2023-08-11 07:18:13 +00:00
|
|
|
#!/usr/bin/env python3
|
|
|
|
from langchain.chains import RetrievalQA
|
|
|
|
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
|
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
|
|
|
from langchain.vectorstores import Chroma
|
2023-08-11 15:58:57 +00:00
|
|
|
from langchain.llms import Ollama
|
2023-10-30 17:56:25 +00:00
|
|
|
import chromadb
|
2023-08-11 07:18:13 +00:00
|
|
|
import os
|
|
|
|
import argparse
|
|
|
|
import time
|
|
|
|
|
|
|
|
model = os.environ.get("MODEL", "llama2-uncensored")
|
2023-08-11 15:58:57 +00:00
|
|
|
# For embeddings model, the example uses a sentence-transformers model
|
|
|
|
# https://www.sbert.net/docs/pretrained_models.html
|
|
|
|
# "The all-mpnet-base-v2 model provides the best quality, while all-MiniLM-L6-v2 is 5 times faster and still offers good quality."
|
2023-08-11 07:18:13 +00:00
|
|
|
embeddings_model_name = os.environ.get("EMBEDDINGS_MODEL_NAME", "all-MiniLM-L6-v2")
|
|
|
|
persist_directory = os.environ.get("PERSIST_DIRECTORY", "db")
|
|
|
|
target_source_chunks = int(os.environ.get('TARGET_SOURCE_CHUNKS',4))
|
|
|
|
|
|
|
|
from constants import CHROMA_SETTINGS
|
|
|
|
|
|
|
|
def main():
|
|
|
|
# Parse the command line arguments
|
|
|
|
args = parse_arguments()
|
|
|
|
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
|
2023-10-30 17:56:25 +00:00
|
|
|
|
|
|
|
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
|
|
|
|
2023-08-11 07:18:13 +00:00
|
|
|
retriever = db.as_retriever(search_kwargs={"k": target_source_chunks})
|
|
|
|
# activate/deactivate the streaming StdOut callback for LLMs
|
|
|
|
callbacks = [] if args.mute_stream else [StreamingStdOutCallbackHandler()]
|
|
|
|
|
|
|
|
llm = Ollama(model=model, callbacks=callbacks)
|
|
|
|
|
|
|
|
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents= not args.hide_source)
|
|
|
|
# Interactive questions and answers
|
|
|
|
while True:
|
|
|
|
query = input("\nEnter a query: ")
|
|
|
|
if query == "exit":
|
|
|
|
break
|
|
|
|
if query.strip() == "":
|
|
|
|
continue
|
|
|
|
|
|
|
|
# Get the answer from the chain
|
|
|
|
start = time.time()
|
|
|
|
res = qa(query)
|
|
|
|
answer, docs = res['result'], [] if args.hide_source else res['source_documents']
|
|
|
|
end = time.time()
|
|
|
|
|
|
|
|
# Print the result
|
|
|
|
print("\n\n> Question:")
|
|
|
|
print(query)
|
|
|
|
print(answer)
|
|
|
|
|
|
|
|
# Print the relevant sources used for the answer
|
|
|
|
for document in docs:
|
|
|
|
print("\n> " + document.metadata["source"] + ":")
|
|
|
|
print(document.page_content)
|
|
|
|
|
|
|
|
def parse_arguments():
|
|
|
|
parser = argparse.ArgumentParser(description='privateGPT: Ask questions to your documents without an internet connection, '
|
|
|
|
'using the power of LLMs.')
|
|
|
|
parser.add_argument("--hide-source", "-S", action='store_true',
|
|
|
|
help='Use this flag to disable printing of source documents used for answers.')
|
|
|
|
|
|
|
|
parser.add_argument("--mute-stream", "-M",
|
|
|
|
action='store_true',
|
|
|
|
help='Use this flag to disable the streaming StdOut callback for LLMs.')
|
|
|
|
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|