_offset]) {
bool is_unknown = tokenization.token_id == vocab.special_unk_id;
if (!(is_prev_unknown && is_unknown)) {
output.push_back(tokenization.token_id);
}
if (tokenization.input_offset == 0) {
break;
}
is_prev_unknown = is_unknown;
}
// reverse the output since we added tokens starting from the end of the input
std::reverse(output.begin() + output_size, output.end());
}
private:
const llama_vocab & vocab;
// helper structure for returning normalization results
struct normalization_result {
const char * normalized;
size_t normalized_len;
size_t consumed_input;
};
void normalize(const std::string& input, std::string * normalized) {
normalized->clear();
normalized->reserve(input.size() * 3);
const std::string space = vocab.tokenizer_escape_whitespaces ? escaped_space : " ";
bool shall_prepend_space = !vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix;
bool shall_append_space = vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix;
bool shall_merge_spaces = vocab.tokenizer_remove_extra_whitespaces;
bool is_space_prepended = false;
bool processing_non_ws = false;
size_t input_len = input.size();
for (size_t input_offset = 0; input_offset < input_len; ) {
auto norm_res = normalize_prefix(input, input_offset);
for (size_t i = 0; i < norm_res.normalized_len; i++) {
char c = norm_res.normalized[i];
if (c != ' ') {
if (!processing_non_ws) {
processing_non_ws = true;
if ((shall_prepend_space && !is_space_prepended) || shall_merge_spaces) {
normalized->append(space);
is_space_prepended = true;
}
}
normalized->push_back(c);
} else {
if (processing_non_ws) {
processing_non_ws = false;
}
if (!shall_merge_spaces) {
normalized->append(space);
}
}
}
input_offset += norm_res.consumed_input;
}
if (shall_append_space) {
normalized->append(space);
}
}
/*
* This structure is a view wrapper for XOR-compressed double array (XCDA)
* See Shunsuke Kanda (2018). Space- and Time-Efficient String Dictionaries.
* Each bit-packed entry contains:
* - BASE array value in bits 10-30
* - LCHECK array value in bits 0-7
* - LEAF array value in bit 9
* Entries containing indexes of replacement sequences have set bit 31
*/
struct xcda_array_view {
public:
xcda_array_view(const uint32_t * xcda_array, size_t xcda_array_size) : xcda_array(xcda_array), xcda_array_size(xcda_array_size) {
}
uint32_t get_base(size_t index) {
uint32_t packed_node = get_node(index);
return (packed_node >> 10) << ((packed_node & (1U << 9)) >> 6);
}
uint32_t get_lcheck(size_t index) {
uint32_t packed_node = get_node(index);
return packed_node & ((1U << 31) | 0xff);
}
bool get_leaf(size_t index) {
uint32_t packed_node = get_node(index);
return (packed_node >> 8) & 1;
}
uint32_t get_value(size_t index) {
uint32_t packed_node = get_node(index);
return packed_node & ((1U << 31) - 1);
}
private:
uint32_t get_node(size_t index) {
if (index > xcda_array_size) {
throw std::runtime_error("Index out of array bounds in XCDA array!");
}
return xcda_array[index];
}
const uint32_t * xcda_array;
size_t xcda_array_size;
};
struct normalization_result normalize_prefix(const std::string & input, size_t input_offset) {
if (input_offset == input.size()) {
return { &input[input_offset], 0, 0 };
}
// if input prefix matches some user-defined token return this token as normalization result
auto user_defined_token_match = user_defined_token_matcher.get_longest_prefix(&input[input_offset], input.size() - input_offset);
if (user_defined_token_match.second > 0) {
return { &input[input_offset], user_defined_token_match.second, user_defined_token_match.second };
}
size_t longest_prefix_length = 0;
size_t longest_prefix_offset = 0;
if (xcda_array_size > 0) {
struct xcda_array_view xcda_view(xcda_array, xcda_array_size);
// Find the longest normalized sequence matching the input prefix by walking
