61 lines
2.6 KiB
Diff
61 lines
2.6 KiB
Diff
|
diff --git a/llama.cpp b/llama.cpp
|
||
|
index 61948751..61fe7b57 100644
|
||
|
--- a/llama.cpp
|
||
|
+++ b/llama.cpp
|
||
|
@@ -7591,14 +7591,14 @@ struct llm_build_context {
|
||
|
}
|
||
|
|
||
|
struct ggml_tensor * build_inp_mean() {
|
||
|
- lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
|
||
|
+ lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, cparams.n_seq_max);
|
||
|
cb(lctx.inp_mean, "inp_mean", -1);
|
||
|
ggml_set_input(lctx.inp_mean);
|
||
|
return lctx.inp_mean;
|
||
|
}
|
||
|
|
||
|
struct ggml_tensor * build_inp_cls() {
|
||
|
- lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||
|
+ lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, cparams.n_seq_max);
|
||
|
cb(lctx.inp_cls, "inp_cls", -1);
|
||
|
ggml_set_input(lctx.inp_cls);
|
||
|
return lctx.inp_cls;
|
||
|
@@ -12062,19 +12062,16 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
|
||
|
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
|
||
|
|
||
|
float * data = (float *) lctx.inp_mean->data;
|
||
|
- memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
|
||
|
+ memset(lctx.inp_mean->data, 0, n_tokens * cparams.n_seq_max * ggml_element_size(lctx.inp_mean));
|
||
|
|
||
|
std::vector<uint64_t> sum(n_tokens, 0);
|
||
|
for (int i = 0; i < n_tokens; ++i) {
|
||
|
const llama_seq_id seq_id = batch.seq_id[i][0];
|
||
|
-
|
||
|
- GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
|
||
|
-
|
||
|
sum[seq_id] += 1;
|
||
|
}
|
||
|
|
||
|
- std::vector<float> div(n_tokens, 0.0f);
|
||
|
- for (int i = 0; i < n_tokens; ++i) {
|
||
|
+ std::vector<float> div(cparams.n_seq_max, 0.0f);
|
||
|
+ for (uint32_t i = 0; i < cparams.n_seq_max; ++i) {
|
||
|
const uint64_t s = sum[i];
|
||
|
if (s > 0) {
|
||
|
div[i] = 1.0f/float(s);
|
||
|
@@ -12094,14 +12091,11 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
|
||
|
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
|
||
|
|
||
|
uint32_t * data = (uint32_t *) lctx.inp_cls->data;
|
||
|
- memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
|
||
|
+ memset(lctx.inp_cls->data, 0, cparams.n_seq_max * ggml_element_size(lctx.inp_cls));
|
||
|
|
||
|
for (int i = 0; i < n_tokens; ++i) {
|
||
|
const llama_seq_id seq_id = batch.seq_id[i][0];
|
||
|
const llama_pos pos = batch.pos[i];
|
||
|
-
|
||
|
- GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
|
||
|
-
|
||
|
if (pos == 0) {
|
||
|
data[seq_id] = i;
|
||
|
}
|