ollama/llama/ggml-cuda/vecdotq.cuh

1160 lines
39 KiB
Text
Raw Normal View History

Re-introduce the `llama` package (#5034) * Re-introduce the llama package This PR brings back the llama package, making it possible to call llama.cpp and ggml APIs from Go directly via CGo. This has a few advantages: - C APIs can be called directly from Go without needing to use the previous "server" REST API - On macOS and for CPU builds on Linux and Windows, Ollama can be built without a go generate ./... step, making it easy to get up and running to hack on parts of Ollama that don't require fast inference - Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners takes <5 min on a fast CPU) - No git submodule making it easier to clone and build from source This is a big PR, but much of it is vendor code except for: - llama.go CGo bindings - example/: a simple example of running inference - runner/: a subprocess server designed to replace the llm/ext_server package - Makefile an as minimal as possible Makefile to build the runner package for different targets (cpu, avx, avx2, cuda, rocm) Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com> * cache: Clear old KV cache entries when evicting a slot When forking a cache entry, if no empty slots are available we evict the least recently used one and copy over the KV entries from the closest match. However, this copy does not overwrite existing values but only adds new ones. Therefore, we need to clear the old slot first. This change fixes two issues: - The KV cache fills up and runs out of space even though we think we are managing it correctly - Performance gets worse over time as we use new cache entries that are not hot in the processor caches * doc: explain golang objc linker warning (#6830) * llama: gather transitive dependencies for rocm for dist packaging (#6848) * Refine go server makefiles to be more DRY (#6924) This breaks up the monolithic Makefile for the Go based runners into a set of utility files as well as recursive Makefiles for the runners. Files starting with the name "Makefile" are buildable, while files that end with ".make" are utilities to include in other Makefiles. This reduces the amount of nearly identical targets and helps set a pattern for future community contributions for new GPU runner architectures. When we are ready to switch over to the Go runners, these files should move to the top of the repo, and we should add targets for the main CLI, as well as a helper "install" (put all the built binaries on the local system in a runnable state) and "dist" target (generate the various tar/zip files for distribution) for local developer use. * llama: don't create extraneous directories (#6988) * llama: Exercise the new build in CI (#6989) Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet. * llama: Refine developer docs for Go server (#6842) This enhances the documentation for development focusing on the new Go server. After we complete the transition further doc refinements can remove the "transition" discussion. * runner.go: Allocate batches for all sequences during init We should tell the model that we could have full batches for all sequences. We already do this when we allocate the batches but it was missed during initialization. * llama.go: Don't return nil from Tokenize on zero length input Potentially receiving nil in a non-error condition is surprising to most callers - it's better to return an empty slice. * runner.go: Remove stop tokens from cache If the last token is EOG then we don't return this and it isn't present in the cache (because it was never submitted to Decode). This works well for extending the cache entry with a new sequence. However, for multi-token stop sequences, we won't return any of the tokens but all but the last one will be in the cache. This means when the conversation continues the cache will contain tokens that don't overlap with the new prompt. This works (we will pick up the portion where there is overlap) but it causes unnecessary cache thrashing because we will fork the original cache entry as it is not a perfect match. By trimming the cache to the tokens that we actually return this issue can be avoided. * runner.go: Simplify flushing of pending tokens * runner.go: Update TODOs * runner.go: Don't panic when processing sequences If there is an error processing a sequence, we should return a clean HTTP error back to Ollama rather than panicing. This will make us more resilient to transient failures. Panics can still occur during startup as there is no way to serve requests if that fails. Co-authored-by: jmorganca <jmorganca@gmail.com> * runner.go: More accurately capture timings Currently prompt processing time doesn't capture the that it takes to tokenize the input, only decoding time. We should capture the full process to more accurately reflect reality. This