// the XOR-compressed compact double array (XCDA) starting from the root node
// We find the index of the next node by calculating BASE[s] ^ c where s is
// the index of the previous node and c is a numerical character value
uint32_t node_index = 0;
// get BASE of the root node
node_index = xcda_view.get_base(node_index);
for (size_t prefix_offset = input_offset; prefix_offset < input.size(); prefix_offset++) {
unsigned char c = input[prefix_offset];
if (c == 0) {
break;
}
node_index ^= c;
// if value of LCHECK is not c it means that this is not a child of
// the previous node, so we stop matching
if (xcda_view.get_lcheck(node_index) != c) {
break;
}
bool is_leaf = xcda_view.get_leaf(node_index);
// get BASE of the current node
node_index ^= xcda_view.get_base(node_index);
// if LEAF of the current node is true, it means that its BASE points to the node
// containing index of replacement sequence for currently matched input prefix
if (is_leaf)
{
longest_prefix_length = prefix_offset - input_offset + 1;
// get index of replacement sequence for currently matched input prefix
longest_prefix_offset = xcda_view.get_value(node_index);
}
}
}
if (longest_prefix_length > 0) {
// we have a match, so return the replacement sequence
if (longest_prefix_offset >= prefix_replacements_size) {
throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
}
const char * prefix_replacement = &prefix_replacements[longest_prefix_offset];
return { prefix_replacement, strlen(prefix_replacement), longest_prefix_length };
} else {
// check if the input prefix contains a valid sequence of UTF-8 code units
try {
// if yes, return this sequence unmodified
size_t prefix_offset = input_offset;
unicode_cpt_from_utf8(input, prefix_offset);
return { &input[input_offset], prefix_offset - input_offset, prefix_offset - input_offset };
} catch (std::invalid_argument & /*ex*/) {
// if no, consume 1 byte and return U+FFFD - REPLACEMENT CHARACTER
return { "\xEF\xBF\xBD", 3, 1 };
}
}
}
// escaped space symbol - U+2581 (Lower One Eighth Block)
const std::string escaped_space = "\xE2\x96\x81";
const char * prefix_replacements = NULL;
size_t prefix_replacements_size = 0;
const uint32_t * xcda_array = NULL;
size_t xcda_array_size = 0;
struct naive_trie user_defined_token_matcher;
// this structure stores the best tokenization so far at input_offset
struct best_tokenization {
llama_token token_id;
size_t input_offset;
float score_sum;
};
float min_score = FLT_MAX;
float max_score = -FLT_MAX;
float unknown_token_score_penalty = 10.0;
float unknown_token_score;
struct naive_trie token_matcher;
};
//
// RWKV tokenizer
//
static std::vector<uint8_t> llama_unescape_rwkv_token(const std::string & escaped) {
std::vector<uint8_t> output;
output.reserve(escaped.size());
// Parser state
bool escaping = false;
uint8_t hex_remaining = 0;
uint8_t hex_acc = 0;
// Step through characters, performing parsing
for (const char & c : escaped) {
// If we're parsing a hex code, interpret the next character
if (hex_remaining != 0) {
uint8_t value = (c >= 'a') ? (c - 'a' + 10) : (c - '0');
hex_acc = (hex_acc << 4) + value;
hex_remaining -= 1;
if (hex_remaining == 0) {
output.push_back(hex_acc);
hex_acc = 0;
}
continue;
}
// If we got an escape character, interpret it
if (escaping) {
if (c == 't') {
output.push_back('\t');
} else if (c == 'n') {
output.push_back('\n');
} else if (c == 'r') {
output.push_back('\r');
} else if (c == 'x') {
hex_remaining = 2;
} else {
output.push_back(c);
}
escaping = false;
continue;
}
if (c == '\\') {
escaping = true;
continue;
}
output.push_back(c);
}
return output;
}
struct llm_tokenizer_rwkv {
llm_tokenizer_rwkv(const llama_vocab & vocab): vocab(vocab) {
// RWKV supports arbitrary byte tokens, but the vocab struct only supports string tokens.
// For now, we decode the vocab here into the lookup we'll use for tokenization.
