2023-07-18 19:45:38 +00:00
< div align = "center" >
< picture >
2023-07-20 15:55:20 +00:00
< source media = "(prefers-color-scheme: dark)" height = "200px" srcset = "https://github.com/jmorganca/ollama/assets/3325447/56ea1849-1284-4645-8970-956de6e51c3c" >
< img alt = "logo" height = "200px" src = "https://github.com/jmorganca/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7" >
2023-07-18 19:45:38 +00:00
< / picture >
< / div >
2023-07-05 19:37:33 +00:00
2023-06-27 16:08:52 +00:00
# Ollama
2023-06-22 16:45:31 +00:00
2023-07-19 19:31:48 +00:00
[![Discord ](https://dcbadge.vercel.app/api/server/ollama?style=flat&compact=true )](https://discord.gg/ollama)
2023-07-19 19:28:50 +00:00
2023-09-26 06:44:53 +00:00
Get up and running with large language models locally.
2023-07-20 15:33:28 +00:00
2023-09-26 06:44:53 +00:00
### macOS
2023-08-08 22:50:23 +00:00
2023-10-11 23:24:06 +00:00
[Download ](https://ollama.ai/download/Ollama-darwin.zip )
2023-07-18 20:31:25 +00:00
2023-10-15 06:23:03 +00:00
### Windows
Coming soon!
2023-09-26 06:44:53 +00:00
### Linux & WSL2
```
curl https://ollama.ai/install.sh | sh
```
[Manual install instructions ](https://github.com/jmorganca/ollama/blob/main/docs/linux.md )
2023-10-15 06:23:03 +00:00
### Docker
2023-09-26 06:44:53 +00:00
2023-10-15 06:33:25 +00:00
See the official [Docker image ](https://hub.docker.com/r/ollama/ollama ).
2023-07-18 20:31:25 +00:00
2023-07-19 19:28:50 +00:00
## Quickstart
2023-09-26 06:44:53 +00:00
To run and chat with [Llama 2 ](https://ollama.ai/library/llama2 ):
2023-07-19 19:28:50 +00:00
```
ollama run llama2
```
## Model library
2023-10-11 23:24:06 +00:00
Ollama supports a list of open-source models available on [ollama.ai/library ](https://ollama.ai/library 'ollama model library' )
2023-08-17 02:53:27 +00:00
2023-08-26 03:44:26 +00:00
Here are some example open-source models that can be downloaded:
2023-07-19 19:28:50 +00:00
2023-09-26 06:44:53 +00:00
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | ------------------------------ |
2023-09-28 16:06:03 +00:00
| Mistral | 7B | 4.1GB | `ollama run mistral` |
2023-09-26 06:44:53 +00:00
| Llama 2 | 7B | 3.8GB | `ollama run llama2` |
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
| Llama 2 13B | 13B | 7.3GB | `ollama run llama2:13b` |
| Llama 2 70B | 70B | 39GB | `ollama run llama2:70b` |
| Orca Mini | 3B | 1.9GB | `ollama run orca-mini` |
| Vicuna | 7B | 3.8GB | `ollama run vicuna` |
2023-07-19 19:28:50 +00:00
2023-07-20 19:21:29 +00:00
> Note: You should have at least 8 GB of RAM to run the 3B models, 16 GB to run the 7B models, and 32 GB to run the 13B models.
2023-09-26 06:44:53 +00:00
## Customize your own model
2023-06-27 21:13:07 +00:00
2023-10-15 06:23:03 +00:00
### Import from GGUF
2023-09-01 14:54:31 +00:00
2023-10-15 06:23:03 +00:00
Ollama supports importing GGUF models in the Modelfile:
2023-09-01 14:54:31 +00:00
2023-10-15 06:23:03 +00:00
1. Create a file named `Modelfile` , with a `FROM` instruction with the local filepath to the model you want to import.
2023-09-01 14:54:31 +00:00
2023-09-26 06:44:53 +00:00
```
FROM ./vicuna-33b.Q4_0.gguf
```
2023-06-30 16:39:25 +00:00
2023-10-11 23:24:06 +00:00
2. Create the model in Ollama
2023-06-22 16:45:31 +00:00
2023-09-26 06:44:53 +00:00
```
2023-10-15 06:23:03 +00:00
ollama create example -f Modelfile
2023-09-26 06:44:53 +00:00
```
2023-08-10 15:22:28 +00:00
2023-10-11 23:24:06 +00:00
3. Run the model
2023-09-01 20:44:14 +00:00
2023-09-26 06:44:53 +00:00
```
2023-10-15 06:23:03 +00:00
ollama run example
2023-09-26 06:44:53 +00:00
```
2023-09-01 20:44:14 +00:00
2023-10-15 06:23:03 +00:00
### Import from PyTorch or Safetensors
See the [guide ](docs/import.md ) on importing models for more information.
2023-09-26 06:44:53 +00:00
### Customize a prompt
2023-09-01 20:44:14 +00:00
2023-09-26 06:44:53 +00:00
Models from the Ollama library can be customized with a prompt. The example
2023-07-19 19:28:50 +00:00
```
2023-07-20 09:21:51 +00:00
ollama pull llama2
2023-07-19 19:28:50 +00:00
```
2023-08-08 22:41:48 +00:00
2023-07-18 20:22:33 +00:00
Create a `Modelfile` :
2023-07-05 19:37:33 +00:00
2023-06-30 16:31:00 +00:00
```
2023-07-20 09:21:51 +00:00
FROM llama2
2023-07-20 15:17:09 +00:00
# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
# set the system prompt
2023-07-20 09:21:51 +00:00
SYSTEM """
2023-07-18 20:32:06 +00:00
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
2023-07-18 20:22:33 +00:00
"""
2023-06-29 22:25:02 +00:00
```
2023-07-07 20:14:58 +00:00
2023-07-18 20:22:33 +00:00
Next, create and run the model:
2023-07-07 20:14:58 +00:00
```
2023-07-18 20:22:33 +00:00
ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.