is especially true once we start processing images where the initial processing can take significant time. This is also more consistent with the existing C++ runner. * runner.go: Support for vision models In addition to bringing feature parity with the C++ runner, this also incorporates several improvements: - Cache prompting works with images, avoiding the need to re-decode embeddings for every message in a conversation - Parallelism is supported, avoiding the need to restrict to one sequence at a time. (Though for now Ollama will not schedule them while we might need to fall back to the old runner.) Co-authored-by: jmorganca <jmorganca@gmail.com> * runner.go: Move Unicode checking code and add tests * runner.go: Export external cache members Runner and cache are in the same package so the change doesn't affect anything but it is more internally consistent. * runner.go: Image embedding cache Generating embeddings from images can take significant time (on my machine between 100ms and 8s depending on the model). Although we already cache the result of decoding these images, the embeddings need to be regenerated every time. This is not necessary if we get the same image over and over again, for example, during a conversation. This currently uses a very small cache with a very simple algorithm but it is easy to improve as is warranted. * llama: catch up on patches Carry forward solar-pro and cli-unicode patches * runner.go: Don't re-allocate memory for every batch We can reuse memory allocated from batch to batch since batch size is fixed. This both saves the cost of reallocation as well keeps the cache lines hot. This results in a roughly 1% performance improvement for token generation with Nvidia GPUs on Linux. * runner.go: Default to classic input cache policy The input cache as part of the go runner implemented a cache policy that aims to maximize hit rate in both single and multi- user scenarios. When there is a cache hit, the response is very fast. However, performance is actually slower when there is an input cache miss due to worse GPU VRAM locality. This means that performance is generally better overall for multi-user scenarios (better input cache hit rate, locality was relatively poor already). But worse for single users (input cache hit rate is about the same, locality is now worse). This defaults the policy back to the old one to avoid a regression but keeps the new one available through an environment variable OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is to improve this in the future to get the best of both worlds without user configuration. For inputs that result in cache misses, on Nvidia/Linux this change improves performance by 31% for prompt processing and 13% for token generation. * runner.go: Increase size of response channel Generally the CPU can easily keep up with handling reponses that are generated but there's no reason not to let generation continue and handle things in larger batches if needed. * llama: Add CI to verify all vendored changes have patches (#7066) Make sure we don't accidentally merge changes in the vendored code that aren't also reflected in the patches. * llama: adjust clip patch for mingw utf-16 (#7065) * llama: adjust clip patch for mingw utf-16 * llama: ensure static linking of runtime libs Avoid runtime dependencies on non-standard libraries * runner.go: Enable llamafile (all platforms) and BLAS (Mac OS) These are two features that are shown on llama.cpp's system info that are currently different between the two runners. On my test systems the performance difference is very small to negligible but it is probably still good to equalize the features. * llm: Don't add BOS/EOS for tokenize requests This is consistent with what server.cpp currently does. It affects things like token processing counts for embedding requests. * runner.go: Don't cache prompts for embeddings Our integration with server.cpp implicitly disables prompt caching because it is not part of the JSON object being parsed, this makes the Go runner behavior similarly. Prompt caching has been seen to affect the results of text completions on certain hardware. The results are not wrong either way but they are non-deterministic. However, embeddings seem to be affected even on hardware that does not show this behavior for completions. For now, it is best to maintain consistency with the existing behavior. * runner.go: Adjust debug log levels Add system info printed at startup and quiet down noisier logging. * llama: fix compiler flag differences (#7082) Adjust the flags for the new Go server to more closely match the generate flow * llama: refine developer docs (#7121) * llama: doc and example clean up (#7122) * llama: doc and example clean up * llama: Move new dockerfile into llama dir Temporary home until we fully transition to the Go server * llama: runner doc cleanup * llama.go: Add description for Tokenize error case --------- Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com> Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 15:53:54 +00:00