// build trie
for (unsigned int id = 0; id < vocab.id_to_token.size(); ++id) {
const auto & token = vocab.id_to_token[id];
const auto data = llama_unescape_rwkv_token(token.text);
token_matcher.insert((const char *) data.data(), data.size(), id);
}
}
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
uint32_t position = 0;
while (position < text.size()) {
const struct naive_trie * node = token_matcher.traverse(text[position]);
if (node == NULL) {
// no matching token found, add unknown token
output.push_back(vocab.special_unk_id);
position += 1;
continue;
}
// traverse the trie to find the longest matching token
uint32_t token_id = 0;
uint32_t token_length = 0;
while (node != NULL) {
if (node->has_value) {
token_id = node->value;
token_length = position + 1;
}
node = node->traverse(text[++position]);
}
// add the longest matching token
output.push_back(token_id);
position = token_length;
}
}
const llama_vocab & vocab;
struct naive_trie token_matcher;
};
//
// (de-) tokenize
//
typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
} FRAGMENT_BUFFER_VARIANT_TYPE;
struct fragment_buffer_variant {
fragment_buffer_variant(llama_vocab::id _token)
:
type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
token(_token),
raw_text(_dummy),
offset(0),
length(0) {}
fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
:
type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
token((llama_vocab::id) - 1),
raw_text(_raw_text),
offset(_offset),
length(_length){
GGML_ASSERT(_offset >= 0);
GGML_ASSERT(_length >= 1);
GGML_ASSERT(offset + length <= raw_text.length());
}
const FRAGMENT_BUFFER_VARIANT_TYPE type;
const llama_vocab::id token;
const std::string _dummy;
const std::string & raw_text;
const uint64_t offset;
const uint64_t length;
};
// #define PRETOKENIZERDEBUG
static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer, bool parse_special) {
// for each special token
for (const llama_vocab::id special_id : vocab.cache_special_tokens) {
const auto & data = vocab.id_to_token[special_id];
const auto & special_token = data.text;
if (!parse_special && (data.attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_UNKNOWN))) {
// Ignore control and unknown tokens when parse_special == false
continue;
// User-defined tokens are still pre-tokenized before everything else
// ref: https://github.com/huggingface/tokenizers/blob/fdd26ba9a3f0c133427aab0423888cbde91362d7/tokenizers/src/tokenizer/mod.rs#L726
// This is mostly relevant for neox-style tokenizers (mpt, olmo, stablelm, etc.)
}
// for each text fragment
std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
while (it != buffer.end()) {
auto & fragment = (*it);
// if a fragment is text ( not yet processed )
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
auto & raw_text = fragment.raw_text;
auto raw_text_base_offset = fragment.offset;
auto raw_text_base_length = fragment.length;
// loop over the text
while (true) {
// find the first occurrence of a given special token in this fragment
// passing offset argument only limit the "search area" but match coordinates
// are still relative to the source full raw_text
auto match = raw_text.find(special_token, raw_text_base_offset);
// no occurrences found, stop processing this fragment for a given special token
if (match == std::string::npos) break;
// check if match is within bounds of offset <-> length
if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
#ifdef PRETOKENIZERDEBUG
LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
#endif
auto source = std::distance(buffer.begin(), it);
// if match is further than base offset
// then we have some text to the left of it
if (match > raw_text_base_offset) {
// left
const int64_t left_reminder_offset = raw_text_base_offset + 0;
int64_t left_reminder_length = match - raw_text_base_offset;
if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) {
while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) {
left_reminder_length--;
}
}
if (left_reminder_length > 0) {
buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
it++;
}
#ifdef PRETOKENIZERDEBUG
LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
#endif
}
// special token
buffer.emplace_after(it, special_id);
it++;
// right
if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
int64_t right_reminder_offset = match + special_token.length();
int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) {
while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) {
right_reminder_offset++;
right_reminder_length--;
}
}
if (right_reminder_length > 0) {
buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
it++;
}
#ifdef PRETOKENIZERDEBUG
LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
#endif
if (source == 0) {
buffer.erase_after(buffer.before_begin());
} else {
buffer.erase_after(std::next(buffer.begin(), (source-1)));
}
// repeat for the right side
raw_text_base_offset = right_reminder_offset;
raw_text_base_length = right_reminder_length;