2023-07-07 20:14:58 +00:00
```
2023-10-11 23:24:06 +00:00
For more examples, see the [examples ](examples ) directory. For more information on working with a Modelfile, see the [Modelfile ](docs/modelfile.md ) documentation.
2023-09-26 06:44:53 +00:00
## CLI Reference
### Create a model
`ollama create` is used to create a model from a Modelfile.
2023-07-19 19:28:50 +00:00
2023-09-26 06:44:53 +00:00
### Pull a model
2023-07-06 20:21:01 +00:00
2023-07-19 19:28:50 +00:00
```
2023-09-26 06:44:53 +00:00
ollama pull llama2
2023-07-19 19:28:50 +00:00
```
2023-06-28 13:57:36 +00:00
2023-09-26 06:44:53 +00:00
> This command can also be used to update a local model. Only the diff will be pulled.
### Remove a model
2023-07-20 19:21:29 +00:00
```
2023-09-01 14:54:31 +00:00
ollama rm llama2
2023-07-20 19:21:29 +00:00
```
2023-09-26 06:44:53 +00:00
### Copy a model
```
ollama cp llama2 my-llama2
```
### Multiline input
For multiline input, you can wrap text with `"""` :
```
>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.
```
### Pass in prompt as arguments
```
$ ollama run llama2 "summarize this file:" "$(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
```
### List models on your computer
2023-07-20 19:21:29 +00:00
2023-09-26 06:44:53 +00:00
```
ollama list
```
2023-07-20 19:21:29 +00:00
2023-09-26 06:44:53 +00:00
### Start Ollama
2023-07-20 19:21:29 +00:00
2023-09-26 06:44:53 +00:00
`ollama serve` is used when you want to start ollama without running the desktop application.
2023-07-20 19:21:29 +00:00
2023-07-03 20:32:48 +00:00
## Building
2023-09-07 10:43:26 +00:00
Install `cmake` and `go` :
2023-08-25 18:44:25 +00:00
2023-07-03 20:32:48 +00:00
```
2023-08-30 21:54:02 +00:00
brew install cmake
2023-09-07 10:43:26 +00:00
brew install go
2023-08-30 21:54:02 +00:00
```
Then generate dependencies and build:
```
go generate ./...
2023-07-11 16:50:02 +00:00
go build .
2023-07-03 20:32:48 +00:00
```
2023-08-30 21:54:02 +00:00
Next, start the server:
2023-06-27 17:46:46 +00:00
2023-07-05 19:37:33 +00:00
```
2023-08-30 21:54:02 +00:00
./ollama serve
2023-07-05 19:37:33 +00:00
```
2023-09-01 14:54:31 +00:00
Finally, in a separate shell, run a model:
2023-07-05 19:37:33 +00:00
```
2023-07-18 20:22:33 +00:00
./ollama run llama2
2023-07-05 19:37:33 +00:00
```
2023-07-21 07:47:17 +00:00
## REST API
2023-10-11 23:24:06 +00:00
> See the [API documentation](docs/api.md) for all endpoints.
2023-07-21 07:47:17 +00:00
2023-08-08 22:48:47 +00:00
Ollama has an API for running and managing models. For example to generate text from a model:
2023-07-21 07:47:17 +00:00
```
2023-08-08 22:48:47 +00:00
curl -X POST http://localhost:11434/api/generate -d '{
"model": "llama2",
"prompt":"Why is the sky blue?"
}'
2023-07-23 22:01:05 +00:00
```
2023-07-31 20:59:39 +00:00
2023-09-26 06:44:53 +00:00
## Community Integrations
- [LangChain ](https://python.langchain.com/docs/integrations/llms/ollama ) and [LangChain.js ](https://js.langchain.com/docs/modules/model_io/models/llms/integrations/ollama ) with [example ](https://js.langchain.com/docs/use_cases/question_answering/local_retrieval_qa )
- [LlamaIndex ](https://gpt-index.readthedocs.io/en/stable/examples/llm/ollama.html )
- [Raycast extension ](https://github.com/MassimilianoPasquini97/raycast_ollama )
- [Discollama ](https://github.com/mxyng/discollama ) (Discord bot inside the Ollama discord channel)
- [Continue ](https://github.com/continuedev/continue )
- [Obsidian Ollama plugin ](https://github.com/hinterdupfinger/obsidian-ollama )
- [Dagger Chatbot ](https://github.com/samalba/dagger-chatbot )
- [LiteLLM ](https://github.com/BerriAI/litellm )
- [Discord AI Bot ](https://github.com/mekb-turtle/discord-ai-bot )
2023-10-02 16:04:31 +00:00
- [Chatbot UI ](https://github.com/ivanfioravanti/chatbot-ollama )
2023-09-26 06:44:53 +00:00
- [HTML UI ](https://github.com/rtcfirefly/ollama-ui )
- [Typescript UI ](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file )
- [Dumbar ](https://github.com/JerrySievert/Dumbar )
- [Emacs client ](https://github.com/zweifisch/ollama )
2023-10-15 21:20:41 +00:00
- [oterm ](https://github.com/ggozad/oterm )
2023-10-17 15:31:48 +00:00
- [Ellama Emacs client ](https://github.com/s-kostyaev/ellama )
- [OllamaSharp for .NET ](https://github.com/awaescher/OllamaSharp )