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
*
* MIT License
*
* Copyright (c) 2023-2024 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "common.cuh"
#include <cstdint>
static __device__ __forceinline__ int get_int_b2(const void * x, const int & i32) {
const uint16_t * x16 = (const uint16_t *) x; // assume at least 2 byte alignment
int x32 = x16[2*i32 + 0] << 0;
x32 |= x16[2*i32 + 1] << 16;
return x32;
}
static __device__ __forceinline__ int get_int_b4(const void * x, const int & i32) {
return ((const int *) x)[i32]; // assume at least 4 byte alignment
}
// VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
// MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
#define VDR_Q4_0_Q8_1_MMVQ 2
#define VDR_Q4_0_Q8_1_MMQ 4
template <int vdr> static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl(
const int * v, const int * u, const float & d4, const half2 & ds8) {
int sumi = 0;
#pragma unroll
for (int i = 0; i < vdr; ++i) {
const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
// SIMD dot product of quantized values
sumi = ggml_cuda_dp4a(vi0, u[2*i+0], sumi);
sumi = ggml_cuda_dp4a(vi1, u[2*i+1], sumi);
}
const float2 ds8f = __half22float2(ds8);
// second part effectively subtracts 8 from each quant value
return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y);
}
#define VDR_Q4_1_Q8_1_MMVQ 2
#define VDR_Q4_1_Q8_1_MMQ 4
template <int vdr> static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl(
const int * v, const int * u, const half2 & dm4, const half2 & ds8) {
int sumi = 0;
#pragma unroll
for (int i = 0; i < vdr; ++i) {
const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
// SIMD dot product of quantized values
sumi = ggml_cuda_dp4a(vi0, u[2*i+0], sumi);
sumi = ggml_cuda_dp4a(vi1, u[2*i+1], sumi);
}
#ifdef GGML_CUDA_F16
const float2 tmp = __half22float2(__hmul2(dm4, ds8));
const float d4d8 = tmp.x;
const float m4s8 = tmp.y;
#else
const float2 dm4f = __half22float2(dm4);
const float2 ds8f = __half22float2(ds8);
const float d4d8 = dm4f.x * ds8f.x;
const float m4s8 = dm4f.y * ds8f.y;
#endif // GGML_CUDA_F16
// scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
}
#define VDR_Q5_0_Q8_1_MMVQ 2
#define VDR_Q5_0_Q8_1_MMQ 4
template <int vdr> static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl(
const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) {
int sumi = 0;
#pragma unroll
for (int i = 0; i < vdr; ++i) {
int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
sumi = ggml_cuda_dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
sumi = ggml_cuda_dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
}
const float2 ds8f = __half22float2(ds8);
// second part effectively subtracts 16 from each quant value
return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y);
}
#define VDR_Q5_1_Q8_1_MMVQ 2
#define VDR_Q5_1_Q8_1_MMQ 4
template <int vdr> static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl(
const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) {
int sumi = 0;
#pragma unroll
for (int i = 0; i < vdr; ++i) {
int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
sumi = ggml_cuda_dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
sumi = ggml_cuda_dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
}
#ifdef GGML_CUDA_F16
const float2 tmp = __half22float2(__hmul2(dm5, ds8));
const float d5d8 = tmp.x;
const float m5s8 = tmp.y;
#else
const float2 dm5f = __half22float2(dm5);
const float2 ds8f = __half22float2(ds8);
const float d5d8 = dm5f.x * ds8f.x;
const float m5s8 = dm5f.y * ds8f.y;
#endif // GGML_CUDA_F16
// scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
}
#define VDR_Q8_0_Q8_1_MMVQ 2
#define VDR_Q8_0_Q8_1_MMQ 8
template <typename T, int vdr> static __device__ __forceinline__ T vec_dot_q8_0_q8_1_impl(
const int * v, const int * u, const T & d8_0, const T & d8_1) {
int sumi = 0;
#pragma unroll
for (int i = 0; i < vdr; ++i) {
// SIMD dot product of quantized values
sumi = ggml_cuda_dp4a(v[i], u[i], sumi);
}
return d8_0*d8_1 * ((T) sumi);
}
template <int vdr> static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl(
const int * v, const int * u, const half2 & dm8, const half2 & ds8) {
int sumi = 0;
#pragma unroll
for (int i = 0; i < vdr; ++i) {
// SIMD dot product of quantized values
sumi = ggml_cuda_dp4a(v[i], u[i], sumi);
}
#ifdef GGML_CUDA_F16
const float2 tmp = __half22float2(__hmul2(dm8, ds8));
const float d8d8 = tmp.x;
const float m8s8 = tmp.y;
#else
const float2 dm8f = __half22float2(dm8);
const float2 ds8f = __half22float2(ds8);
const float d8d8 = dm8f.x * ds8f.x;
const float m8s8 = dm8f.y * ds8f.y;
#endif // GGML_CUDA_F16
// scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
