2024-04-15 18:26:42 +00:00
|
|
|
package convert
|
|
|
|
|
|
|
|
import (
|
|
|
|
"encoding/binary"
|
|
|
|
"encoding/json"
|
|
|
|
"fmt"
|
|
|
|
"io"
|
|
|
|
"log/slog"
|
|
|
|
"os"
|
|
|
|
"path/filepath"
|
|
|
|
"regexp"
|
|
|
|
"strings"
|
|
|
|
|
|
|
|
"github.com/nlpodyssey/gopickle/pytorch"
|
|
|
|
"github.com/nlpodyssey/gopickle/types"
|
|
|
|
"github.com/x448/float16"
|
|
|
|
|
|
|
|
"github.com/ollama/ollama/llm"
|
|
|
|
)
|
|
|
|
|
|
|
|
type torchWriterTo struct {
|
|
|
|
t *llm.Tensor
|
|
|
|
|
|
|
|
params *Params
|
|
|
|
bo ByteOrder
|
|
|
|
|
2024-05-17 19:11:49 +00:00
|
|
|
storage pytorch.StorageInterface
|
|
|
|
repacker func(string, []float32, []uint64) ([]float32, error)
|
2024-04-15 18:26:42 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
type TorchFormat struct{}
|
|
|
|
|
|
|
|
func (tf *TorchFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor, error) {
|
|
|
|
slog.Debug("getting torch tensors")
|
|
|
|
|
2024-05-08 23:07:46 +00:00
|
|
|
var files []string
|
2024-05-15 21:55:57 +00:00
|
|
|
if pt, _ := filepath.Glob(filepath.Join(dirpath, "consolidated*.pth")); len(pt) > 0 {
|
|
|
|
files = append(files, pt...)
|
|
|
|
} else if pt, _ := filepath.Glob(filepath.Join(dirpath, "pytorch_model*.pth")); len(pt) > 0 {
|
|
|
|
files = append(files, pt...)
|
2024-04-15 18:26:42 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
var offset uint64
|
|
|
|
var tensors []llm.Tensor
|
|
|
|
for _, fn := range files {
|
|
|
|
m, err := pytorch.Load(fn)
|
|
|
|
if err != nil {
|
|
|
|
slog.Error(fmt.Sprintf("error unpickling: %q", err))
|
|
|
|
return []llm.Tensor{}, err
|
|
|
|
}
|
|
|
|
|
|
|
|
for _, k := range m.(*types.Dict).Keys() {
|
|
|
|
if strings.HasSuffix(k.(string), "self_attn.rotary_emb.inv_freq") {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
|
|
|
|
t, _ := m.(*types.Dict).Get(k)
|
|
|
|
tshape := t.(*pytorch.Tensor).Size
|
|
|
|
|
|
|
|
var size uint64
|
|
|
|
var kind uint32
|
|
|
|
switch len(tshape) {
|
|
|
|
case 0:
|
|
|
|
continue
|
|
|
|
case 1:
|
|
|
|
// convert to float32
|
|
|
|
kind = 0
|
|
|
|
size = uint64(tshape[0] * 4)
|
|
|
|
case 2:
|
|
|
|
// convert to float16
|
|
|
|
kind = 1
|
|
|
|
size = uint64(tshape[0] * tshape[1] * 2)
|
|
|
|
}
|
|
|
|
|
|
|
|
ggufName, err := tf.GetLayerName(k.(string))
|
|
|
|
if err != nil {
|
2024-05-03 23:44:19 +00:00
|
|
|
slog.Error(err.Error())
|
2024-04-15 18:26:42 +00:00
|
|
|
return nil, err
|
|
|
|
}
|
2024-05-08 23:07:46 +00:00
|
|
|
slog.Debug(fmt.Sprintf("'%35s': '%30s' %10d [%#v]", k.(string), ggufName, size, tshape))
|
2024-04-15 18:26:42 +00:00
|
|
|
|
|
|
|
shape := []uint64{0, 0, 0, 0}
|
|
|
|
for i := range tshape {
|
|
|
|
shape[i] = uint64(tshape[i])
|
|
|
|
}
|
|
|
|
|
|
|
|
tensor := llm.Tensor{
|
|
|
|
Name: ggufName,
|
|
|
|
Kind: kind,
|
|
|
|
Offset: offset, // calculate the offset
|
|
|
|
Shape: shape[:],
|
|
|
|
}
|
|
|
|
|
|
|
|
tensor.WriterTo = torchWriterTo{
|
|
|
|
t: &tensor,
|
|
|
|
params: params,
|
|
|
|
bo: params.ByteOrder,
|
|
|
|
storage: t.(*pytorch.Tensor).Source,
|
|
|
|
}
|
|
|
|
|
|
|
|
tensors = append(tensors, tensor)
|
|
|
|
offset += size
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return tensors, nil
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
func getAltParams(dirpath string) (*Params, error) {
