97 lines
2.4 KiB
Go
97 lines
2.4 KiB
Go
|
package convert
|
||
|
|
||
|
import (
|
||
|
"os"
|
||
|
"regexp"
|
||
|
|
||
|
"github.com/ollama/ollama/llm"
|
||
|
)
|
||
|
|
||
|
type MixtralModel struct {
|
||
|
ModelData
|
||
|
}
|
||
|
|
||
|
func (m *MixtralModel) GetTensors() error {
|
||
|
t, err := m.Format.GetTensors(m.Path, m.Params)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
m.Tensors = []llm.Tensor{}
|
||
|
|
||
|
pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
|
||
|
re, err := regexp.Compile(pattern)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
for _, l := range t {
|
||
|
matches := re.FindAllStringSubmatch(l.Name, -1)
|
||
|
if len(matches) > 0 {
|
||
|
wt := l.WriterTo.(safetensorWriterTo)
|
||
|
wt.handler = mistralLayerHandler
|
||
|
l.WriterTo = wt
|
||
|
}
|
||
|
m.Tensors = append(m.Tensors, l)
|
||
|
}
|
||
|
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
func (m *MixtralModel) LoadVocab() error {
|
||
|
v, err := LoadSentencePieceTokens(m.Path, m.Params)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
m.Vocab = v
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
func (m *MixtralModel) WriteGGUF() (string, error) {
|
||
|
kv := llm.KV{
|
||
|
"general.architecture": "llama",
|
||
|
"general.name": m.Name,
|
||
|
"llama.block_count": uint32(m.Params.HiddenLayers),
|
||
|
"llama.context_length": uint32(m.Params.ContextSize),
|
||
|
"llama.embedding_length": uint32(m.Params.HiddenSize),
|
||
|
"llama.feed_forward_length": uint32(m.Params.IntermediateSize),
|
||
|
"llama.attention.head_count": uint32(m.Params.AttentionHeads),
|
||
|
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
|
||
|
|
||
|
"llama.rope.freq_base": float32(m.Params.RopeFrequencyBase),
|
||
|
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
|
||
|
|
||
|
"llama.expert_count": uint32(m.Params.Experts),
|
||
|
"llama.expert_used_count": uint32(m.Params.ExpertsUsed),
|
||
|
|
||
|
"llama.vocab_size": uint32(len(m.Vocab.Tokens)),
|
||
|
"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
|
||
|
|
||
|
"general.file_type": uint32(1),
|
||
|
"tokenizer.ggml.model": "llama",
|
||
|
|
||
|
"tokenizer.ggml.tokens": m.Vocab.Tokens,
|
||
|
"tokenizer.ggml.scores": m.Vocab.Scores,
|
||
|
"tokenizer.ggml.token_type": m.Vocab.Types,
|
||
|
|
||
|
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
|
||
|
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
|
||
|
"tokenizer.ggml.unknown_token_id": uint32(0),
|
||
|
"tokenizer.ggml.add_bos_token": true,
|
||
|
"tokenizer.ggml.add_eos_token": false,
|
||
|
}
|
||
|
|
||
|
f, err := os.CreateTemp("", "ollama-gguf")
|
||
|
if err != nil {
|
||
|
return "", err
|
||
|
}
|
||
|
defer f.Close()
|
||
|
|
||
|
mod := llm.NewGGUFV3(m.Params.ByteOrder)
|
||
|
if err := mod.Encode(f, kv, m.Tensors); err != nil {
|
||
|
return "", err
|
||
|
}
|
||
|
|
||
|
return f.Name(), nil
|
||
|
}
|