}
template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_16_q8_1_impl(
const int * v, const int * u, const float * d8_0, const float & d8_1) {
float sumf = 0.0f;
#pragma unroll
for (int i0 = 0; i0 < vdr; i0 += QI8_0/2) {
int sumi = 0;
#pragma unroll
for (int i = i0; i < i0 + QI8_0/2; ++i) {
// SIMD dot product of quantized values
sumi = ggml_cuda_dp4a(v[i], u[i], sumi);
}
sumf += d8_0[i0/(QI8_0/2)]*sumi;
}
return d8_1*sumf;
}
#define VDR_Q2_K_Q8_1_MMVQ 1
#define VDR_Q2_K_Q8_1_MMQ 4
// contiguous v/x values
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
const half2 & dm2, const float * __restrict__ d8) {
float sumf_d = 0.0f;
float sumf_m = 0.0f;
#pragma unroll
for (int i = 0; i < QR2_K; ++i) {
const int sc = scales[2*i];
const int vi = (v >> (2*i)) & 0x03030303;
sumf_d += d8[i] * (ggml_cuda_dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
// fill int with 4x m
int m = sc >> 4;
m |= m << 8;
m |= m << 16;
sumf_m += d8[i] * ggml_cuda_dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values
}
const float2 dm2f = __half22float2(dm2);
return dm2f.x*sumf_d - dm2f.y*sumf_m;
}
// contiguous v/x + u/y values
template <int ns8>
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const half2 * dm2, const float & d8, const half2 * s8) {
float sumf = 0.0f;
float sumf_d8 = 0.0f;
#pragma unroll
for (int i0 = 0; i0 < QR2_K*VDR_Q2_K_Q8_1_MMQ; i0 += QI8_1) {
const float2 dm2f0 = __half22float2(dm2[i0/(QI8_1/2) + 0]);
int sumi_d0 = 0;
const float2 dm2f1 = __half22float2(dm2[i0/(QI8_1/2) + 1]);
int sumi_d1 = 0;
#pragma unroll
for (int i = i0; i < i0 + QI8_1/2; ++i) {
sumi_d0 = ggml_cuda_dp4a(v[i], u[i], sumi_d0);
}
sumf_d8 += dm2f0.x * sumi_d0;
#pragma unroll
for (int i = i0 + QI8_1/2; i < i0 + QI8_1; ++i) {
sumi_d1 = ggml_cuda_dp4a(v[i], u[i], sumi_d1);
}
sumf_d8 += dm2f1.x * sumi_d1;
if (i0/QI8_1 < ns8) {
const float2 s8f = __half22float2(s8[i0/QI8_1]);
sumf -= dm2f0.y*s8f.x;
sumf -= dm2f1.y*s8f.y;
} else {
int sumi_m0 = 0;
#pragma unroll
for (int i = i0; i < i0 + QI8_1/2; ++i) {
sumi_m0 = ggml_cuda_dp4a(0x01010101, u[i], sumi_m0);
}
sumf_d8 -= dm2f0.y * sumi_m0;
int sumi_m1 = 0;
#pragma unroll
for (int i = i0 + QI8_1/2; i < i0 + QI8_1; ++i) {
sumi_m1 = ggml_cuda_dp4a(0x01010101, u[i], sumi_m1);
}
sumf_d8 -= dm2f1.y * sumi_m1;
}
}
return sumf + d8*sumf_d8;
}
#define VDR_Q3_K_Q8_1_MMVQ 1
#define VDR_Q3_K_Q8_1_MMQ 2
// contiguous v/x values
static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq(
const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales,
const int & scale_offset, const float & d3, const float * __restrict__ d8) {
float sumf = 0.0f;
#pragma unroll
for (int i = 0; i < QR3_K; ++i) {
const int isc = scale_offset + 2*i;
const int isc_low = isc % (QK_K/32);
const int sc_shift_low = 4 * (isc / (QK_K/32));
const int sc_low = (scales[isc_low] >> sc_shift_low) & 0xF;
const int isc_high = isc % (QK_K/64);
const int sc_shift_high = 2 * (isc / (QK_K/64));
const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
const int sc = (sc_low | sc_high) - 32;
const int vil = (vl >> (2*i)) & 0x03030303;
const int vih = ((vh >> i) << 2) & 0x04040404;
const int vi = __vsubss4(vil, vih);
sumf += d8[i] * (ggml_cuda_dp4a(vi, u[i], 0) * sc); // SIMD dot product
}
return d3 * sumf;
}
// contiguous v/x + u/y values
static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales,
const float & d3, const float & d8) {
int sumi = 0;
#pragma unroll
for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
int sumi_sc = 0;
#pragma unroll
for (int i = i0; i < i0 + QI8_1/2; ++i) {
sumi_sc = ggml_cuda_dp4a(v[i], u[i], sumi_sc); // SIMD dot product
}
sumi += sumi_sc * scales[i0 / (QI8_1/2)];
}
return d3*d8 * sumi;
}
#define VDR_Q4_K_Q8_1_MMVQ 2
#define VDR_Q4_K_Q8_1_MMQ 8
// contiguous v/x values
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) {
float sumf_d = 0.0f;
float sumf_m = 0.0f;
#pragma unroll
for (int i = 0; i < QR4_K; ++i) {
const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
const int dot1 = ggml_cuda_dp4a(v1i, u[2*i+1], ggml_cuda_dp4a(v0i, u[2*i+0], 0)); // SIMD dot product
const int dot2 = ggml_cuda_dp4a(0x01010101, u[2*i+1], ggml_cuda_dp4a(0x01010101, u[2*i+0], 0)); // sum of u
sumf_d += d8[i] * (dot1 * sc[i]);
sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values
}
const float2 dm4f = __half22float2(dm4);
return dm4f.x*sumf_d - dm4f.y*sumf_m;
}
// contiguous v/x + u/y values
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
float sumf_d = 0.0f;
float sumf_m = 0.0f;
#pragma unroll
for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
int sumi_d = 0;
#pragma unroll
for (int j = 0; j < QI8_1; ++j) {
sumi_d = ggml_cuda_dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product
}
const float2 ds8f = __half22float2(ds8[i]);
sumf_d += ds8f.x * (sc[i] * sumi_d);
sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