|
|
|
|
f, err := os.Open(filepath.Join(dirpath, "params.json"))
|
|
|
|
if err != nil {
|
|
|
|
slog.Error("no params.json")
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
defer f.Close()
|
|
|
|
|
|
|
|
type TorchParams struct {
|
|
|
|
HiddenSize int `json:"dim"`
|
|
|
|
AttentionHeads int `json:"n_heads"`
|
|
|
|
KeyValHeads int `json:"n_kv_heads"`
|
|
|
|
HiddenLayers int `json:"n_layers"`
|
2024-04-18 23:00:20 +00:00
|
|
|
RopeTheta float64 `json:"rope_theta"`
|
2024-04-15 18:26:42 +00:00
|
|
|
NormEPS float64 `json:"norm_eps"`
|
|
|
|
}
|
|
|
|
|
|
|
|
var tparams TorchParams
|
|
|
|
|
|
|
|
d := json.NewDecoder(f)
|
|
|
|
err = d.Decode(&tparams)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
|
|
|
params := &Params{
|
2024-04-18 23:00:20 +00:00
|
|
|
Architectures: []string{"LlamaForCausalLM"},
|
2024-04-15 18:26:42 +00:00
|
|
|
HiddenSize: tparams.HiddenSize,
|
|
|
|
AttentionHeads: tparams.AttentionHeads,
|
|
|
|
KeyValHeads: tparams.KeyValHeads,
|
|
|
|
HiddenLayers: tparams.HiddenLayers,
|
|
|
|
NormEPS: tparams.NormEPS,
|
|
|
|
}
|
|
|
|
|
|
|
|
switch {
|
|
|
|
case tparams.RopeTheta == 1000000:
|
|
|
|
// Codellama
|
|
|
|
params.ContextSize = 16384
|
|
|
|
case tparams.NormEPS == 1e-06:
|
|
|
|
// llama2
|
|
|
|
slog.Debug("Found llama2 - setting context size to 4096")
|
|
|
|
params.ContextSize = 4096
|
|
|
|
default:
|
|
|
|
params.ContextSize = 2048
|
|
|
|
}
|
|
|
|
|
|
|
|
params.ByteOrder = binary.LittleEndian
|
|
|
|
return params, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
func (m *TorchFormat) GetParams(dirpath string) (*Params, error) {
|
|
|
|
f, err := os.Open(filepath.Join(dirpath, "config.json"))
|
|
|
|
if err != nil {
|
|
|
|
if os.IsNotExist(err) {
|
|
|
|
// try params.json instead
|
|
|
|
return getAltParams(dirpath)
|
|
|
|
} else {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
var params Params
|
|
|
|
d := json.NewDecoder(f)
|
|
|
|
err = d.Decode(¶ms)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
|
|
|
params.ByteOrder = binary.LittleEndian
|
|
|
|
return ¶ms, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
func (m *TorchFormat) GetLayerName(n string) (string, error) {
|
|
|
|
directMap := map[string]string{
|
|
|
|
"tok_embeddings.weight": "token_embd.weight",
|
|
|
|
"output.weight": "output.weight",
|
|
|
|
"norm.weight": "output_norm.weight",
|
|
|
|
"rope.freqs": "rope_freqs.weight",
|
|
|
|
"model.embed_tokens.weight": "token_embd.weight",
|
|
|
|
"lm_head.weight": "output.weight",
|
|
|
|
"model.norm.weight": "output_norm.weight",
|
|
|
|
}
|
|
|
|
|
|
|
|
lMap := map[string]string{
|
|
|
|
"layers.(\\d+).attention_norm.weight": "blk.$1.attn_norm.weight",
|
|
|
|
"layers.(\\d+).attention_output_norm.weight": "blk.$1.attn_norm.weight",
|
|
|
|
"layers.(\\d+).feed_forward.w2.weight": "blk.$1.ffn_down.weight",
|
|
|
|
"layers.(\\d+).feed_forward.w1.weight": "blk.$1.ffn_gate.weight",
|
|
|
|
"layers.(\\d+).feed_forward.w3.weight": "blk.$1.ffn_up.weight",
|
|
|
|
"layers.(\\d+).ffn_norm.weight": "blk.$1.ffn_norm.weight",
|
|
|
|
"layers.(\\d+).attention.wk.weight": "blk.$1.attn_k.weight",
|
|
|
|
"layers.(\\d+).attention.wo.weight": "blk.$1.attn_output.weight",
|
|
|
|
"layers.(\\d+).attention.wq.weight": "blk.$1.attn_q.weight",
