223 lines
7.6 KiB
Text
223 lines
7.6 KiB
Text
|
/**
|
||
|
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
|
||
|
*
|
||
|
* MIT License
|
||
|
*
|
||
|
* Copyright (c) 2023-2024 The ggml authors
|
||
|
*
|
||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
* of this software and associated documentation files (the "Software"), to deal
|
||
|
* in the Software without restriction, including without limitation the rights
|
||
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
* copies of the Software, and to permit persons to whom the Software is
|
||
|
* furnished to do so, subject to the following conditions:
|
||
|
*
|
||
|
* The above copyright notice and this permission notice shall be included in all
|
||
|
* copies or substantial portions of the Software.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
* SOFTWARE.
|
||
|
*/
|
||
|
|
||
|
#include "concat.cuh"
|
||
|
|
||
|
// contiguous kernels
|
||
|
static __global__ void concat_f32_dim0(const float * x, const float * y, float * dst, const int ne0, const int ne00) {
|
||
|
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||
|
if (nidx >= ne0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
int offset_dst =
|
||
|
nidx +
|
||
|
blockIdx.y * ne0 +
|
||
|
blockIdx.z * ne0 * gridDim.y;
|
||
|
|
||
|
if (nidx < ne00) { // src0
|
||
|
int offset_src =
|
||
|
nidx +
|
||
|
blockIdx.y * ne00 +
|
||
|
blockIdx.z * ne00 * gridDim.y;
|
||
|
dst[offset_dst] = x[offset_src];
|
||
|
} else {
|
||
|
int offset_src =
|
||
|
(nidx - ne00) +
|
||
|
blockIdx.y * (ne0 - ne00) +
|
||
|
blockIdx.z * (ne0 - ne00) * gridDim.y;
|
||
|
dst[offset_dst] = y[offset_src];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static __global__ void concat_f32_dim1(const float * x, const float * y, float * dst, const int ne0, const int ne01) {
|
||
|
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||
|
if (nidx >= ne0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
int offset_dst =
|
||
|
nidx +
|
||
|
blockIdx.y * ne0 +
|
||
|
blockIdx.z * ne0 * gridDim.y;
|
||
|
|
||
|
if (blockIdx.y < ne01) { // src0
|
||
|
int offset_src =
|
||
|
nidx +
|
||
|
blockIdx.y * ne0 +
|
||
|
blockIdx.z * ne0 * ne01;
|
||
|
dst[offset_dst] = x[offset_src];
|
||
|
} else {
|
||
|
int offset_src =
|
||
|
nidx +
|
||
|
(blockIdx.y - ne01) * ne0 +
|
||
|
blockIdx.z * ne0 * (gridDim.y - ne01);
|
||
|
dst[offset_dst] = y[offset_src];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static __global__ void concat_f32_dim2(const float * x, const float * y, float * dst, const int ne0, const int ne02) {
|
||
|
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||
|
if (nidx >= ne0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
int offset_dst =
|
||
|
nidx +
|
||
|
blockIdx.y * ne0 +
|
||
|
blockIdx.z * ne0 * gridDim.y;
|
||
|
|
||
|
if (blockIdx.z < ne02) { // src0
|
||
|
int offset_src =
|
||
|
nidx +
|
||
|
blockIdx.y * ne0 +
|
||
|
blockIdx.z * ne0 * gridDim.y;
|
||
|
dst[offset_dst] = x[offset_src];
|
||
|
} else {
|
||
|
int offset_src =
|
||
|
nidx +
|
||
|
blockIdx.y * ne0 +
|
||
|
(blockIdx.z - ne02) * ne0 * gridDim.y;
|
||
|
dst[offset_dst] = y[offset_src];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void concat_f32_cuda(const float * x, const float * y, float * dst, int ne00, int ne01, int ne02, int ne0, int ne1, int ne2, int dim, cudaStream_t stream) {
|
||
|
int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE;
|
||
|
dim3 gridDim(num_blocks, ne1, ne2);
|
||
|
if (dim == 0) {
|
||
|
concat_f32_dim0<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne00);