#ifdef PRETOKENIZERDEBUG
LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
#endif
} else {
if (source == 0) {
buffer.erase_after(buffer.before_begin());
} else {
buffer.erase_after(std::next(buffer.begin(), (source-1)));
}
break;
}
}
}
it++;
}
}
}
std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
std::vector<llama_vocab::id> output;
std::forward_list<fragment_buffer_variant> fragment_buffer;
if (!raw_text.empty()) {
fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
tokenizer_st_partition(vocab, fragment_buffer, parse_special);
}
switch (vocab.type) {
case LLAMA_VOCAB_TYPE_SPM:
{
// OG tokenizer behavior:
//
// tokenizer.encode('', add_special_tokens=True) returns [1]
// tokenizer.encode('', add_special_tokens=False) returns []
bool is_prev_special = true; // prefix with space if first token
if (add_special && vocab.tokenizer_add_bos) {
GGML_ASSERT(vocab.special_bos_id != -1);
output.push_back(vocab.special_bos_id);
is_prev_special = true;
}
for (const auto & fragment : fragment_buffer) {
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
// prefix with space if previous is special
if (vocab.tokenizer_add_space_prefix && is_prev_special) {
raw_text = " " + raw_text;
}
#ifdef PRETOKENIZERDEBUG
LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
#endif
llm_tokenizer_spm tokenizer(vocab);
llama_escape_whitespace(raw_text);
tokenizer.tokenize(raw_text, output);
is_prev_special = false;
} else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
output.push_back(fragment.token);
is_prev_special = true;
}
}
if (add_special && vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
LLAMA_LOG_WARN(
"%s: Added a BOS token to the prompt as specified by the model but the prompt "
"also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
"Are you sure this is what you want?\n", __FUNCTION__);
}
if (add_special && vocab.tokenizer_add_eos) {
GGML_ASSERT(vocab.special_eos_id != -1);
output.push_back(vocab.special_eos_id);
}
} break;
case LLAMA_VOCAB_TYPE_BPE:
{
llm_tokenizer_bpe tokenizer(vocab);
if (add_special) {
tokenizer.append_bos(output);
}
for (const auto & fragment : fragment_buffer) {
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
#ifdef PRETOKENIZERDEBUG
LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
#endif
tokenizer.tokenize(raw_text, output);
} else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
tokenizer.append(fragment.token, output);
}
}
if (add_special) {
tokenizer.append_eos(output);
tokenizer.check_double_bos_eos(output);
}
} break;
case LLAMA_VOCAB_TYPE_WPM:
{
if (add_special) {
GGML_ASSERT(vocab.special_cls_id != -1);
output.push_back(vocab.special_cls_id);
}
llm_tokenizer_wpm tokenizer(vocab);
for (const auto & fragment : fragment_buffer) {
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
#ifdef PRETOKENIZERDEBUG
LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
#endif
tokenizer.tokenize(raw_text, output);
} else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
output.push_back(fragment.token);
}
}
if (add_special) {
GGML_ASSERT(vocab.special_sep_id != -1);
output.push_back(vocab.special_sep_id);
}
} break;
case LLAMA_VOCAB_TYPE_UGM:
{
llm_tokenizer_ugm tokenizer(vocab);
if (add_special && vocab.tokenizer_add_bos != 0) {
GGML_ASSERT(vocab.special_bos_id != -1);
output.push_back(vocab.special_bos_id);
}
for (const auto & fragment : fragment_buffer) {
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
#ifdef PRETOKENIZERDEBUG
LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
#endif
tokenizer.tokenize(raw_text, output);
} else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
output.push_back(fragment.token);
}
}
if (add_special && vocab.tokenizer_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
LLAMA_LOG_WARN(
"%s: Added a BOS token to the prompt as specified by the model but the prompt "
"also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
"Are you sure this is what you want?\n", __FUNCTION__);
}
if (add_special && vocab.tokenizer_add_eos == 1) {
GGML_ASSERT(vocab.special_eos_id != -1);
output.push_back(vocab.special_eos_id);
}
} break;
case LLAMA_VOCAB_TYPE_RWKV:
{
for (const auto & fragment : fragment_buffer) {
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
#ifdef PRETOKENIZERDEBUG
LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
#endif
llm_tokenizer_rwkv tokenizer(vocab);
tokenizer.tokenize(raw_text, output);
} else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
output.push_back(fragment.token);
}
}
} break;
case LLAMA_VOCAB_TYPE_NONE:
GGML_ABORT("fatal error");
}
return output;
}
llama_token llama_byte_to_token_impl(const llama_vocab & vocab, uint8_t ch) {
GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
static const char * hex = "0123456789ABCDEF";
switch (llama_vocab_get_type(vocab)) {
case LLAMA_VOCAB_TYPE_SPM:
case LLAMA_VOCAB_TYPE_UGM: {
const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
