ollama/llm/memory.go

183 lines
5.7 KiB
Go
Raw Normal View History

package llm
import (
"fmt"
"log/slog"
"github.com/ollama/ollama/api"
2024-06-04 11:53:23 -07:00
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/gpu"
)
// This algorithm looks for a complete fit to determine if we need to unload other models
func PredictServerFit(allGpus gpu.GpuInfoList, ggml *GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
// Split up the GPUs by type and try them
var estimatedVRAM uint64
for _, gpus := range allGpus.ByLibrary() {
var layerCount int
layerCount, estimatedVRAM, _ = EstimateGPULayers(gpus, ggml, projectors, opts)
if opts.NumGPU < 0 {
if layerCount > 0 && layerCount >= int(ggml.KV().BlockCount()+1) {
return true, estimatedVRAM
}
} else {
if layerCount > 0 && layerCount >= opts.NumGPU {
return true, estimatedVRAM
}
}
}
return false, estimatedVRAM
}
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
// The GPUs provided must all be the same Library
func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts api.Options) (int, uint64, uint64) {
var memoryAvailable uint64
for _, info := range gpus {
memoryAvailable += info.FreeMemory
}
if envconfig.MaxVRAM > 0 {
memoryAvailable = envconfig.MaxVRAM
}
slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", format.HumanBytes2(memoryAvailable))
// TODO - this is probably wrong, first GPU vs secondaries will have different overheads
memoryMinimum := gpus[0].MinimumMemory
for _, projector := range projectors {
memoryMinimum += projectorMemoryRequirements(projector)
// multimodal models require at least 2048 context
opts.NumCtx = max(opts.NumCtx, 2048)
}
2024-05-10 14:40:37 -07:00
layers := ggml.Tensors().Layers()
2024-05-13 14:14:10 -07:00
// add one layer worth of memory as a buffer
if blk0, ok := layers["blk.0"]; ok {
memoryMinimum += blk0.size()
}
2024-05-10 14:40:37 -07:00
// fp16 k,v = (1 (k) + 1 (v)) * sizeof(float16) * n_ctx * n_layer * n_embd / n_head * n_head_kv
var kv uint64 = 2 * 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * ggml.KV().EmbeddingLength() / ggml.KV().HeadCount() * ggml.KV().HeadCountKV()
graphPartialOffload, graphFullOffload := ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
if graphPartialOffload == 0 {
graphPartialOffload = ggml.KV().GQA() * kv / 6
}
if graphFullOffload == 0 {
graphFullOffload = graphPartialOffload
}
graphFullOffload *= uint64(len(gpus))
graphPartialOffload *= uint64(len(gpus))
// on metal there's no partial offload overhead
if gpus[0].Library == "metal" {
graphPartialOffload = graphFullOffload
}
// memoryRequiredTotal represents the memory required for full GPU offloading (all layers)
2024-05-10 14:40:37 -07:00
memoryRequiredTotal := memoryMinimum + graphFullOffload
// memoryRequiredPartial represents the memory required for partial GPU offloading (n > 0, n < layers)
2024-05-10 14:40:37 -07:00
memoryRequiredPartial := memoryMinimum + graphPartialOffload
2024-04-25 14:41:50 -07:00
var memoryLayerOutput uint64
2024-04-26 15:00:54 -07:00
if layer, ok := layers["output_norm"]; ok {
memoryLayerOutput += layer.size()
}
if layer, ok := layers["output"]; ok {
memoryLayerOutput += layer.size()
} else if layer, ok := layers["token_embd"]; ok {
memoryLayerOutput += layer.size()
2024-04-25 14:41:50 -07:00
}
if gpus[0].Library == "metal" && opts.UseMMap {
// memory is preallocated for output tensors
memoryRequiredTotal += memoryLayerOutput
memoryRequiredPartial += memoryLayerOutput
}
var layerCount int
2024-05-21 22:21:04 -07:00
for i := range int(ggml.KV().BlockCount()) {
2024-05-13 14:14:10 -07:00
if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
memoryLayer := blk.size()
2024-05-13 14:14:10 -07:00
// KV is proportional to the number of layers
memoryLayer += kv / ggml.KV().BlockCount()
2024-05-13 14:14:10 -07:00
memoryRequiredTotal += memoryLayer
if (opts.NumGPU >= 0 && layerCount+1 <= opts.NumGPU) || (opts.NumGPU < 0 && memoryAvailable > memoryRequiredPartial+memoryLayer) {
memoryRequiredPartial += memoryLayer
layerCount++
}
}
}
2024-04-25 14:41:50 -07:00
if gpus[0].Library != "metal" || !opts.UseMMap {
// memory was not preallocated for output tensors
memoryRequiredTotal += memoryLayerOutput
}
2024-05-10 14:40:37 -07:00
if (opts.NumGPU >= 0 && layerCount+1 <= opts.NumGPU) || (opts.NumGPU < 0 && memoryAvailable > memoryRequiredTotal) {
layerCount = int(ggml.KV().BlockCount()) + 1
memoryRequiredPartial = memoryRequiredTotal
}
memoryWeights := memoryRequiredTotal - memoryMinimum - graphFullOffload - kv
slog.Info(
"offload to gpu",
slog.Group(
"layers",
2024-05-10 14:40:37 -07:00
// requested number of layers to offload
"requested", opts.NumGPU,
// estimated number of layers that can be offloaded
2024-05-10 14:40:37 -07:00
"real", layerCount,
),
slog.Group(
"memory",
// memory available for offloading
"available", format.HumanBytes2(memoryAvailable),
slog.Group(
"required",
// memory required for full offloading
"full", format.HumanBytes2(memoryRequiredTotal),
// memory required to offload layers.estimate layers
"partial", format.HumanBytes2(memoryRequiredPartial),
// memory of KV cache
"kv", format.HumanBytes2(kv),
),
slog.Group(
"weights",
// memory of the weights
"total", format.HumanBytes2(memoryWeights),
// memory of repeating layers
"repeating", format.HumanBytes2(memoryWeights-memoryLayerOutput),
// memory of non-repeating layers
"nonrepeating", format.HumanBytes2(memoryLayerOutput),
),
slog.Group(
"graph",
// memory of graph when fully offloaded
"full", format.HumanBytes2(graphFullOffload),
// memory of graph when not fully offloaded
"partial", format.HumanBytes2(graphPartialOffload),
),
),
)
if gpus[0].Library == "cpu" {
return 0, 0, memoryRequiredTotal
}
if memoryRequiredPartial > memoryAvailable {
slog.Debug("insufficient VRAM to load any model layers")
return 0, 0, memoryRequiredTotal
}
return layerCount, memoryRequiredPartial, memoryRequiredTotal
}