|
|
|
|
"layers.(\\d+).attention.wv.weight": "blk.$1.attn_v.weight",
|
|
|
|
"model.layers.(\\d+).input_layernorm.weight": "blk.$1.attn_norm.weight",
|
|
|
|
"model.layers.(\\d+).mlp.down_proj.weight": "blk.$1.ffn_down.weight",
|
|
|
|
"model.layers.(\\d+).mlp.gate_proj.weight": "blk.$1.ffn_gate.weight",
|
|
|
|
"model.layers.(\\d+).mlp.up_proj.weight": "blk.$1.ffn_up.weight",
|
|
|
|
"model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight",
|
|
|
|
"model.layers.(\\d+).self_attn.k_proj.weight": "blk.$1.attn_k.weight",
|
|
|
|
"model.layers.(\\d+).self_attn.o_proj.weight": "blk.$1.attn_output.weight",
|
|
|
|
"model.layers.(\\d+).self_attn.q_proj.weight": "blk.$1.attn_q.weight",
|
|
|
|
"model.layers.(\\d+).self_attn.v_proj.weight": "blk.$1.attn_v.weight",
|
|
|
|
}
|
|
|
|
|
|
|
|
v, ok := directMap[n]
|
|
|
|
if ok {
|
|
|
|
return v, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// quick hack to rename the layers to gguf format
|
|
|
|
for k, v := range lMap {
|
|
|
|
re := regexp.MustCompile(k)
|
|
|
|
newName := re.ReplaceAllString(n, v)
|
|
|
|
if newName != n {
|
|
|
|
return newName, nil
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
|
|
|
|
}
|
|
|
|
|
|
|
|
func (r torchWriterTo) WriteTo(w io.Writer) (n int64, err error) {
|
2024-05-17 19:11:49 +00:00
|
|
|
var f32s []float32
|
|
|
|
switch s := r.storage.(type) {
|
2024-04-15 18:26:42 +00:00
|
|
|
case *pytorch.FloatStorage:
|
2024-05-17 19:11:49 +00:00
|
|
|
f32s = s.Data
|
2024-04-15 18:26:42 +00:00
|
|
|
case *pytorch.HalfStorage:
|
2024-05-17 19:11:49 +00:00
|
|
|
f32s = s.Data
|
2024-05-08 23:07:46 +00:00
|
|
|
case *pytorch.BFloat16Storage:
|
2024-05-17 19:11:49 +00:00
|
|
|
f32s = s.Data
|
|
|
|
default:
|
|
|
|
return 0, fmt.Errorf("unknown data type: %T", s)
|
|
|
|
}
|
2024-05-08 23:07:46 +00:00
|
|
|
|
2024-05-17 19:11:49 +00:00
|
|
|
if r.repacker != nil {
|
|
|
|
f32s, err = r.repacker(r.t.Name, f32s, r.t.Shape)
|
|
|
|
if err != nil {
|
|
|
|
return 0, err
|
|
|
|
}
|
|
|
|
}
|
2024-05-08 23:07:46 +00:00
|
|
|
|
2024-05-17 19:11:49 +00:00
|
|
|
switch r.t.Kind {
|
|
|
|
case 0:
|
|
|
|
return 0, binary.Write(w, r.bo, f32s)
|
|
|
|
case 1:
|
|
|
|
f16s := make([]uint16, len(f32s))
|
|
|
|
for i := range f32s {
|
|
|
|
f16s[i] = float16.Fromfloat32(f32s[i]).Bits()
|
2024-05-08 23:07:46 +00:00
|
|
|
}
|
2024-05-17 19:11:49 +00:00
|
|
|
|
|
|
|
return 0, binary.Write(w, r.bo, f16s)
|
2024-05-08 23:07:46 +00:00
|
|
|
default:
|
2024-05-17 19:11:49 +00:00
|
|
|
return 0, fmt.Errorf("unknown storage type: %d", r.t.Kind)
|
2024-04-15 18:26:42 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func (m *TorchFormat) GetModelArch(name, dirPath string, params *Params) (ModelArch, error) {
|
|
|
|
switch len(params.Architectures) {
|
|
|
|
case 0:
|
|
|
|
return nil, fmt.Errorf("No architecture specified to convert")
|
|
|
|
case 1:
|
|
|
|
switch params.Architectures[0] {
|
|
|
|
case "LlamaForCausalLM":
|
|
|
|
return &LlamaModel{
|
|
|
|
ModelData{
|
|
|
|
Name: name,
|
|
|
|
Path: dirPath,
|
|
|
|
Params: params,
|
|
|
|
Format: m,
|
|
|
|
},
|
|
|
|
}, nil
|
|
|
|
default:
|
|
|
|
return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0])
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return nil, fmt.Errorf("Unknown error")
|
|
|
|
}
|