auto token = vocab.token_to_id.find(buf);
if (token != vocab.token_to_id.end()) {
return (*token).second;
}
// Try to fall back to just the byte as a string
const char buf2[2] = { (char)ch, 0 };
return vocab.token_to_id.at(buf2);
}
case LLAMA_VOCAB_TYPE_WPM:
case LLAMA_VOCAB_TYPE_BPE: {
return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
}
default:
GGML_ABORT("fatal error");
}
}
const char * llama_token_get_text_impl(const struct llama_vocab & vocab, llama_token token) {
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
return vocab.id_to_token[token].text.c_str();
}
float llama_token_get_score_impl(const struct llama_vocab & vocab, llama_token token) {
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
return vocab.id_to_token[token].score;
}
llama_token_attr llama_token_get_attr_impl(const struct llama_vocab & vocab, llama_token token) {
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
return vocab.id_to_token[token].attr;
}
bool llama_token_is_eog_impl(const struct llama_vocab & vocab, llama_token token) {
return token != -1 && (
token == llama_token_eos_impl(vocab) ||
token == llama_token_eot_impl(vocab) ||
token == llama_token_eom_impl(vocab)
);
}
bool llama_token_is_control_impl(const struct llama_vocab & vocab, llama_token token) {
return llama_is_control_token(vocab, token);
}
llama_token llama_token_bos_impl(const struct llama_vocab & vocab) {
return vocab.special_bos_id;
}
llama_token llama_token_eos_impl(const struct llama_vocab & vocab) {
return vocab.special_eos_id;
}
llama_token llama_token_cls_impl(const struct llama_vocab & vocab) {
return vocab.special_cls_id;
}
llama_token llama_token_sep_impl(const struct llama_vocab & vocab) {
return vocab.special_sep_id;
}
llama_token llama_token_nl_impl(const struct llama_vocab & vocab) {
return vocab.linefeed_id;
}
llama_token llama_token_pad_impl(const struct llama_vocab & vocab) {
return vocab.special_pad_id;
}
bool llama_add_bos_token_impl(const struct llama_vocab & vocab) {
return vocab.tokenizer_add_bos;
}
bool llama_add_eos_token_impl(const struct llama_vocab & vocab) {
return vocab.tokenizer_add_eos;
}
llama_token llama_token_prefix_impl(const struct llama_vocab & vocab) {
return vocab.special_prefix_id;
}
llama_token llama_token_middle_impl(const struct llama_vocab & vocab) {
return vocab.special_middle_id;
}
llama_token llama_token_suffix_impl(const struct llama_vocab & vocab) {
return vocab.special_suffix_id;
}
llama_token llama_token_eot_impl(const struct llama_vocab & vocab) {
return vocab.special_eot_id;
}
llama_token llama_token_eom_impl(const struct llama_vocab & vocab) {
return vocab.special_eom_id;
}
int32_t llama_tokenize_impl(
const struct llama_vocab & vocab,
const char * text,
int32_t text_len,
llama_token * tokens,
int32_t n_tokens_max,
bool add_special,
bool parse_special) {
auto res = llama_tokenize_internal(vocab, std::string(text, text_len), add_special, parse_special);
if (n_tokens_max < (int) res.size()) {
// LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
return -((int) res.size());
}
for (size_t i = 0; i < res.size(); i++) {
tokens[i] = res[i];
}
return res.size();
}
static std::string llama_decode_text(const std::string & text) {
std::string decoded_text;
const auto cpts = unicode_cpts_from_utf8(text);
for (const auto cpt : cpts) {
const auto utf8 = unicode_cpt_to_utf8(cpt);
try {
decoded_text += unicode_utf8_to_byte(utf8);
} catch (const std::out_of_range & /*e*/) {
decoded_text += "[UNK_BYTE_0x";
for (const auto c : utf8) {
decoded_text += format("%02x", (uint8_t) c);
}
decoded_text += text + "]";
}
}
return decoded_text;
}
// does not write null-terminator to buf
int32_t llama_token_to_piece_impl(const struct llama_vocab & vocab, llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) {
// ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
static const int attr_special = LLAMA_TOKEN_ATTR_UNKNOWN | LLAMA_TOKEN_ATTR_CONTROL;
const llama_token_attr attr = llama_token_get_attr_impl(vocab, token);
if (!special && (attr & attr_special)) {
return 0;
}
// copy piece chars to output text buffer
// skip up to 'lstrip' leading spaces before copying
auto _try_copy = [=] (const char * token, size_t size) -> int32_t {
for (int32_t i = 0; i < lstrip && size && *token == ' '; ++i) {
token++;
size--;
}
if (length < (int32_t)size) {
return -(int32_t) size;
}
memcpy(buf, token, size);
return (int32_t) size;
};
// if we have a cache - use it
{
const auto & cache = vocab.cache_token_to_piece;
if (!cache.empty()) {
const auto & result = cache.at(token);
return _try_copy(result.data(), result.size());
}
}
if (0 <= token && token < (int32_t) vocab.id_to_token.size()) {
const std::string & token_text = vocab.id_to_token[token].text;
switch (llama_vocab_get_type(vocab)) {
case LLAMA_VOCAB_TYPE_WPM:
case LLAMA_VOCAB_TYPE_SPM:
case LLAMA_VOCAB_TYPE_UGM: {
// NOTE: we accept all unsupported token types,
// suppressing them like CONTROL tokens.
