ollama/convert/gemma.go

137 lines
3.3 KiB
Go
Raw Normal View History

2024-04-01 16:14:53 -07:00
package convert
import (
"encoding/binary"
"fmt"
"io"
"log/slog"
"os"
"strings"
"github.com/d4l3k/go-bfloat16"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type GemmaModel struct {
ModelData
}
func gemmaLayerHandler(w io.Writer, r safetensorWriterTo, f *os.File) error {
slog.Debug(fmt.Sprintf("converting '%s'", r.t.Name))
data := make([]byte, r.end-r.start)
if err := binary.Read(f, r.bo, data); err != nil {
return err
}
tDataF32 := bfloat16.DecodeFloat32(data)
var err error
tDataF32, err = addOnes(tDataF32, int(r.t.Shape[0]))
if err != nil {
return err
}
if err := binary.Write(w, r.bo, tDataF32); err != nil {
return err
}
return nil
}
func addOnes(data []float32, vectorSize int) ([]float32, error) {
n := tensor.New(tensor.WithShape(vectorSize), tensor.WithBacking(data))
ones := tensor.Ones(tensor.Float32, vectorSize)
var err error
n, err = n.Add(ones)
if err != nil {
return []float32{}, err
}
newN, err := native.SelectF32(n, 0)
if err != nil {
return []float32{}, err
}
var fullTensor []float32
for _, v := range newN {
fullTensor = append(fullTensor, v...)
}
return fullTensor, nil
}
func (m *GemmaModel) GetTensors() error {
t, err := GetSafeTensors(m.Path, m.Params)
if err != nil {
return err
}
m.Tensors = []llm.Tensor{}
for _, l := range t {
if strings.HasSuffix(l.Name, "norm.weight") {
wt := l.WriterTo.(safetensorWriterTo)
wt.handler = gemmaLayerHandler
l.WriterTo = wt
}
m.Tensors = append(m.Tensors, l)
}
return nil
}
func (m *GemmaModel) LoadVocab() error {
v, err := LoadSentencePieceTokens(m.Path, m.Params.VocabSize)
if err != nil {
return err
}
m.Vocab = v
return nil
}
func (m *GemmaModel) WriteGGUF() (string, error) {
kv := llm.KV{
"general.architecture": "gemma",
"general.name": m.Name,
"gemma.context_length": uint32(m.Params.ContextSize),
"gemma.embedding_length": uint32(m.Params.HiddenSize),
"gemma.block_count": uint32(m.Params.HiddenLayers),
"gemma.feed_forward_length": uint32(m.Params.IntermediateSize),
"gemma.attention.head_count": uint32(m.Params.AttentionHeads),
"gemma.attention.head_count_kv": uint32(m.Params.KeyValHeads),
"gemma.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
"gemma.attention.key_length": uint32(m.Params.HeadDimension),
"gemma.attention.value_length": uint32(m.Params.HeadDimension),
"general.file_type": uint32(1),
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.tokens": m.Vocab.Tokens,
"tokenizer.ggml.scores": m.Vocab.Scores,
"tokenizer.ggml.token_type": m.Vocab.Types,
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
"tokenizer.ggml.padding_token_id": uint32(m.Params.PaddingTokenID),
"tokenizer.ggml.unknown_token_id": uint32(3),
"tokenizer.ggml.add_bos_token": true,
"tokenizer.ggml.add_eos_token": false,
}
f, err := os.CreateTemp("", "ollama-gguf")
if err != nil {
return "", err
}
defer f.Close()
mod := llm.NewGGUFV3(m.Params.ByteOrder)
if err := mod.Encode(f, kv, m.Tensors); err != nil {
return "", err
}
return f.Name(), nil
}