|
||
|
return;
|
||
|
}
|
||
|
if (dim == 1) {
|
||
|
concat_f32_dim1<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne01);
|
||
|
return;
|
||
|
}
|
||
|
concat_f32_dim2<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
|
||
|
}
|
||
|
|
||
|
// non-contiguous kernel (slow)
|
||
|
static __global__ void concat_f32_non_cont(
|
||
|
const char * src0,
|
||
|
const char * src1,
|
||
|
char * dst,
|
||
|
int64_t ne00,
|
||
|
int64_t ne01,
|
||
|
int64_t ne02,
|
||
|
int64_t ne03,
|
||
|
uint64_t nb00,
|
||
|
uint64_t nb01,
|
||
|
uint64_t nb02,
|
||
|
uint64_t nb03,
|
||
|
int64_t /*ne10*/,
|
||
|
int64_t /*ne11*/,
|
||
|
int64_t /*ne12*/,
|
||
|
int64_t /*ne13*/,
|
||
|
uint64_t nb10,
|
||
|
uint64_t nb11,
|
||
|
uint64_t nb12,
|
||
|
uint64_t nb13,
|
||
|
int64_t ne0,
|
||
|
int64_t /*ne1*/,
|
||
|
int64_t /*ne2*/,
|
||
|
int64_t /*ne3*/,
|
||
|
uint64_t nb0,
|
||
|
uint64_t nb1,
|
||
|
uint64_t nb2,
|
||
|
uint64_t nb3,
|
||
|
int32_t dim) {
|
||
|
const int64_t i3 = blockIdx.z;
|
||
|
const int64_t i2 = blockIdx.y;
|
||
|
const int64_t i1 = blockIdx.x;
|
||
|
|
||
|
int64_t o[4] = {0, 0, 0, 0};
|
||
|
o[dim] = dim == 0 ? ne00 : (dim == 1 ? ne01 : (dim == 2 ? ne02 : ne03));
|
||
|
|
||
|
const float * x;
|
||
|
|
||
|
for (int i0 = threadIdx.x; i0 < ne0; i0 += blockDim.x) {
|
||
|
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||
|
x = (const float *)(src0 + (i3 )*nb03 + (i2 )*nb02 + (i1 )*nb01 + (i0 )*nb00);
|
||
|
} else {
|
||
|
x = (const float *)(src1 + (i3 - o[3])*nb13 + (i2 - o[2])*nb12 + (i1 - o[1])*nb11 + (i0 - o[0])*nb10);
|
||
|
}
|
||
|
|
||
|
float * y = (float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||
|
|
||
|
*y = *x;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||
|
const ggml_tensor * src0 = dst->src[0];
|
||
|
const ggml_tensor * src1 = dst->src[1];
|
||
|
|
||
|
cudaStream_t stream = ctx.stream();
|
||
|
|
||
|
const int32_t dim = ((int32_t *) dst->op_params)[0];
|
||
|
|
||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||
|
|
||
|
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
|
||
|
const float * src0_d = (const float *)src0->data;
|
||
|
const float * src1_d = (const float *)src1->data;
|
||
|
|
||
|
float * dst_d = (float *)dst->data;
|
||
|
|
||
|
if (dim != 3) {
|
||
|
for (int i3 = 0; i3 < dst->ne[3]; i3++) {
|
||
|
concat_f32_cuda(
|
||
|
src0_d + i3 * (src0->nb[3] / 4),
|
||
|
src1_d + i3 * (src1->nb[3] / 4),
|
||
|
dst_d + i3 * ( dst->nb[3] / 4),
|
||
|
src0->ne[0], src0->ne[1], src0->ne[2],
|
||
|
dst->ne[0], dst->ne[1], dst->ne[2], dim, stream);
|
||
|
}
|
||
|
} else {
|
||
|
const size_t size0 = ggml_nbytes(src0);
|
||
|
const size_t size1 = ggml_nbytes(src1);
|
||
|
|
||
|
CUDA_CHECK(cudaMemcpyAsync(dst_d, src0_d, size0, cudaMemcpyDeviceToDevice, stream));
|
||
|
CUDA_CHECK(cudaMemcpyAsync(dst_d + size0/4, src1_d, size1, cudaMemcpyDeviceToDevice, stream));
|
||
|
}
|
||
|
} else {
|
||
|
dim3 grid_dim(dst->ne[1], dst->ne[2], dst->ne[3]);
|
||
|
concat_f32_non_cont<<<grid_dim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(
|
||
|
(const char *)src0->data,
|
||
|
(const char *)src1->data,
|
||
|
( char *)dst->data,
|
||
|
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
|
||
|
src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
|
||
|
src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
|
||
|
src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3],
|
||
|
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3],
|
||
|
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3], dim);
|
||
|
}
|
||
|
}
|