}
const float2 dm4f = __half22float2(dm4);
return dm4f.x*sumf_d - dm4f.y*sumf_m;
}
#define VDR_Q5_K_Q8_1_MMVQ 2
#define VDR_Q5_K_Q8_1_MMQ 8
// contiguous v/x values
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq(
const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc,
const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) {
float sumf_d = 0.0f;
float sumf_m = 0.0f;
#pragma unroll
for (int i = 0; i < QR5_K; ++i) {
const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
const int v0i = vl0i | vh0i;
const int v1i = vl1i | vh1i;
const int dot1 = ggml_cuda_dp4a(v0i, u[2*i+0], ggml_cuda_dp4a(v1i, u[2*i+1], 0)); // SIMD dot product
const int dot2 = ggml_cuda_dp4a(0x01010101, u[2*i+0], ggml_cuda_dp4a(0x01010101, u[2*i+1], 0)); // sum of u
sumf_d += d8[i] * (dot1 * sc[i]);
sumf_m += d8[i] * (dot2 * m[i]);
}
const float2 dm5f = __half22float2(dm5);
return dm5f.x*sumf_d - dm5f.y*sumf_m;
}
// contiguous v/x + u/y values
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
float sumf_d = 0.0f;
float sumf_m = 0.0f;
#pragma unroll
for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
int sumi_d = 0;
#pragma unroll
for (int j = 0; j < QI8_1; ++j) {
sumi_d = ggml_cuda_dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product
}
const float2 ds8f = __half22float2(ds8[i]);
sumf_d += ds8f.x * (sc[i] * sumi_d);
sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
}
const float2 dm4f = __half22float2(dm4);
return dm4f.x*sumf_d - dm4f.y*sumf_m;
}
#define VDR_Q6_K_Q8_1_MMVQ 1
#define VDR_Q6_K_Q8_1_MMQ 8
// contiguous v/x values
static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq(
const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales,
const float & d, const float * __restrict__ d8) {
float sumf = 0.0f;
#pragma unroll
for (int i = 0; i < QR6_K; ++i) {
const int sc = scales[4*i];
const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32
sumf += d8[i] * (ggml_cuda_dp4a(vi, u[i], 0) * sc); // SIMD dot product
}
return d*sumf;
}
// contiguous v/x + u/y values
static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc,
const float & d6, const float * __restrict__ d8) {
float sumf_d = 0.0f;
const int sc_packed = get_int_b4(sc, 0);
const int8_t * sc_reg = (const int8_t *) &sc_packed;
#pragma unroll
for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
#pragma unroll
for (int i = i0; i < i0 + 2; ++i) {
sumi_d.x = ggml_cuda_dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product
sumi_d.x = ggml_cuda_dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product
sumi_d.y = ggml_cuda_dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product
sumi_d.y = ggml_cuda_dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product
}
sumf_d += d8[i0/4] * (sc_reg[i0/2+0]*sumi_d.x + sc_reg[i0/2+1]*sumi_d.y);
}
return d6 * sumf_d;
}
static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq + kbx;
int v[VDR_Q4_0_Q8_1_MMVQ];
int u[2*VDR_Q4_0_Q8_1_MMVQ];
#pragma unroll
for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
v[i] = get_int_b2(bq4_0->qs, iqs + i);
u[2*i+0] = get_int_b4(bq8_1->qs, iqs + i);
u[2*i+1] = get_int_b4(bq8_1->qs, iqs + i + QI4_0);
}
return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
}
static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq + kbx;
int v[VDR_Q4_1_Q8_1_MMVQ];
int u[2*VDR_Q4_1_Q8_1_MMVQ];
#pragma unroll
for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
v[i] = get_int_b4(bq4_1->qs, iqs + i);
u[2*i+0] = get_int_b4(bq8_1->qs, iqs + i);
u[2*i+1] = get_int_b4(bq8_1->qs, iqs + i + QI4_1);
}
return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
}
static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq + kbx;
int vl[VDR_Q5_0_Q8_1_MMVQ];
int vh[VDR_Q5_0_Q8_1_MMVQ];
int u[2*VDR_Q5_0_Q8_1_MMVQ];
#pragma unroll
for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
vl[i] = get_int_b2(bq5_0->qs, iqs + i);
vh[i] = get_int_b2(bq5_0->qh, 0) >> (4 * (iqs + i));
u[2*i+0] = get_int_b4(bq8_1->qs, iqs + i);
u[2*i+1] = get_int_b4(bq8_1->qs, iqs + i + QI5_0);
}
return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
}
static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq + kbx;
int vl[VDR_Q5_1_Q8_1_MMVQ];
int vh[VDR_Q5_1_Q8_1_MMVQ];
int u[2*VDR_Q5_1_Q8_1_MMVQ];
#pragma unroll
for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
vl[i] = get_int_b4(bq5_1->qs, iqs + i);
vh[i] = get_int_b4(bq5_1->qh, 0) >> (4 * (iqs + i));
u[2*i+0] = get_int_b4(bq8_1->qs, iqs + i);
u[2*i+1] = get_int_b4(bq8_1->qs, iqs + i + QI5_1);
}
return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
}
static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq + kbx;
int v[VDR_Q8_0_Q8_1_MMVQ];
int u[VDR_Q8_0_Q8_1_MMVQ];
#pragma unroll
for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
v[i] = get_int_b2(bq8_0->qs, iqs + i);
u[i] = get_int_b4(bq8_1->qs, iqs + i);
}