if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
return _try_copy(token_text.data(), token_text.size());
} else if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
std::string result = token_text;
llama_unescape_whitespace(result);
return _try_copy(result.data(), result.size());
} else if (attr & LLAMA_TOKEN_ATTR_BYTE) {
char byte = (char) llama_token_to_byte(vocab, token);
return _try_copy((char*) &byte, 1);
}
break;
}
case LLAMA_VOCAB_TYPE_BPE: {
// NOTE: we accept all unsupported token types,
// suppressing them like CONTROL tokens.
if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
return _try_copy(token_text.data(), token_text.size());
} else if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
std::string result = llama_decode_text(token_text);
return _try_copy(result.data(), result.size());
}
break;
}
case LLAMA_VOCAB_TYPE_RWKV: {
std::vector<uint8_t> result = llama_unescape_rwkv_token(token_text);
// If we don't have enough space, return an error
if (result.size() > (size_t)length) {
return -(int)result.size();
}
memcpy(buf, result.data(), result.size());
return (int)result.size();
}
default:
GGML_ABORT("fatal error");
}
}
return 0;
}
int32_t llama_detokenize_impl(
const struct llama_vocab & vocab,
const llama_token * tokens,
int32_t n_tokens,
char * text,
int32_t text_len_max,
bool remove_special,
bool unparse_special) {
int32_t avail = text_len_max;
int32_t total = 0;
// remove the leading space
bool remove_space = vocab.tokenizer_add_space_prefix;
if (remove_special && vocab.tokenizer_add_bos) {
if (n_tokens > 0 && tokens[0] == vocab.special_bos_id) {
remove_space = false;
n_tokens--;
tokens++;
}
}
if (remove_special && vocab.tokenizer_add_eos) {
if (n_tokens > 0 && tokens[n_tokens-1] == vocab.special_eos_id) {
n_tokens--;
}
}
for (int32_t i = 0; i < n_tokens; ++i) {
GGML_ASSERT(avail >= 0);
int32_t n_chars = llama_token_to_piece_impl(vocab, tokens[i], text, avail, remove_space, unparse_special);
remove_space = false;
if (n_chars < 0) {
avail = 0;
total -= n_chars;
} else if (n_chars > 0) {
avail -= n_chars;
text += n_chars;
total += n_chars;
}
}
if (total > text_len_max) {
return -total;
}
if (vocab.tokenizer_clean_spaces) {
text -= total; // restart text
// first pass: characters ?!., //TODO: where do these characters come from?
const int32_t total1 = total;
total = total ? 1 : 0;
for (int32_t i = 1; i < total1; ++i) {
const char x = text[i];
if (text[i - 1] == ' ') {
if (x == '?' || x == '!' || x == '.' || x == ',') { // " ?", " !", " .", " ,"
total--; // remove space
}
}
text[total++] = x;
}
// second pass: strip single apostrophe between spaces
const int32_t total2 = total;
total = total ? 1 : 0;
for (int32_t i = 1; i < total2; ++i) {
const char x = text[i];
if (x == '\'' && i + 1 < total2 && text[i - 1] == ' ' && text[i + 1] == ' ') { // " ' "
total--; // remove prev space
text[++i] = '\0'; // remove next space
}
text[total++] = x;
}
// third pass: apostrophe contractions //NOTE: this makes sense?
const int32_t total3 = total;
total = total ? 1 : 0;
for (int32_t i = 1; i < total3; ++i) {
const char x = text[i];
if (text[i - 1] == ' ') {
if (x == '\'' && i + 1 < total3) {
const char x1 = text[i + 1];
if (x1 == 't' || x1 == 'd') { // " 't", " 'd"
//total--; // remove space
} else if (x1 == 's' || x1 == 'm') { // " 's", " 'm"
total--; // remove space
} else if (i + 2 < total3) {
const char x2 = text[i + 2];
if ((x1 == 'l' && x2 == 'l')) { // " 'll"
//total--; // remove space
} else if ((x1 == 'r' && x2 == 'e') || (x1 == 'v' && x2 == 'e')) { // " 're", " 've"
total--; // remove space
} else {
//total--; // remove space
}
} else {
//total--; // remove space
}
}
}
text[total++] = x;
}
}
return total <= text_len_max ? total : -total;
}