131 lines
4.6 KiB
Text
131 lines
4.6 KiB
Text
|
/**
|
||
|
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
|
||
|
*
|
||
|
* MIT License
|
||
|
*
|
||
|
* Copyright (c) 2023-2024 The ggml authors
|
||
|
*
|
||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
* of this software and associated documentation files (the "Software"), to deal
|
||
|
* in the Software without restriction, including without limitation the rights
|
||
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
* copies of the Software, and to permit persons to whom the Software is
|
||
|
* furnished to do so, subject to the following conditions:
|
||
|
*
|
||
|
* The above copyright notice and this permission notice shall be included in all
|
||
|
* copies or substantial portions of the Software.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
* SOFTWARE.
|
||
|
*/
|
||
|
|
||
|
#include "argsort.cuh"
|
||
|
|
||
|
template<typename T>
|
||
|
static inline __device__ void ggml_cuda_swap(T & a, T & b) {
|
||
|
T tmp = a;
|
||
|
a = b;
|
||
|
b = tmp;
|
||
|
}
|
||
|
|
||
|
template<ggml_sort_order order>
|
||
|
static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols, int ncols_pad) {
|
||
|
// bitonic sort
|
||
|
int col = threadIdx.x;
|
||
|
int row = blockIdx.y;
|
||
|
|
||
|
if (col >= ncols_pad) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
const float * x_row = x + row * ncols;
|
||
|
extern __shared__ int dst_row[];
|
||
|
|
||
|
// initialize indices
|
||
|
dst_row[col] = col;
|
||
|
|
||
|
__syncthreads();
|
||
|
|
||
|
for (int k = 2; k <= ncols_pad; k *= 2) {
|
||
|
for (int j = k / 2; j > 0; j /= 2) {
|
||
|
int ixj = col ^ j;
|
||
|
if (ixj > col) {
|
||
|
if ((col & k) == 0) {
|
||
|
if (dst_row[col] >= ncols ||
|
||
|
(dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ?
|
||
|
x_row[dst_row[col]] > x_row[dst_row[ixj]] :
|
||
|
x_row[dst_row[col]] < x_row[dst_row[ixj]]))
|
||
|
) {
|
||
|
ggml_cuda_swap(dst_row[col], dst_row[ixj]);
|
||
|
}
|
||
|
} else {
|
||
|
if (dst_row[ixj] >= ncols ||
|
||
|
(dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ?
|
||
|
x_row[dst_row[col]] < x_row[dst_row[ixj]] :
|
||
|
x_row[dst_row[col]] > x_row[dst_row[ixj]]))
|
||
|
) {
|
||
|
ggml_cuda_swap(dst_row[col], dst_row[ixj]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
__syncthreads();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// copy the result to dst without the padding
|
||
|
if (col < ncols) {
|
||
|
dst[row * ncols + col] = dst_row[col];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int next_power_of_2(int x) {
|
||
|
int n = 1;
|
||
|
while (n < x) {
|
||
|
n *= 2;
|
||
|
}
|
||
|
return n;
|
||
|
}
|
||
|
|
||
|
static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
|
||
|
// bitonic sort requires ncols to be power of 2
|
||
|
const int ncols_pad = next_power_of_2(ncols);
|
||
|
|
||
|
const dim3 block_dims(ncols_pad, 1, 1);
|
||
|
const dim3 block_nums(1, nrows, 1);
|
||
|
const size_t shared_mem = ncols_pad * sizeof(int);
|
||
|
|
||
|
// FIXME: this limit could be raised by ~2-4x on Ampere or newer
|
||
|
GGML_ASSERT(shared_mem <= ggml_cuda_info().devices[ggml_cuda_get_device()].smpb);
|
||
|
|
||
|
if (order == GGML_SORT_ORDER_ASC) {
|
||
|
k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
|
||
|
} else if (order == GGML_SORT_ORDER_DESC) {
|
||
|
k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
|
||
|
} else {
|
||
|
GGML_ABORT("fatal error");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||
|
const ggml_tensor * src0 = dst->src[0];
|
||
|
const float * src0_d = (const float *)src0->data;
|
||
|
float * dst_d = (float *)dst->data;
|
||
|
cudaStream_t stream = ctx.stream();
|
||
|
|
||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT( dst->type == GGML_TYPE_I32);
|
||
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
||
|
|
||
|
const int64_t ncols = src0->ne[0];
|
||
|
const int64_t nrows = ggml_nrows(src0);
|
||
|
|
||
|
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
|
||
|
|
||
|
argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
|
||
|
}
|