return vec_dot_q8_0_q8_1_impl<float, VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, __low2half(bq8_1->ds));
}
static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_q2_K * bq2_K = (const block_q2_K *) vbq + kbx;
const int bq8_offset = QR2_K * (iqs / QI8_1);
const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
const uint8_t * scales = bq2_K->scales + scale_offset;
const int v = get_int_b4(bq2_K->qs, iqs);
int u[QR2_K];
float d8[QR2_K];
#pragma unroll
for (int i = 0; i < QR2_K; ++ i) {
u[i] = get_int_b4(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
d8[i] = __low2float(bq8_1[bq8_offset + i].ds);
}
return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
}
static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_q3_K * bq3_K = (const block_q3_K *) vbq + kbx;
const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
const float d = bq3_K->d;
const int vl = get_int_b2(bq3_K->qs, iqs);
// invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
const int vh = ~get_int_b2(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
int u[QR3_K];
float d8[QR3_K];
#pragma unroll
for (int i = 0; i < QR3_K; ++i) {
u[i] = get_int_b4(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
d8[i] = __low2float(bq8_1[bq8_offset + i].ds);
}
return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
}
static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_q4_K * bq4_K = (const block_q4_K *) vbq + kbx;
int v[2];
int u[2*QR4_K];
float d8[QR4_K];
// iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
// iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
// iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
// iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
// iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
v[0] = q4[0];
v[1] = q4[4];
const uint16_t * scales = (const uint16_t *)bq4_K->scales;
uint16_t aux[2];
const int j = bq8_offset/2;
if (j < 2) {
aux[0] = scales[j+0] & 0x3f3f;
aux[1] = scales[j+2] & 0x3f3f;
} else {
aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
}
const uint8_t * sc = (const uint8_t *)aux;
const uint8_t * m = sc + 2;
for (int i = 0; i < QR4_K; ++i) {
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
d8[i] = __low2float(bq8i->ds);
const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
u[2*i+0] = q8[0];
u[2*i+1] = q8[4];
}
return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
}
static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_q5_K * bq5_K = (const block_q5_K *) vbq + kbx;
int vl[2];
int vh[2];
int u[2*QR5_K];
float d8[QR5_K];
const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
vl[0] = ql[0];
vl[1] = ql[4];
vh[0] = qh[0] >> bq8_offset;
vh[1] = qh[4] >> bq8_offset;
const uint16_t * scales = (const uint16_t *)bq5_K->scales;
uint16_t aux[2];
const int j = bq8_offset/2;
if (j < 2) {
aux[0] = scales[j+0] & 0x3f3f;
aux[1] = scales[j+2] & 0x3f3f;
} else {
aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
}
const uint8_t * sc = (const uint8_t *)aux;
const uint8_t * m = sc + 2;
#pragma unroll
for (int i = 0; i < QR5_K; ++i) {
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
d8[i] = __low2float(bq8i->ds);
const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
u[2*i+0] = q8[0];
u[2*i+1] = q8[4];
}
return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
}
static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_q6_K * bq6_K = (const block_q6_K *) vbq + kbx;
const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
const int vl = get_int_b2(bq6_K->ql, iqs);
const int vh = get_int_b2(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
const int8_t * scales = bq6_K->scales + scale_offset;
int u[QR6_K];
float d8[QR6_K];
#pragma unroll
for (int i = 0; i < QR6_K; ++i) {
u[i] = get_int_b4(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
d8[i] = __low2float(bq8_1[bq8_offset + 2*i].ds);
}
return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
}
#define VDR_IQ2_XXS_Q8_1_MMVQ 2
#define VDR_IQ2_XXS_Q8_1_MMQ 2
static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq + kbx;
const int q2 = get_int_b2(bq2->qs, iqs);
const uint8_t * aux8 = (const uint8_t *) &q2;
const uint32_t aux32 = get_int_b2(bq2->qs, iqs + 1);
int sumi = 0;
#pragma unroll
for (int k0 = 0; k0 < 8; k0 += 2) {
const int * grid_pos = (const int *) (iq2xxs_grid + aux8[k0/2]);
const int signs_packed = ksigns_iq2xs[(aux32 >> (7*k0/2)) & 0x7F];
const int signs0 = __vcmpne4(((signs_packed & 0x03) << 7) | ((signs_packed & 0x0C) << 21), 0x00000000);
const int grid0 = __vsub4(grid_pos[0] ^ signs0, signs0);
const int u0 = get_int_b4(bq8_1[iqs/2].qs, k0 + 0);
sumi = ggml_cuda_dp4a(grid0, u0, sumi);
const int signs1 = __vcmpne4(((signs_packed & 0x30) << 3) | ((signs_packed & 0xC0) << 17), 0x00000000);
const int grid1 = __vsub4(grid_pos[1] ^ signs1, signs1);
const int u1 = get_int_b4(bq8_1[iqs/2].qs, k0 + 1);
sumi = ggml_cuda_dp4a(grid1, u1, sumi);
}
const int ls = aux32 >> 28;
sumi = (ls*sumi + sumi/2)/4;
const float d = __half2float(bq2->d) * __low2float(bq8_1[iqs/2].ds);
return d * sumi;
}
#define VDR_IQ2_XS_Q8_1_MMVQ 2
#define VDR_IQ2_XS_Q8_1_MMQ 2
static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq + kbx;
const int2 q2_packed = make_int2(get_int_b2(bq2->qs, iqs + 0), get_int_b2(bq2->qs, iqs + 1));
const uint16_t * q2 = (const uint16_t *) &q2_packed;
const int ls0 = bq2->scales[iqs/2] & 0x0F;
const int ls1 = bq2->scales[iqs/2] >> 4;
int sumi0 = 0;
int sumi1 = 0;
#pragma unroll
for (int l0 = 0; l0 < 8; l0 += 2) {
const uint32_t * grid_pos = (const uint32_t *)(iq2xs_grid + (q2[l0/2] & 0x000001FF));
const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l0/2] >> 9));
const int grid_l = __vsub4(grid_pos[0] ^ signs[0], signs[0]);
const int grid_h = __vsub4(grid_pos[1] ^ signs[1], signs[1]);
const int u0 = get_int_b4(bq8_1[iqs/2].qs, l0 + 0);
const int u1 = get_int_b4(bq8_1[iqs/2].qs, l0 + 1);
if (l0 < 4) {
sumi0 = ggml_cuda_dp4a(grid_l, u0, sumi0);
sumi0 = ggml_cuda_dp4a(grid_h, u1, sumi0);
} else {
sumi1 = ggml_cuda_dp4a(grid_l, u0, sumi1);
sumi1 = ggml_cuda_dp4a(grid_h, u1, sumi1);
}
}
const int sumi = (sumi0*ls0 + sumi1*ls1 + (sumi0 + sumi1)/2)/4;
const float d = __half2float(bq2->d) * __low2float(bq8_1[iqs/2].ds);
return d * sumi;
}
#define VDR_IQ2_S_Q8_1_MMVQ 2
#define VDR_IQ2_S_Q8_1_MMQ 2
static __device__ __forceinline__ float vec_dot_iq2_s_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_iq2_s * bq2 = (const block_iq2_s *) vbq + kbx;
const int qs_packed = get_int_b2(bq2->qs, iqs/2);
const uint8_t * qs = (const uint8_t *) &qs_packed;
const int qh = bq2->qh[iqs/2];
const int signs_packed_32 = get_int_b2(bq2->qs, QK_K/32 + iqs/2);
const uint8_t * signs_packed_8 = (const uint8_t *) &signs_packed_32;
const int ls0 = bq2->scales[iqs/2] & 0x0F;
const int ls1 = bq2->scales[iqs/2] >> 4;
int sumi0 = 0;
int sumi1 = 0;
#pragma unroll
for (int l0 = 0; l0 < 8; l0 += 2) {
const int * grid_pos = (const int *)(iq2s_grid + (qs[l0/2] | ((qh << (8-l0)) & 0x300)));
const int signs0 = __vcmpne4(((signs_packed_8[l0/2] & 0x03) << 7) | ((signs_packed_8[l0/2] & 0x0C) << 21), 0x00000000);
const int signs1 = __vcmpne4(((signs_packed_8[l0/2] & 0x30) << 3) | ((signs_packed_8[l0/2] & 0xC0) << 17), 0x00000000);
const int grid_l = __vsub4(grid_pos[0] ^ signs0, signs0);
const int grid_h = __vsub4(grid_pos[1] ^ signs1, signs1);
const int u0 = get_int_b4(bq8_1[iqs/2].qs, l0 + 0);
const int u1 = get_int_b4(bq8_1[iqs/2].qs, l0 + 1);
if (l0 < 4) {
sumi0 = ggml_cuda_dp4a(grid_l, u0, sumi0);
sumi0 = ggml_cuda_dp4a(grid_h, u1, sumi0);
} else {
sumi1 = ggml_cuda_dp4a(grid_l, u0, sumi1);
sumi1 = ggml_cuda_dp4a(grid_h, u1, sumi1);
}
}
const int sumi = (sumi0*ls0 + sumi1*ls1 + (sumi0 + sumi1)/2)/4;
const float d = __half2float(bq2->d) * __low2float(bq8_1[iqs/2].ds);
return d * sumi;
}
#define VDR_IQ3_XXS_Q8_1_MMVQ 2
#define VDR_IQ3_XXS_Q8_1_MMQ 2
static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_iq3_xxs * bq3 = (const block_iq3_xxs *) vbq + kbx;
const int2 q3_packed = make_int2(get_int_b2(bq3->qs, iqs), get_int_b2(bq3->qs, iqs+1));
const uint8_t * q3 = (const uint8_t *) &q3_packed;
const uint32_t aux32 = get_int_b2(bq3->qs, QK_K/16 + iqs/2);
int sumi = 0;
#pragma unroll
for (int l0 = 0; l0 < 8; l0 += 2) {
const int2 grid_pos = make_int2(iq3xxs_grid[q3[l0 + 0]], iq3xxs_grid[q3[l0 + 1]]);
const int * signs = (const int *)(ksigns64 + ((aux32 >> (7*l0/2)) & 0x7F));
const int grid_l = __vsub4(grid_pos.x ^ signs[0], signs[0]);
const int grid_h = __vsub4(grid_pos.y ^ signs[1], signs[1]);
const int u0 = get_int_b4(bq8_1[iqs/2].qs, l0 + 0);
const int u1 = get_int_b4(bq8_1[iqs/2].qs, l0 + 1);
sumi = ggml_cuda_dp4a(grid_l, u0, sumi);
sumi = ggml_cuda_dp4a(grid_h, u1, sumi);
}
const int ls = aux32 >> 28;
sumi = (ls*sumi + sumi/2)/2;
const float d = __half2float(bq3->d) * __low2float(bq8_1[iqs/2].ds);
return d * sumi;
}
#define VDR_IQ3_S_Q8_1_MMVQ 2
#define VDR_IQ3_S_Q8_1_MMQ 2
// TODO: don't use lookup table for signs
static __device__ __forceinline__ float vec_dot_iq3_s_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_iq3_s * bq3 = (const block_iq3_s *) vbq + kbx;
const int2 qs_packed = make_int2(get_int_b2(bq3->qs, iqs + 0), get_int_b2(bq3->qs, iqs + 1));
const uint8_t * qs = (const uint8_t *) &qs_packed;
const int qh = bq3->qh[iqs/2];
const int signs_packed_32 = get_int_b2(bq3->signs, iqs/2);
const uint8_t * signs_packed_8 = (const uint8_t *) &signs_packed_32;
int sumi = 0;
#pragma unroll
for (int l0 = 0; l0 < 8; l0 += 2) {
const int2 grid_pos = make_int2(
iq3s_grid[qs[l0 + 0] | ((qh << (8 - l0)) & 0x100)],
iq3s_grid[qs[l0 + 1] | ((qh << (7 - l0)) & 0x100)]);
const int signs0 = __vcmpne4(((signs_packed_8[l0/2] & 0x03) << 7) | ((signs_packed_8[l0/2] & 0x0C) << 21), 0x00000000);
const int signs1 = __vcmpne4(((signs_packed_8[l0/2] & 0x30) << 3) | ((signs_packed_8[l0/2] & 0xC0) << 17), 0x00000000);
const int grid_l = __vsub4(grid_pos.x ^ signs0, signs0);
const int grid_h = __vsub4(grid_pos.y ^ signs1, signs1);
const int u0 = get_int_b4(bq8_1[iqs/2].qs, l0 + 0);
const int u1 = get_int_b4(bq8_1[iqs/2].qs, l0 + 1);
sumi = ggml_cuda_dp4a(grid_l, u0, sumi);
sumi = ggml_cuda_dp4a(grid_h, u1, sumi);
}
sumi *= 1 + 2*((bq3->scales[iqs/4] >> ((iqs << 1) & 0x04)) & 0x0F);
const float d = __half2float(bq3->d) * __low2float(bq8_1[iqs/2].ds);
return d * sumi;
}
#define VDR_IQ1_S_Q8_1_MMVQ 1
#define VDR_IQ1_S_Q8_1_MMQ 1
static __device__ __forceinline__ float vec_dot_iq1_s_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_iq1_s * bq1 = (const block_iq1_s *) vbq + kbx;
const int qs_packed = get_int_b2(bq1->qs, iqs);
const uint8_t * qs = (const uint8_t *) &qs_packed;
const int qh = bq1->qh[iqs];
int sumi = 0;
#pragma unroll
for (int l0 = 0; l0 < 8; l0 += 2) {
const int grid = iq1s_grid_gpu[qs[l0/2] | (((qh >> 3*(l0/2)) & 0x07) << 8)];
const int grid0 = (grid >> 0) & 0x0F0F0F0F;
const int grid1 = (grid >> 4) & 0x0F0F0F0F;
const int u0 = get_int_b4(bq8_1[iqs].qs, l0 + 0);
const int u1 = get_int_b4(bq8_1[iqs].qs, l0 + 1);
sumi = ggml_cuda_dp4a(grid0, u0, sumi);
sumi = ggml_cuda_dp4a(grid1, u1, sumi);
}
const float d1q = __half2float(bq1->d) * (((qh >> 11) & 0x0E) + 1);
const float delta = -1.0f + IQ1S_DELTA - (qh & 0x8000) * (2.0f*IQ1S_DELTA/0x8000);
const float2 ds = __half22float2(bq8_1[iqs].ds);
return d1q * (ds.x*sumi + ds.y*delta);
}
#define VDR_IQ1_M_Q8_1_MMVQ 1
#define VDR_IQ1_M_Q8_1_MMQ 1
static __device__ __forceinline__ float vec_dot_iq1_m_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_iq1_m * bq1 = (const block_iq1_m *) vbq + kbx;
const int qs_packed = get_int_b4(bq1->qs, iqs);
const uint8_t * qs = (const uint8_t *) &qs_packed;
int sumi[2] = {0};
float sumf[2] = {0.0f};
#pragma unroll
for (int l0 = 0; l0 < 8; l0 += 2) {
const int qhl = bq1->qh[2*iqs + l0/4] >> (4 * ((l0/2) % 2));
const int grid = iq1s_grid_gpu[qs[l0/2] | ((qhl & 0x07) << 8)];
const int grid0 = (grid >> 0) & 0x0F0F0F0F;
const int grid1 = (grid >> 4) & 0x0F0F0F0F;
const int u0 = get_int_b4(bq8_1[iqs].qs, l0 + 0);
const int u1 = get_int_b4(bq8_1[iqs].qs, l0 + 1);
sumi[l0/4] = ggml_cuda_dp4a(grid0, u0, sumi[l0/4]);
sumi[l0/4] = ggml_cuda_dp4a(grid1, u1, sumi[l0/4]);
const float delta = -1.0f + IQ1M_DELTA - (qhl & 0x08) * (2.0f*IQ1M_DELTA/0x08);
int sumy = 0;
sumy = ggml_cuda_dp4a(u0, 0x01010101, sumy);
sumy = ggml_cuda_dp4a(u1, 0x01010101, sumy);
sumf[l0/4] += delta*sumy;
}
const uint16_t * sc = (const uint16_t *) bq1->scales;
iq1m_scale_t scale;
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00F0) | ((sc[2] >> 4) & 0x0F00) | (sc[3] & 0xF000);
const float d = __half2float(scale.f16) * __low2float(bq8_1[iqs].ds);
const int tmp = sc[iqs/2] >> (6*(iqs%2));
const int sc0 = 2*((tmp >> 0) & 0x07) + 1;
const int sc1 = 2*((tmp >> 3) & 0x07) + 1;
return d * ((sumi[0] + sumf[0]) * sc0 + (sumi[1] + sumf[1]) * sc1);
}
static __device__ __forceinline__ int2 get_int_from_table_16(const int & q4) {
const int q0_32 = (q4 >> 0) & 0x0F0F0F0F;
const int8_t * q0_8 = (const int8_t *) &q0_32;
const char4 val0_8 = make_char4(
kvalues_iq4nl[q0_8[0]], kvalues_iq4nl[q0_8[1]], kvalues_iq4nl[q0_8[2]], kvalues_iq4nl[q0_8[3]]);
const int q1_32 = (q4 >> 4) & 0x0F0F0F0F;
const int8_t * q1_8 = (const int8_t *) &q1_32;
const char4 val1_8 = make_char4(
kvalues_iq4nl[q1_8[0]], kvalues_iq4nl[q1_8[1]], kvalues_iq4nl[q1_8[2]], kvalues_iq4nl[q1_8[3]]);
return make_int2(*((const int *) &val0_8), *((const int *) &val1_8));
}
#define VDR_IQ4_NL_Q8_1_MMVQ 2
#define VDR_IQ4_NL_Q8_1_MMQ 4
static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_iq4_nl * bq4 = (const block_iq4_nl *) vbq + kbx;
const int * q8 = (const int *) bq8_1->qs + iqs;
int sumi = 0;
#pragma unroll
for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) {
const int aux_q4 = get_int_b2(bq4->qs, iqs + l);
const int2 v = get_int_from_table_16(aux_q4);
sumi = ggml_cuda_dp4a(v.x, q8[l + 0], sumi);
sumi = ggml_cuda_dp4a(v.y, q8[l + 4], sumi);
}
const float d = __half2float(bq4->d) * __low2float(bq8_1->ds);
return d * sumi;
}
#define VDR_IQ4_XS_Q8_1_MMVQ 4
#define VDR_IQ4_XS_Q8_1_MMQ 4
static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq + kbx;
int sumi = 0;
#pragma unroll
for (int j = 0; j < 4; ++j) {
const int aux_q4 = get_int_b4(bq4->qs, iqs + j);
const int2 v = get_int_from_table_16(aux_q4);
const int u0 = get_int_b4(bq8_1[iqs/4].qs, j + 0);
const int u1 = get_int_b4(bq8_1[iqs/4].qs, j + 4);
sumi = ggml_cuda_dp4a(v.x, u0, sumi);
sumi = ggml_cuda_dp4a(v.y, u1, sumi);
}
const int ls = ((bq4->scales_l[iqs/8] >> (iqs & 0x04)) & 0x0F) | (((bq4->scales_h >> (iqs/2)) & 0x03) << 4);
sumi *= ls - 32;
const float d = __half2float(bq4->d) * __low2float(bq8_1[iqs/4].ds);
return d * sumi;
}